F. CONDITIONS ASSESSMENT
This section records the existing conditions of the building as surveyed in March 2010. Architectural elements of the Aronson Building are categorized by exterior and interior materials and assemblies. Character-defining features (as noted in the Character-Defining Features section) are the primary focus of this assessment.

The purpose of the investigation is to:
- Document and assess the condition of the existing building;
- Identify areas of immediate concern;
- Identify areas where further investigation is required.

Conditions Assessment Methodology
The Aronson Building was visually surveyed during the week of March 1st by architectural conservators and historians from Page & Turnbull. The survey primarily consisted of visual observations of the building’s exterior through window openings and through the use of binoculars and telescopes from grade. Photographs were taken of significant architectural features throughout the interior and exterior of the building, and existing conditions data were recorded in field drawings and notes. No hazardous materials testing, including lead paint and asbestos, was conducted.

Lack of access to the exterior limited the level of assessment and prevented further investigation into failing materials and conditions. Additionally, the lack of historic drawings limited the amount of historical information regarding the building’s original construction and detailing. Original drawings are likely to have been lost or destroyed over time, which is not uncommon for a building of this age.

Interviews with the maintenance staff as well as a former contractor were conducted and are further discussed within this section. Documentation, in the form of photographs, of a past stabilization project was reviewed. With permission from the contractor, a number of these photographs are included in this section.

Conditions Definitions
The building elements conditions are described on a good, fair, poor rating system, defined as:

Good (G)
The building element / feature is intact, structurally sound, and performing its intended purpose. The component needs no repair or rehabilitation, but only routine or preventative maintenance.

Fair (F)
The building element / feature is in fair condition if either of the following conditions is present:
- a) There are early signs of wear, failure, or deterioration though the component and its features are generally structurally sound and performing their intended purpose; or
- b) There is failure of a feature or component.

Poor (P)
The building element / feature is in poor condition if any of the following conditions is present:
- a) The features are no longer performing their intended purpose; or
- b) Features are missing; or
- c) Deterioration or damage affects more than 25% of the component; or
- d) The component or features show signs of imminent failure or breakdown.
Unknown (U)
The assembly or feature was not accessible for assessment or not enough information is available to make an evaluation.

Summary of Existing Conditions
The condition of the Aronson Building is marked by age, weathering, and impacts from the 1906 earthquake and fire and the 1989 Loma Prieta earthquake. Generally the building is in fair condition. As previously described in the Construction Chronology section, the building has undergone several interior renovations, resulting in removal of most interior finishes and historic fabric. The exterior cladding is in fair-to-poor condition with cracked and spalled terra cotta and sandstone.

Exterior Cladding
The exterior architectural terra cotta, brick and sandstone cladding are identified as areas of immediate concern. All three materials suffer from extensive cracking, spalling and missing units, as further described below. Limited access to the exterior prevented an up-close investigation of these materials.

The primary cause for deterioration is likely due to water infiltration into the cladding system. For terra cotta elements, this may result in corrosion of steel anchoring systems and/or cracking of the unit itself. Sandstone is highly sensitive to high levels of moisture, which can result in the observed exfoliation of layers. This theory cannot be confirmed at this time due to limited access to the building exterior. See the recommendations section for further discussion on an in-depth façade assessment.

Although the primary cause is undetermined, one aspect of deterioration is certain: cracks and spalls left exposed to the elements, as observed, create an avenue for water to infiltrate into the wall system. This condition will likely accelerate the deterioration, potentially resulting in:
- Accelerated rate of deterioration;
- Deterioration/failure of steel anchoring systems, resulting in corrosion, rust jacking and/or attachment failure;
- Deterioration of building structural system;
- Water penetration into the interior of the building, resulting in damage to interior finishes.

The building exterior has undergone several stabilization campaigns, the most recent completed in 2006 after a piece of terra cotta reportedly fell from the building. The 2006 work is further described in the Terra Cotta Existing Conditions section. Although stabilization is necessary when materials become unstable and pose a safety hazard, it is not recommended as a long-term repair. Further investigation is required in order to provide specific long-term repair recommendations. For information on recommendations for these materials refer to the Conservation and Rehabilitation Plan section of this report.

Water Infiltration
Interviews with maintenance staff indicate that no water infiltration into the building has been observed, except at the roof and the basement. Minor leaking at the roof is an ongoing maintenance issue.
Conditions Assessment of Features

Historic architectural elements of the Aronson Building are categorized in the following conditions assessment by exterior and interior materials/assemblies.

Brick (Contributing Character-Defining Feature)

Description and History

The exterior wall at the northwest alley is common red brick masonry, structurally self-supporting. The original southwest wall at the addition remains intact and is exposed at the interior in select areas. This wall is also common red brick masonry, structurally self-supporting. The exterior face brick is coarsely textured, wire-cut red brick. Units measure approximately eight inches wide by two and a half inches tall by four inches deep. Mortar is soft, light grey in color with a joint width of approximately a half inch. The exterior of the northwest alley wall contains ghostings of past signage.

Deterioration Conditions

Survey of the brick was completed from the exterior by use of telescope. Where exposed, the brick at the interior was also surveyed. The brick is in fair condition at the exterior with evidence of abrasive blasting and cracking. Interior face of the brick shows evidence of abrasive blasting. The following are observed conditions:

- Vertical cracking at the northeast corner where the brick wall meets the terra cotta clad 3rd Street façade (Figure 35);
- Evidence of abrasive blasting of the brick face at the exterior, confirmed by an annotation in the 1979 construction documents (Figure 36);
- Evidence of moisture at roof parapet, as seen by organic growth (Figure 37);
- Evidence of abrasive blasting of brick face at the interior, resulting in loss of mortar, pitting of the brick face, and rounded brick edges (Figure 38);
- Poor joint condition due to abrasive blasting.

Figure 35. Cracking at terra cotta to brick interface.

Figure 36. Exterior brick face.
Sandstone (Significant Character-Defining Feature)

Description and History

The second and third stories of the Mission Street and 3rd Street façades incorporate Colusa Sandstone, a local stone used in construction of several prominent San Francisco buildings, such as the Ferry Building and the Flood Building. Stone elements include flat ashlar units with a grooved brush-chiseled texture finish, a deep water table that wraps both facades, and horizontal pediment and balustrades over the original entrances, of which the 3rd Street facade is missing its balustrade. The sandstone is painted a dark brown color.

Deterioration Conditions

Survey of the sandstone was conducted by use of a telescope from grade, and also from the interior by looking through the windows. The sandstone is in fair-to-poor condition, suffering from exfoliation, cracking, and spalling. Research into Colusa sandstone found that this type of stone has a tendency to form gypsum crusts and exfoliate (decay), sometimes within the first 20 years of the building’s life. Generally considered to be a low-grade building sandstone, Colusa sandstone is moderately soft, porous, and has a high rate of absorption. The following are observed conditions:

- Cracking of the stone, particularly at the overhang edges (Figure 39);
- Corrosion of steel cramps and anchors (Figure 40);
- Spalling of edges and corners (Figure 41);
- Exfoliation of crust at the top side (horizontal surface) of the stone (Figure 42);
- Delaminating paint coating;
- Loss of / missing mortar at joints.

Terra Cotta (Significant Character-Defining Feature)

Description and History

Architectural terra cotta is used for cladding and ornamentation on the Mission Street and 3rd Street facades of the building. Terra cotta features include the column base and capitals, door architrave, and arched window surrounds, all finished with a slip glaze. Additionally, the middle section of the building between the fourth and eighth floors is faced with a buff colored glazed brick. Mortar is of a color that closely matches that of the surrounding terra cotta.
There have been multiple terra cotta stabilization campaigns over the years; the most recent took place in 2006. The 2006 campaign included an inspection of the terra cotta pieces after a piece of masonry reportedly fell from the building. Inspection of the terra cotta resulted in additional units being identified as fall hazards. These units, including a keystone at a ninth floor arch on Mission Street, were removed from the façade and turned over to the building engineer. Interview with maintenance staff found these items may be lost. Occasionally exposed areas were patched with mortar. The area where the keystone was removed is an example of a mortar patch. The following photographs depict the investigation work and removal of deteriorated terra cotta features.
Figure 46. Cracking at column base.

Figure 47. Removal of cracked piece shown at left.

Figure 48. In-plane cracking of keystone.

Figure 49. Removal of cracked and mortar patch of piece shown at left. Source: Rainbow Waterproofing, 2006.

Figure 50. Cracking of sandstone.

Figure 51. Cracking of terra cotta brick.
Deterioration Conditions
Page & Turnbull surveyed the terra cotta using a telescoping lens from the ground level and also from the interior through the windows. Since the windows are fixed, physical contact with the material was prevented. In general, the terra cotta is in fair-to-poor condition, suffering from extensive cracking, bisque spalling, inappropriate or failed repairs, and mortar joint deterioration. The following are observed conditions:

Decorative Terra Cotta Conditions
- Bisque spalling (spall extending into the clay body) of the terra cotta occurs at all levels of both facades. Visual inspection shows the majority of spalls to be deep, exposing the void filler and inner block walls allowing rain water access into the wall assembly.
- Shallow bisque spalls occur at joints, particularly at window sills and the ninth floor arches (Figures 52 & 53). Typically bisque spalls of this nature are due to past pointing of the joint with a mortar that is too hard. If mortar is too hard, the terra cotta is unable to expand and contract, resulting in a spall or crack at the joint;
- Cracking of the terra cotta can be seen at the surface of many terra cotta units. While some hairline cracking is present, the majority of cracks are larger, penetrating into the clay body. Also observed were in-plane cracking, seen at a bisque spall (Figures 54 & 54);
- Previous repairs were observed in the form of non-matching mortar, partial mortar patches not covering an entire bisque spall and no patching mortar installed at bisque spalls (Figure 56);
- Mortar joints were observed to be in fair-to-poor condition with cracked and missing mortar (Figure 57). In some areas joints have been pointed with non-matching mortar. Additionally some joints have been repaired with sealant, which has dried, cracked, and deteriorated.
Glazed Terra Cotta Brick Conditions

○ Cracking of the glazed brick can be seen at vertical corners of the building, for example, at the columns which extend between the fourth and eighth floors. In some areas these cracks are continuous and extend multiple floor levels (Figure 58);

○ Spalling of the brick occurs at the cracked areas described above. Localized to the corners of the window openings;

○ Missing brick units also occur at the cracked areas described above. Localized to the corners of the window openings (Figure 59).
Cast Iron (Significant Character-Defining Feature)

Description and History

Cast iron elements are located at the first and second stories of the Mission Street and 3rd Street facades. Elements include storefront frame of columns with scroll capitals at both first and second stories with additional cast iron divisions at the second story. Scrolls at column capitals at the first story on the 3rd Street façade are missing. The cast iron is painted dark brown, the same color as the painted sandstone.

Deterioration Conditions

The cast iron elements are in good condition with only minor signs of corrosion and paint failure. The following are observed conditions of the cast iron:

- Minor corrosion due to oxidization located at areas of paint failure (Figure 60);
- Paint failure, particularly at the second story horizontal surfaces (Figure 61 & 62);
- Missing elements (Figure 63).
Sheet Metal Cornice (Significant Character-Defining Feature)

Description and History
The sheet metal cornice terminates the Mission Street and 3rd Street facades. The cornice includes a dentil band and modillions that align with the pilasters below. Penetrations through the cornice are located between dentils, allowing for installation of a staging apparatus. Additionally, the fire escapes include a penetration through the cornice between the dentils. The sheet metal is painted a dark brown, the same color as the cast iron and sandstone at the base of the building.

Deterioration Conditions
The sheet metal cornice is in good condition. Observed conditions include:
- Minor corrosion due to oxidization located at areas of paint failure;
- Paint failure, particularly at the second story horizontal surfaces (Figure 64);
Bronze Door Frame (Significant Character-Defining Feature)

Description and History
The bronze door frame is located at the 3rd Street entry at the north end of the facade. The bronze door frame and arched transom frame include a chain band pattern on the face of the frame.

Deterioration Conditions
The bronze frame is in good condition. Observed conditions include:
- General loose particulate soiling;
- Active corrosion in the form of greenish streaks and pits in the bronze surface (Figure 65);

![Figure 65. Corrosion of bronze frame. Source: Page & Turnbull, March 2010.](image)

Wood Window Trim and Sills at Interior (Contributing Character-Defining Feature)

Description and History
The window trim and sills at the interior are wood, many of which are painted (Figure 66).

Deterioration Conditions
The wood trim and sills are in good condition. Observed conditions include:
- Raised grain, likely due to past sandblasting;

![Figure 66. Interior window trim. Source: Page & Turnbull, March 2010.](image)
Ceramic Floor Tile at Interior (Non-contributing historic fabric)

Description and History
The ceramic floor tile is located in the original entryway of the 3rd Street entrance. Much of the feature is gone or covered with non-original partition walls.

Deterioration Conditions
The ceramic tile is in fair to poor condition. Observed conditions include:
- Cracking of tile, likely due to function of space as freight transport, allowing large loads to bear on the tile;
- Staining, soiling and over coat of concrete at elevator threshold. (Figure 67);

Figure 67. Cracking and soiling of ceramic tile.

Roebling Structural System (Contributing Character-Defining Feature)

Description and History
The Roebling System is notable for its structural ingenuity. The structural system was typically covered by interior finishes and neither the concrete columns nor the slabs were exposed.

Deterioration Conditions
A structural engineer should assess the condition of the structural system
PART 2. TREATMENT AND WORK RECOMMENDATIONS

A. HISTORIC PRESERVATION OBJECTIVES
Based on Page & Turnbull’s understanding of the Aronson Building and Aronson Historic District, as well as guidance provided by *The Secretary of the Interior’s Standards for the Treatment of Historic Properties*, Page & Turnbull has considered four potential treatment options:

1. **Preservation**: Requires retention of the greatest amount of historic fabric, along with the building’s historic form, features, and detailing as they have evolved over time.

2. **Rehabilitation**: Acknowledge the need to alter or add to a historic building to meet continuing or new uses while retaining the building’s historic character.

3. **Restoration**: Allow for the depiction of a building at a particular time in its history by preserving materials from the period of significance and removing materials from other periods.

4. **Reconstruction**: Establish a limited framework for re-creating a vanished or non-surviving building with new materials, primarily for interpretive purposes.

Page & Turnbull did not consider in depth the fourth treatment option **Reconstruction**. Reconstruction is defined as the creation of a new structure identical in form, features, and details to a historic structure that no longer exists. The opportunity for Reconstruction does not exist at the Aronson Building.

Preservation
This treatment option would limit intervention to the repair and stabilization of the existing historic architectural features and materials of the Aronson Building. This treatment entails remedying all material and structural deficiencies identified in this HSR, as well as instituting a maintenance plan to ensure that the building is properly and regularly maintained. The possible advantage of this approach is this treatment will not result in any substantial disruption to the Aronson Historic District. The relative cost of repairs may be lower than other treatment alternatives. The major drawback is that missing features and materials would not be replaced, new improved building systems would be difficult to introduce, and opportunities for programmatic planning alterations and new uses would be limited.

Rehabilitation
Rehabilitation is the treatment alternative typically selected in cases where compatible new uses or additions are contemplated as part of the project. Rehabilitation goes a step further than preservation. In addition to conducting necessary repairs, rehabilitation guidelines allow for additional work to replace missing elements and restoration of important public areas. This treatment option provides greater flexibility by allowing alterations and additions to accommodate a compatible use.

Rehabilitation would be the most ideal of all potential treatments because it would be possible to restore the building close to its original appearance, removing inappropriate alterations and restoring finishes while making improvements to fire-protection systems, environmental systems, and energy conservation. It would also provide the opportunity for new sensitively designed additions, compatible to the historic character, to be constructed at secondary facades.
Restoration
According to a strict interpretation of the Restoration Standards, the treatment option of restoration would require the reestablishment of a specific past period at the Aronson Building and/or the Aronson Historic District, presumably the reconstructed 1906 condition. This option would result in the removal of all post-1906 exterior alterations and the restoration of missing materials and elements. A full restoration of the building would need to be accomplished with strict authenticity. A strict restoration of the Aronson Building would unnecessarily limit flexibility to incorporate modern amenities and updated building systems, and limit the ability of the historic building to accommodate the needs of current owners and tenants. It would preclude the ability to construct sensitive new additions. Therefore, the restoration treatment is not proposed for the Aronson Building.

Recommended Treatment
Page & Turnbull recommends the adoption of rehabilitation as the treatment option for the Aronson Building. This strategy is superior to the other options, because it promotes the repair and protection of character-defining features of the building, while simultaneously allowing for necessary programmatic improvements and infrastructure improvements. Additions should be designed so that they are distinct, yet compatible with the historic resource and consistent with the Secretary of the Interior’s Standards for Rehabilitation.

The Aronson Building has had incremental interior alterations resulting in a substantial loss of interior historic fabric. Therefore, remaining historic fabric and character-defining features should be retained where possible. See the Preferred Treatment Recommendations for further information.

Many areas, such as open office areas, have been altered and will undoubtedly continue to be altered in the future in order to serve the building’s future use; the rehabilitation treatment option will allow for flexibility when dealing with non-contributing areas while retaining and restoring important features.

B. REQUIREMENTS FOR WORK
Laws, Regulations & Functional Requirements
This section outlines applicable laws, regulations and functional requirements, which must be taken into account prior to any rehabilitation work at the Aronson Building.

Any rehabilitation of the Aronson Building should be evaluated with respect to conformance with applicable state and municipal codes and standards required by law and National Park Service policy. All work to the building must comply with the California Building Code (CBC) and Title 24 Part 8 of the California Code of Regulations. As a qualified historic building, the Aronson Building is eligible to take advantage of the California Historical Building Code (CHBC) with regard to code compliance. The CHBC is intended to be used by any agency with jurisdiction when reviewing code compliance for a qualified historic building in order to insure its preservation. As stated in the CHBC Section 8-101.2:

The CHBC is intended to provide solutions for the preservation of qualified historical buildings or properties, to promote sustainability, to provide access for persons with disabilities, to provide a cost-effective approach to preservation, and to provide for reasonable safety of the occupants or users. The CHBC requires enforcing agencies to accept solutions that are reasonably equivalent to the regular code (as defined in Chapter 8-2) when dealing with qualified historical buildings or properties.
C. WORK RECOMMENDATIONS AND ALTERNATIVES

This section of the HSR presents a plan that includes a list of tasks and solutions for the conservation and rehabilitation of the Aronson Building. The plan recommends several options for rehabilitation treatments that could be considered during the design process of a future project. It also serves as a guide to standard practice for future maintenance, repair and replacement of historic materials based on the Secretary of the Interior’s Standards for Rehabilitation.

Secretary of the Interior’s Standards for the Treatment of Historic Properties

The Secretary of the Interior’s Standards are the benchmark by which Federal agencies and many local government bodies evaluate rehabilitative work on historic properties. The Standards are a useful analytic tool for understanding and describing the potential impacts of substantial changes to historic resources. Compliance with the Standards does not determine whether a project would cause a substantial adverse change in the significance of an historic resource. Rather, projects that comply with the Standards benefit from a regulatory presumption that they would have a less-than-significant adverse impact on an historic resource. 50

The Standards provide guidelines for four treatments of historic properties: Preservation, Rehabilitation, Restoration, and Reconstruction. The Standards for Rehabilitation outline appropriate maintenance and repair treatments for a historic structure.51 This treatment calls for a strategy of utilizing the property for a contemporary new use through repair and alteration while preserving historically significant portions and features of the building. The Secretary of the Interior’s Standards for the Rehabilitation are as follows:

1. A property shall be used for its historic purpose or be placed in a new use that requires minimal change to the defining characteristics of the building and its site and environment.

2. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

3. Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.

4. Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.

5. Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a property shall be preserved.

6. Deteriorated historic features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

7. Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.

50 CEQA Guidelines subsection 15064.5(b)(3).
8. Significant archeological resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken.

9. New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

10. New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

General Recommendations
The general recommendations section provides guidance on planning and design for future work as it relates to the Aronson Building. The building may require rehabilitation for a new use in the future. These recommendations outline potential areas for further study in order to protect and maintain the character-defining features and integrity of the building.

Façade Assessment
What follows in the Recommendations section provides general recommendations based upon 1) our visual observation from grade and building windows, 2) our previous experience with the materials found on the façade, and 3) industry standard repairs for these materials. In order to provide more detailed repair information, a more detailed investigation to uncover specific causes and sources of deterioration is required. When planning a future project the first task is to conduct a complete and thorough survey of the façade prior to design of the repair. Investigation should be completed by a well qualified architect and/or engineer familiar with historic structures and applicable treatments in accordance with the Standards and governing codes. Investigation of the façade may include but not be limited to the following:

- Up-close investigation by use of scaffold, swingstage, or mechanical lift;
- Use of non-destructive investigation techniques such as sounding with plastic or wood mallet, metal detection, infrared thermography, and impact echo testing;
- Use of destructive testing such as investigative openings to evaluate underlying systems and conditions.
- Sample removal and materials testing such as mortar analysis and petrographic analysis.

Based on the visual survey conducted for this report, the levels of deterioration observed warrant a full façade assessment in the near future.

Temporary Stabilization
Following a close-up inspection of the building façade, it may be necessary to temporarily stabilize elements that pose a safety hazard. The primary objective of a stabilization campaign is to either remove or anchor the unstable elements in order to avoid any potential safety hazards while preserving the historic fabric. Additionally, measures should also be taken to arrest water infiltration into the wall system to prevent further deterioration.
Stabilization repairs should be structurally sound, non-invasive, reversible and durable for the life of the repair. Repair techniques may include the following:
- Sheet metal enclosures;
- Debris netting;
- Stainless steel straps;
- Helical anchors;
- Protective canopy at street level.

Stabilization is not recommended as a long-term repair. Monitoring stabilization repairs once every year is recommended and should continue until permanent repairs are completed. Monitoring should look for additional areas of concern as well as inspection of previous stabilization repairs.

Preferred Treatments for Rehabilitation

The rehabilitation of the Aronson Building should consider the following preferred treatments for rehabilitation:

Protect, maintain and preserve character-defining features. Repair and treat character-defining features\(^{52}\) to return their structural integrity and aesthetic appearance where appropriate. Where materials are beyond repair, replacement of materials will be acceptable. Replacement with in-kind materials is preferred; however, alternative materials may be explored so long as they can comply to the *Standards* and material performance criteria. Historic fabric may be altered to accommodate necessary building upgrades where they do not impact significant spaces. However, these features should be retained where possible when not in conflict with the building or spaces new use.

New construction, additions and alterations should include measures to protect historic fabric considered to be significant and character-defining and/or contributing to the integrity of the building. The *Standards* recognize that new construction is often needed in order to adapt a historic building to a new use. Should a future project require new construction or an addition, the new work should be designed so that it is compatible yet differentiated from the historic building. Where a new building is constructed adjacent to the historic building, a successful method of linking the new building with the historic is through the use of a transparent connector. The connector would be built in a way that would minimize damage to historic fabric. Recessing the connector from the face of the historic façade would visually separate the historic building from the new. Alternatively, the new construction could step back from the Aronson building so that the form and massing of the historic building is conveyed and the new construction is recognized as separate. A protection plan should be developed in order to protect the character-defining features of the Aronson Building prior to the construction of an adjacent building or an addition.

Historically the two red brick masonry facades at the northwest and southwest were designed to accommodate construction of adjacent buildings, sharing the existing wall of the Aronson Building. Throughout its history there have been adjacent buildings at these locations. As such, these façades would be appropriate locations for additions.

New construction, mechanical equipment and/or roof garden elements placed at the roof should not visually dominate the views of the building. Setting features back from the roof edge will ensure that the features are not visually dominant to pedestrians at street level immediately surrounding the building (from sidewalks across the street from primary façades). Use of computerized 3-D

\(^{52}\) For list of character-defining features, see “C. Physical Description under Part I. Developmental History.”
modeling of the building and/or mock-ups of the proposed additions should be conducted prior to construction to determine sight lines and appropriate buildable heights and area at the roof.

Rehabilitation should consider sustainable solutions that improve energy efficiency and water conservation without compromising the building's historic integrity. A rehabilitation project may consider an energy study of the building to better understand the inherent properties of the existing resource and how to use those features to their best advantage. The project may consider the following:

- Use of low-e and/or insulated glazing at windows and storefronts
- Making new windows operable to make use of natural ventilation
- Installation of lighting fixtures and controls that improve efficiency
- New high efficiency heating system
- Use of photo-voltaic panels at the roof top, so long as the panels are not visible from street level.
- Use of low flow toilet fixtures

Design new storefronts at ground level to replace existing non-original storefront enclosures. The existing cast-iron storefront elements should be maintained and protected. The new storefronts may be contemporary in design; however, they should be designed so that they are compatible with the historic character of the building. Historic photographs (Figure 10) should be referenced and any divisions or patterns in the fenestration should be compatible with the historic design. Materials to consider include steel and painted aluminum. See the provided sketch for guidance on design of this feature (Figure 68).

The ground floor could potentially accommodate a single retail/restaurant tenant or several tenants at any given time. The design for signage, awnings, lighting, storefronts, and building entrances should promote a unified ground floor that is sympathetic to the historic character of the building. The design should address location and method of attachment for these features and should be reviewed by the San Francisco Planning Department.

Replace existing non-original windows with new windows of a style appropriate to the historic character of the building. The original wood windows were replaced with aluminum windows. Design of the new windows should be based upon physical or pictorial evidence. Since the original wood windows are no longer extant, the only physical evidence remaining is the wood sills. The pictorial evidence consists of historic photographs taken from distances that do not reveal sufficient detail of the dimensions of the stiles and rails of the original windows nor their original profiles. Therefore, there are two acceptable options for the replacement windows:

1. Replace the windows with metal or wood windows that appear to have similar proportions to the stiles and rails in the historic photographs and that have a profile compatible to what might have been used at that time.
2. Replace the windows with metal or wood windows that appear to have similar proportions to the stiles and rails in the historic photographs and that have no profile.

The operability and type of windows is dependent upon the building’s use and code restrictions; however, type of operation should consider the historic single sash vertical pivot type. The method operation is not as important as the overall physical appearance and proportions of the new windows. New windows could be constructed of wood or metal as noted above. See the provided sketch for guidance on design of this feature (Figure 68). Interior wood trim and sill are noted as character-defining and should be preserved and protected.
New openings at the north and west façades. The north and west facades have historically been mostly solid, with some openings inserted over time. These facades were intended as party walls that could be obscured by adjacent construction. Future projects may consider new openings at these facades. New openings in these facades should be kept well away from the south and east facades in order to retain the historical expression of the solid wall at the corner. At the west façade, new openings should be set back four to five feet from the corner. At the north façade, new openings should be setback three to five feet. Additionally, the total square feet of new openings at the north façade should not exceed 50 percent of the total façade square footage.

According to the Secretary of the Interior’s Standards for the Rehabilitation:

“such design should be compatible with the overall design of the building, but not duplicate the fenestration pattern and detailing of a character-defining elevation.”

In summary, new openings should be compatible but distinguished from the historic windows.

Remove abandoned metal fire escapes from the building façade. The fire escapes are no longer in use, nor are they required per California Building Code. The fire escapes should be removed and impacted materials repaired to their original appearance.
Figure 68. Page & Turnbull sketch of a recommended design option for storefront and windows.

NOTE: THE ORIGINAL WINDOWS AT THE UPPER FLOORS OF THE ARONSON WERE SINGLE-LITE WINDOWS. COMPATIBLE SOLUTIONS INCLUDE:
1. SINGLE-LITE WINDOWS.
2. WINDOWS WITH MINIMAL DIVISIONS AND THIN OR HIDDEN MUNTINS.

(N) SINGLE-LITE WOOD OR METAL WINDOW, TYP.

REMOVT NON-HISTORIC BANDING AROUND CORNER COLUMN

(N) METAL STOREFRONT

REMOVE NON-HISTORIC BRICK INFILL AND STONE CLADDING

FIRST FLOOR CLERESTORY
HORIZONTAL RAND CORRESPONDING TO FORMER AWNING HOUSING VISION GLASS STOREFRONT BASE
General Treatment for Common Materials

Several renovation projects at the interior removed much of the historically significant spaces and features of the building, such as the entry vestibules, elevator cabs and doors, and room finishes. Therefore the conservation treatments are largely confined to the exterior of the building, where the collection of historic fabric is the greatest. The historic exterior has not experienced any extensive restoration project beyond general maintenance and repair. The following sections include general guidelines to follow when repairing and maintaining the historic fabric. The recommendations follow the Standards and reference the National Park Service’s Preservation Briefs publications available on-line. The following National Park Service’s Preservation Brief titles are recommended resources for further information:

- Preservation Brief 1 – Assessing Cleaning and Water-Repellent Treatments for Historic Buildings
- Preservation Brief 2 – Repointing Mortar Joints in Historic Masonry Buildings
- Preservation Brief 6 – Dangers of Abrasive Cleaning to Historic Buildings
- Preservation Brief 7 – Preservation of Historic Glazed Architectural Terra Cotta
- Preservation Brief 11 – Rehabilitating Historic Storefronts
- Preservation Brief 24 – Heating, Ventilating and Cooling Historic Buildings
- Preservation Brief 27 – The Preservation and Repair of Architectural Cast Iron
- Preservation Brief 38 – Removing Graffiti from Historic Masonry
- Preservation Brief 39 – Controlling Unwanted Moisture in Historic Buildings
- Preservation Brief 41 – The Seismic Retrofit of Historic Buildings
- Preservation Brief 42 – The Maintenance, Repair and Replacement of Historic Cast Stone

The recommendation section is organized by building material. Execution of the work described in the section should be carried out by qualified contractors and/or maintenance staff with experience in working with historic buildings and materials. Work should be designed and overseen by a qualified architect and/or engineer.

Brick Repair Recommendations (Contributing Character-Defining Feature)

Seismic Reinforcing

A structural engineer should make recommendations on the seismic upgrade of the unreinforced masonry, with consultation from a preservation architect. It is likely that the brick masonry will need to be covered in areas. The preservation architect should consider the seismic application and how it may affect character-defining features and the building’s integrity.

Cracked Units

Areas observed to have cracked masonry units should be repaired as follows:

- Remove cracked masonry units by use of grinders and hand tools. Take care not to overcut surrounding brick.
- Inspect surface behind masonry for evidence of corrosion of steel anchoring system. Repair steel as required.
- Install new brick masonry unit to match existing in dimensions, color and texture as feasible. New mortar to match the original mortar in color, texture and tooled profile.

53 Preservation Briefs, Technical Preservation Services, National Park Service. Available at: http://www.nps.gov/history/hps/tps/
Repointing
Where required, repoint masonry as follows:
- Remove old mortar to depth of at least 2-1/2 times the width of the joint or to sound mortar, whichever is greater. Remove mortar by use of grinders and hand tools. Take care not to overcut surrounding masonry units.
- Repointing mortar should be mixed to match a freshly broken sample of the original, and should not be stronger than the brick. This process may require laboratory analysis of existing mortar to ensure correct mix is installed.
- Repointing mortar should match the original mortar in color, texture and the joint profile should match the original joints.
- Install mortar in 1/4 inch lifts to fill the joint flush to the outer surface. When the final layer is thumbprint hard, tool the joint to match surrounding original mortar.

Cleaning
Previous sandblasting of the brick has resulted in pitting of the masonry surface and deterioration of the mortar joints. The brick may have an increased absorption rate due to blasting and therefore would absorb a greater amount of chemical cleaners when applied. Additional testing of the masonry and pointing of the deteriorated mortar joints should be conducted prior to any cleaning of the facades. Cleaning of the brick must exercise extreme caution and mock-ups should be conducted to ensure no damage will occur as a result of cleaning. Localized stains or marks from vandalism may be cleaned as necessary but cleaning procedures should be limited to the affected area rather than the entire wall. Any masonry cleaning procedures for this building must follow the standard of practice outlined in Preservation Brief 1 – Assessing Cleaning and Water-Repellent Treatments for Historic Masonry Buildings.

Colusa Sandstone Recommendations (Significant Character-Defining Feature)
Deterioration of Colusa sandstone is a natural weathering process and therefore cannot be completely arrested. The deterioration can be slowed down by repairing already damaged material and reducing the amount of water penetrating the stone.

Paint Removal
The paint covering the sandstone should be removed. If coatings are not breathable, they can accelerate the deterioration of the stone. Additionally, the existing painted surface makes identifying cracks, spalls, and areas of repair more difficult. Mock-ups of the paint removal process, testing several options, are recommended in order to choose the best approach.

Repair
- Remove all unsound sandstone spalls;
- Inspect substrate for embed steel anchors, repair steel as required;
- Reinforce larger or deep spalls with stainless steel threaded rods, smaller or shallow patches need not be reinforced;
- Patch sandstone units with composite patching mortar of a color that matches the existing sandstone. Patching material must be breathable and have similar thermal expansion characteristics of the original stone;

Replacement
Replacement of the sandstone may be required where the damage is severe and beyond repair. Replacement of entire blocks or partial replacement with a Dutchman repair is costly. It is also difficult to match the sandstone exactly since in many cases the original quarry is closed. Cutting, dressing and installation of the replacement stone is labor intensive and should be conducted by a skilled craftsman familiar with restoration of historic stone.
Replacement with new sandstone to match the existing is preferred in order to comply with the Standards, although substitute materials are one option that is sometimes considered. Substitute materials may include glass fiber reinforced concrete (GFRC) and cast stone. The replacement material should be visually compatible. However, it should be understood that an alternate material will weather differently than the adjacent sandstone, therefore the replacement stones may become visually pronounced over time. It is of great importance that the replacement materials contain properties similar to the existing sandstone, for example compressive strength and expansion/contraction coefficient. Due to the complexities of this type of repair, the process should be carefully monitored and include testing of existing and replacement materials, mock-ups, shop drawings and full scale submittal samples.

Flashings and Coatings

Design and installation of flashings at horizontal surfaces should be examined for water infiltration. A flashing system will ensure that water is able to shed off and away from the stone. Flashing should be replaced at areas of water infiltration. Flashing will need to be integrated with the wall system at the stone-to-masonry interface.

All existing paint coatings should be removed from the sandstone by gentlest means possible. Use of a clear, breathable siloxane/silane based water repellent coating would aid in mitigating water penetration into the stone. A mock-up of proposed coatings should be conducted prior to selection of a product. A coating should not alter the natural finish, color or texture of the stone.

Terra Cotta Repair Recommendations (Significant Character-Defining Feature)

Cleaning

The general consensus among preservation professionals is that cleaning terra cotta can be risky and may sometimes produce devastating effects. The objective for cleaning historic materials is not to reach 100 percent clean, but closer to 75 or 80 percent. The following methods for cleaning should be avoided:

- **Abrasive Clearers and Sandblasting:** Abrasive cleaning for terra cotta, especially with glazed surfaces should not be considered.
- **Strong Acids (particularly fluoride based acids):** Many commercially available chemical cleaners contain hydrofluoric acid which can etch the glaze of the terra cotta very seriously, removing most of the surface sheen. Use of acids may deteriorate mortar and “liberate” salts within the masonry system producing efflorescence.
- **Alkaline Cleaners:** May cause little or no damage to the glaze, but if absorbed into the masonry material can cause efflorescence.
- **High Pressure Water:** Water seepage into masonry wall may cause rusting of metal anchoring.
- **Use of metal bristle brushes.**

Cleaning campaigns should begin with testing the gentlest means possible and may require several mock-ups prior to selection of the proper technique. A combination of hand scrubbing with a stiff nylon brush and a minimum of water washing is the most conservative approach and least harmful to the material. Depending on the level of soiling a low-pressure wash (100 to 400 psi) may be sufficient to remove soiling. A natural organic detergent may prove useful as well.
Spalls
With the extensive amount of bisque spalling at the Aronson Building options for treatment include patching of spalls and replacement of the terra cotta unit. For more information on the option of replacement see the Replacement category of this section.

Patching of terra cotta bisque spalls would include:
- Reinforcing patches for larger or deep spalls with stainless steel threaded rods. Smaller or shallow patches need not be reinforced.
- Selection and application of patching mortar that matches the existing terra cotta color, texture and profile, paying particular attention to matching compressive strength and vapor transmission properties.
- Application of an acrylic or latex coating system to match the existing slip glaze.

Coating systems on terra cotta have an expected life span of ten years at best. Future failures of this repair may include fading, chalking and delamination. A future maintenance plan should include ongoing inspection and maintenance of the coatings.

Cracks
Cracking of the terra cotta is usually caused by underlying conditions, most commonly corrosion of steel anchoring and structural support systems. As discussed in the Existing Conditions section, further investigation of this condition is required before a specific repair can be designed. In general the procedure for repair of terra cotta cracks includes:
- Inspection of terra cotta for underlying conditions;
- Repair of any underlying conditions and stabilization of the masonry unit;
- Repointing and finishing with a coating system. Cracks from 1/32 inch to 1/8 inch in width should be routed out and filled with a proprietary flexible epoxy crack sealant for masonry;
- Hairline cracks should be periodically monitored to ensure that they are not expanding and do not require immediate treatment.

Mortar
Repointing of cracked and deteriorated mortar joints is the first step in mitigating water infiltration into the wall system. Because joints in terra cotta need to “breathe,” pointing joints with sealant is not recommended. Recommendation for pointing of joints includes:
- Removal of deteriorated mortar without damaging surrounding terra cotta;
- Selection of pointing mortar that matches the existing mortar in color and texture. Mortar that is soft and lime-based (weaker than the surrounding terra cotta) will allow for expansion and contraction of the terracotta;
- Installation of mortar to match surrounding mortar.

Replacement
Replacement of the terra cotta units may be necessary when large pieces or whole units are missing. The Secretary of the Interior's Standards for Rehabilitation states:
“Deteriorated historic features will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials. Replacement of missing features will be substantiated by documentary and physical evidence.”
Although substitute materials are one option, replacement with new terra cotta to match the existing is preferred in order to comply with the Standards. Cost and time constraints associated with fabrication of new terra cotta may require exploration of substitute materials. Substitute materials may include glass fiber reinforced concrete (GFRC) and pre-cast concrete. In both cases of replacement in-kind or use of substitute materials, the replacement material should be visually compatible. Additionally, it is of great importance that the replacement materials contain properties similar to the existing terra cotta, for example compressive strength and expansion/contraction coefficient. Due to the complexities of this type of repair, the process should be carefully monitored and include testing of existing and replacement materials, mock-ups, shop drawings and full scale submittal samples.

Architectural Cast Iron (Significant Character-Defining Feature)

Paint Restoration Recommendations
Areas observed to have extensive failure of the paint coating and/or corrosion should be repaired as follows:
- Remove failing paint by use of wire brush or chemical paint stripper;
- Remove rust and corrosion with wire brush just before priming;
- Prime exposed cast-iron with a zinc-rich rust inhibitor coating;
- Paint all cast-iron elements with an epoxy base coat, and two urethane finish coats.

Missing cast iron elements, such as the missing scroll capitals along Third Street, should be replaced. Substitute materials, provided they comply with the Standards, are acceptable.

Architectural Sheet Metal Cornice (Significant Character-Defining Feature)

Paint Restoration Recommendations
Areas observed to have extensive failure of the paint coating and/or corrosion should be repaired as follows:
- Remove failing paint by use of wire brush or chemical paint stripper;
- Remove rust and corrosion with wire brush just before priming;
- Prime exposed metal with a zinc-rich rust inhibitor coating;
- Paint all sheet metal elements with an epoxy base coat, and two urethane finish coats

The cornice was cut to accommodate the fire escape ladder from the roof. If the ladder is removed, the cornice should be repaired. Additionally, part of the original cornice return that once wrapped around the building was cut off to build the 1970’s addition. If the addition is removed, the cornice should be repaired.

Bronze Door Frame (Significant Character-Defining Feature)

Cleaning Restoration Recommendations
The bronze door frame should be cleaned and protected as follows:
- Remove any surface wax, soiling or grease with a solvent or power washing;
- Treat corroded areas with a heat applied chemical patina to match the historic patina;
- Apply a proprietary polymer coating such as Incralac (a standard protective coating for bronze sculpture), as well as a protective microcrystalline wax layer.

Wood Window Trim and Sills at Interior (Contributing Character-Defining Feature)

Paint Restoration Recommendations
Since the wood elements appear to have been sandblasted, it is unlikely that a paint analysis study would reveal the historic finish of the trim and sills. Therefore, options for finishing include:
Aronson Building
Historic Structure Report

- Restoration back to bare wood with a clear or stain finish;
- Restoration back to bare wood with a painted finish, with no restrictions on color.

Paint removal should be conducted as follows:
- Remove failing paint by use of chemical paint stripper, do NOT sandblast wood;
- Sand wood to smooth finish to remove current raised grain texture, take care not to sand away any existing decorative detailing;
- Finish wood as desired.

Exterior windows (Non-Contributing Feature)
As discussed in the Preferred Treatments Recommendations section, the modern windows should be replaced with new windows that are sensitive to the historic character of the building. However, because the existing windows are only halfway through their expected service life, it would be acceptable (but not required) to defer replacement until the end of their service life. In the future, when the windows are in need of replacement, new windows should be designed in a style that is appropriate for the historic character of the building.

Based on historic photographs (Figures 9 & 10), the original windows were simple, single-lite wood windows. Replacement windows should be based on physical and pictorial evidence and incorporate similar proportions as the windows in the historic photographs. Replacement windows should also fill the original window opening. Recreation of the replacement windows is not required to meet the Standards and substitute materials may be acceptable.54

Ceramic Floor Tile at Interior (Non-contributing historic fabric)
The ceramic tile is original historic fabric, although it is not a character-defining feature. The tile is in poor condition and exists as a fragment. Although retaining historic fabric wherever possible is recommended, its removal would not result in an adverse affect on the building.

Roebling Structural System (Contributing Character-Defining Feature)
Recommendations for the seismic upgrade of the structural system should be completed by a structural engineer with consultation from a preservation architect. As stated in the conditions assessment, the concrete finish of the structural system was likely not exposed, with the exception of the basement. Therefore, covering the concrete structural system with interior finishes is an appropriate treatment.

REFERENCES

PUBLISHED

Kelley and VerPlanck, District Record for New Montgomery, Mission and Second Historic District, 23 July 2008.

Kelley and VerPlanck Historical Resources Consulting, Transit Center District Survey, San Francisco, California, 22 July 2008.

PUBLIC RECORDS

Bancroft Library, University of California, Berkeley
California State Library
San Francisco Assessor’s Records
San Francisco City Directories
San Francisco Department of Building Inspection, Building Permits
San Francisco Public Library Historical Photograph Collection
NEWSPAPERS AND PERIODICALS

INTERNET SOURCES

OTHER

APPENDICES

Charles Hall Page & Associates. Historic Resources Inventory Form (DPR523) for the Mercantile Building, March 1978.

Historic Drawings
HISTORIC RESOURCES INVENTORY FORM 1978
Identification
1. Common name: nanopile Building
2. Historic name: Jerrold Building
3. Street or rural address: Mission Street, 200
 City: San Francisco Zip: 94103 County: San Francisco
4. Parcel number:
5. Present Owner: San Francisco Redevelopment Agency Address: 820 Howard
 City: San Francisco Zip: 94103 Ownership is: Public X Private
6. Present Use: Commercial Original use: Office building

Description
7a. Architectural style:
7b. Briefly describe the present physical description of the site or structure and describe any major alterations from its original condition:

This ten story building consists of a glass base with a massively skeletal shaft vertically articulated. The design culminates in a richly embellished arcade and a two story capital that includes small round windows in reference to such Sullivan skyscrapers as the Guaranty and Wainwright buildings. Renaissance/Sarcoque ornamental details are oversized to be legible and to enhance the massiveness of the top. The exterior is of stone, brick, and terra cotta in brown shades.

8. Construction date:
 Estimated X Actual 1913
10. Builder: unknown
11. Approx. property size (in feet)
 Frontage: 100
 Depth: 25
 or approx.
12. Date(s) of enclosed photograph(s)
 7/78
51. Condition: Excellent □ Good □ Fair □ Deteriorated □ No longer in existence □

52. Alterations: Ground floor remodeled

53. Surroundings: (Check more than one if necessary) Open land □ Scattered buildings □ Densely built-up □ Residential □ Industrial □ Commercial □ Other: Edge of Verba Buena

54. Threats to site: None known □ Private development □ Zoning □ Vandalism □ Public works project □ Other:

55. Is the structure: On its original site □ Moved □ Unknown: Unknown

56. Related features:

SIGNIFICANCE
57. Briefly state historical and/or architectural importance (include dates, events, and persons associated with the site.)

This is a fine example of a three-part Sullivanesque composition, designed by a little-known firm, Hennebury and Miller, who also did the excellent original design for the building now known as the old French Bank (193-110 Sutter). The glass base of the structure was designed to relate to the form of the San Francisco type with glass commercial areas under "architectural" office floors.

The building serves as a powerful corner anchor, although the buildings which it once anchored have all been demolished for the Verba Buena Center.

The Aronson Building achieved a measure of notoriety in the post-fire report of the U.S. Geological Survey on the condition of San Francisco buildings. It was the report's featured example of supposedly fireproof construction that met with disaster. The building was built by Abraham Aronson, a major real estate investor of the period and an active member of the Jewish community. The building is said to be the first in the city named after a Jewish person.

20. Main theme of the historic resource: (If more than one is checked, number in order of importance.)
Architecture □ Arts & Leisure □
Economic/Industrial □ Exploration/Settlement □
Government □ Military □
Religion □ Social/Education □

21. Sources (List books, documents, surveys, personal interviews, and their dates):
Sanborn Map, SF Real Des, 1978
Arch Eng. May 1906, 1895-1906
SF architectural Club Note book 1903/4
Laver, Eastern Jews, p. 163

22. Date form prepared: 3/28
By (name):
Organization: Charles Ha1, Inc.
Address: 758 Bush
City: San Francisco, Zip: 94108
Phone: (415) 386-7340

Locational sketch map (draw and label site and surrounding streets, roads, and prominent landmarks:)

NORTH
DETERMINATION OF ELIGIBILITY
NOTIFICATION FOR THE
NATIONAL REGISTER OF
HISTORIC PLACES
1978
<table>
<thead>
<tr>
<th>Property</th>
<th>The Arensen Historic District</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>San Francisco</td>
</tr>
<tr>
<td>State</td>
<td>California</td>
</tr>
<tr>
<td>Source of Request</td>
<td>HED Ted Haseoka</td>
</tr>
<tr>
<td>Photos</td>
<td>X</td>
</tr>
<tr>
<td>Report</td>
<td>X</td>
</tr>
<tr>
<td>Card filed</td>
<td>All documentation assembled</td>
</tr>
</tbody>
</table>

Determination of Eligibility

E.O. 11593

Date received: 3/27/78

Federal Register entry

Control

Historian

Eligible

Eligible

3-30-78

Archivist Historian

Eligible

3-28-78

Archerologist

Review Unit Chief

FED. PLAN. COORDINATOR

Eligible

C. Shull

5-1-78

Branch Chief

Eligible

C. Shull

5-1-78

Keeper
E.O.11593
DETERMINATION OF ELIGIBILITY NOTIFICATION
NATIONAL REGISTER OF HISTORIC PLACES
OFFICE OF ARCHEOLOGY AND HISTORIC PRESERVATION
HERITAGE CONSERVATION AND RECREATION SERVICE

Request submitted by: HUD Ted Nagaka
Date request received: 3/27/78
Name of property: The Alamo Historic District
State: California
Location: 693, 710 Mission Street, 87 Third Street; San Francisco

Opinion of the State Historic Preservation Officer:

() Eligible () Not eligible () No response

Comments: "...Eligible for inclusion in the National Register of Historic Places."

The Secretary of the Interior has determined that this property is:

() Eligible Applicable criteria: c

Comments: 693, 710 Mission Street, and 87 Third Street, are interesting examples of multi-story commercial architecture typical of the early 20th century. They are significant as a group, preserving a whole commercial corner essentially as it was originally. In addition, 710 Mission Street is individually eligible for its design which is reminiscent of Louis Sullivan's skyscrapers in Chicago.

() Not eligible

Comments:

() Documentation insufficient (see accompanying sheet explaining additional materials required)

Robert B. Frost (Sgd.)
Keeper of the National Register

Date: MAY 0 1978
HUD Analysis to Determine Eligibility of an Historic District
for Inclusion in the National Register

NAME:
No name exists for this proposal. However, the
Mercantile Building is the dominating structure and in
recognition of its original and longtime owner, A.
Aronson, it is suggested that the name be "The Aronson
Historic District".

LOCATION:
Three corners of Third and Mission Streets, San Francisco.
Please see attached map.

DESCRIPTION:
The northwest, northeast, and northeast corners of
these two streets each contains a structure which has
been analyzed as individual building at 710 Mission
Street, 693 Mission Street, and 87 Third Street respect-
ively. Each has been found lacking in significance by
HUD to be found eligible for inclusion in the National
Register. However, as a group these three buildings are
eligible for inclusion as an historic district.

Prof. Turner has suggested the significance of this group
of buildings by commenting as follows: "These three
buildings, all built soon after the 1906 fire, are
interesting examples of commercial architecture of the
period, but are probably less significant individually
than they are as a whole (that is, as an urbanistic
ensemble, preserving a whole commercial corner essentially
as it was originally.) Individually, the two most
interesting of the buildings, in my opinion, are: 710
Mission (the N-W corner), with its richly ornamented
upper stories; and the simpler building on the N-E
corner, with its wide "Chicago window" proportions, and
its unusual iron brackets at the fifth floor level."

The Aronson building (now known as the Mercantile building)
was impressively designed to dominate its corner and the
buildings around it in the concentration of mass and
detail at the top. Virtually everything else in the
immediate neighborhood was built at the same time, but
few structures were as elaborate. The building thus
dominated its corner by effectively combining traditional
design elements more commonly found in the better neigh-
borhoods north of Market Street, with more purely func-
tional qualities of the south of Market area. It thus
dominates the other two structures at this intersection
of Third and Mission Streets, and together with them
creates a unique and impressive example of the early
century City Beautiful movement type development.
HUD FINDINGS: In spite of HUD finding that the architectural style of each building does not embody the distinctive characteristics of a type, period, or method of construction, HUD finds that as a group, the three buildings do represent a significant and distinguishable entity whose component parts lack individual distinction. And that as a group, the buildings are associated with events that have made a significant contribution to the broad pattern of our San Francisco history.

The Mercantile Building, at 710 Mission Street was constructed before the 1906 earthquake, was destroyed by it, and was reconstructed thereafter. The Williams Building, at 693 Mission Street was constructed "soon" after the earthquake according to Prof. Turner. And the best evidence is that the 5 story building at 87 Third Street was built in 1911, just few years after the other two. All three are representative of the "City Beautiful" commercial block architecture popular in those days, and as such, constitute an entity significant to "South of Market" San Francisco history.

HUD RECOMMENDATION:

1. These three buildings as a group are a significant entity, and

2. That an historic district, to be named The Aronson Historic District, be created and found eligible for inclusion in the National Register of Historic Places.

Comment: The Mercantile building, it has already been noted, is the subject of a land disposition agreement for sale to a designated developer. As such it will be rehabilitated. The other two buildings at 87 Third Street and at 693 Mission Street are now owned by the Redevelopment Agency and scheduled to be razed.

It is noted also that the National Trust for Historic Preservation, and the San Francisco Landmark Advisory Board have recommended that this area (without defining the "area") be preserved as an example of period development. HUD has reviewed the possibilities involved in defining the area, and concludes that the subject three buildings only should be included in the district. The nearby Jessie Substation, a National Register property, does not contribute to the value of the District because of its different Romanesque style, and because it pre-dates the period represented in the District. St. Patrick church, some 300' west of the Mercantile building also is not representative of either the period or the architectural style. It is a unique structure best listed in the Register as a single building. The Jessie Hotel is not included because its location contributes nothing to the value of the District, which value is derived from the very fact that the three buildings are in three adjoining corners, and as such constitute a significant entity.
The Aronson Building was erected as a commercial office building by Abraham Aronson. Mr. Aronson was a Polish immigrant who came to San Francisco in 1870 and who became successful in the furniture business. He was an active leader in the Jewish community and helped finance the Stockton Street Synagogue in 1886. After 1894 he was engaged exclusively in the real estate business, buying old buildings and sites and building modern structures in their places. Like other developers, he was especially busy in the period following the earthquake and fire of 1906, and by 1916 had become one of the more prolific commercial builders in the City. Like other important San Franciscans such as Mr. Flood, and Mr. Phelan, Mr. Aronson gave permanent recognition to his success by building a large office block in his own name, the first Jewish person to do so in San Francisco. This building, located at the northwest corner of Third and Mission Streets, remained in family ownership until 1938 when it was sold to the Northwestern Mutual Life Insurance Company and became known as the Mercantile Building.