FISHERMAN’S WHARF PUBLIC REALM PLAN PROJECT

Planning Department
Case No. 2010. 0256E

PMND Publication Date: April 20, 2011
PMND Public Comment Period: May 20, 2011
FINAL PMND Publication Date: August 30, 2011
Final Amended Mitigated Negative Declaration

PMND Date: April 20, 2010; amended on August 30, 2011
(Amendments to the PMND are shown as deletions in strikethrough; additions in double underline.)

Case No.: 2010.0256E
Project Title: Fisherman’s Wharf Public Realm Plan Project
Zoning: Various
Block/Lot: Various
Lot Size: Various
Project Sponsor: Neil Hrushowy – San Francisco Planning Department
(415) 558-6471
Lead Agency: San Francisco Planning Department
Staff Contact: Monica Pereira – (415) 575-9107
Monica.Pereira@sfgov.org

PROJECT DESCRIPTION:

The project sponsor, the Planning Department, on behalf of the City and County of San Francisco, is proposing the Fisherman’s Wharf Public Realm Plan ("FWPRP or proposed project"). The San Francisco Planning Department is the lead agency under the California Environmental Quality Act (CEQA). The proposed project’s general boundaries are San Francisco Bay to the north, The Embarcadero to the east, Bay Street to the south, and Van Ness Avenue to the west. The FWPRP would provide an overall vision for the streets, open spaces and building design in Fisherman’s Wharf. The Plan would adopt design guidelines, minor zoning changes and policies to the Plan Area. It would also implement parking signage program, traffic circulation plan, passenger and freight loading management, two neighborhood gateway improvement projects, nine streetscape improvement projects, and three open space improvement projects to the neighborhood. The FWPRP would include the following design elements: realignment of streetcar rails on Jefferson Street, street trees; raised crosswalks; curb extensions; high visibility crosswalks; permeable paving; stormwater planters and other landscape improvements; seating; informational stationary signage; and pedestrian lighting. The FWPRP does not propose new zoning districts, but will include new restrictions on new adult entertainment establishments to protect the family-focused nature of Fisherman’s Wharf. The project will also include a five foot height increase to be applied on the ground floor only. The Planning Department, on behalf of the City and County of San Francisco, is the sole project sponsor for the proposed project. The proposed project includes changes to streets and public open spaces under the jurisdiction of the Port of San Francisco, Recreation and Parks Department, the San Francisco Bay Conservation Development Commission, and the National Park Service. For more information on design guidelines and standards, please visit the FWPRP Website at: http://www.sf-planning.org/ftp/CDG/CDG_fishermans_wharf.htm

FINDING:

This project could not have a significant effect on the environment. This finding is based upon the criteria of the Guidelines of the State Secretary for Resources, Sections 15064 (Determining Significant Effect),

www.sfplanning.org
Mitigated Negative Declaration
April 20, 2011

CASE No. 2010.0256E
Fisherman’s Wharf Public Realm Plan Project

15065 (Mandatory Findings of Significance), and 15070 (Decision to prepare a Negative Declaration), and the following reasons as documented in the Initial Evaluation (Initial Study) for the project, which is attached. Mitigation measures are included in this project to avoid potentially significant effects. See pages 183 - 190.

In the independent judgment of the Planning Department, there is no substantial evidence that the project could have a significant effect on the environment.

BILL WYCKO

Date Adoption of Final Mitigated Negative Declaration

cc: David Chiu, District 3
 Sue Hestor, Attorney at Law
Notice of Availability of and Intent to Adopt a Mitigated Negative Declaration

Date: April 20, 2011
Case No.: 2010.0256E
Project Title: Fisherman’s Wharf Public Realm Plan Project
Project Address: Fisherman’s Wharf Neighborhood
Zoning: Various
Lot Size: Various
Staff Contact: Monica Pereira – (415) 575-9107
Monica.Pereira@sfgov.org

To Whom It May Concern:

This notice is to inform you of the availability of the environmental review document concerning the proposed project as described below. The document is a Preliminary Mitigated Negative Declaration, containing information about the possible environmental effects of the proposed project. The Preliminary Mitigated Negative Declaration documents the determination of the Planning Department that the proposed project could not have a significant adverse effect on the environment. Preparation of a Mitigated Negative Declaration does not indicate a decision by the City to carry out or not to carry out the proposed project.

Project Description:

The project sponsor, the Planning Department, on behalf of the City and County of San Francisco, is proposing the Fisherman’s Wharf Public Realm Plan (“FWPRP or proposed project”). The San Francisco Planning Department is the lead agency under the California Environmental Quality Act (CEQA). The proposed project’s general boundaries are San Francisco Bay to the north, The Embarcadero to the east, Bay Street to the south, and Van Ness Avenue to the west. The FWPRP would provide an overall vision for the streets, open spaces and building design in Fisherman’s Wharf. The Plan would adopt new design guidelines, minor zoning changes and policies to the Plan Area. It would also implement parking signage program, traffic circulation plan, passenger and freight loading management, two neighborhood gateway improvement projects, nine streetscape improvement projects, and three open space improvement projects to the neighborhood. The FWPRP would include the following design elements: realignment of streetcar rails on Jefferson Street, street trees; raised crosswalks; curb extensions; high visibility crosswalks; permeable paving; stormwater planters and other landscape improvements; seating; informational stationary signage; and pedestrian lighting. The FWPRP does not propose new zoning districts, but will include new restrictions on new adult entertainment establishments to protect the family-focused nature of Fisherman’s Wharf. The project will also include a five foot height increase to be applied on the ground floor only. The Planning Department, on behalf of the City and County of San Francisco, is the sole project sponsor for the proposed project. The proposed project includes changes to streets and public open spaces under the jurisdiction of the Port of San Francisco, Recreation and Parks Department, the San Francisco Bay Conservation Development Commission, and the National Park Service. For more information on design guidelines and standards, please visit the FWPRP Website at: http://www.sf-planning.org/ftp/CDG/CDG_fishermans_wharf.htm
April 20, 2011

If you would like a copy of the Preliminary Mitigated Negative Declaration or have question concerning environmental review of the proposed project, contact the Planning Department staff contact listed above. Within 30 calendar days following publication of the Preliminary Mitigated Negative Declaration (i.e., by close of business on May 20th, 2011), any person may:

1) Review the Preliminary Mitigated Negative Declaration as an informational item and take no action.

2) Make recommendations for amending the text of the document. The text of the Preliminary Mitigated Negative Declaration may be amended to clarify or correct statements and/or expanded to include additional relevant issues or cover issues in greater depth. One may recommend amending the text without the appeal described below. -OR-

3) Appeal the determination of no significant effect on the environment to the Planning Commission in a letter which specifies the grounds for such appeal, accompanied by a check for $500 payable to the San Francisco Planning Department. An appeal requires the Planning Commission to determine whether or not an Environmental Impact Report must be prepared based upon whether or not the proposed project could cause a substantial adverse change in the environment. Send the appeal letter to the Planning Department, Attention: Bill Wycko, 1650 Mission Street, Suite 400, San Francisco, CA 94103. The letter must be accompanied by a check in the amount of $500.00 payable to the San Francisco Planning Department, and must be received by 5:00 p.m. on May 20th, 2011. The appeal letter and check may also be presented in person at the Planning Information Counter on the first floor at 1660 Mission Street, San Francisco.

In the absence of an appeal, the Mitigated Negative Declaration shall be made final, subject to necessary modifications, after 30 days from the date of publication of the Preliminary Mitigated Negative Declaration.

1 Upon review by the Planning Department, the appeal fee may be reimbursed for neighborhood organizations that have been in existence for a minimum of 24 months.
Preliminary Mitigated Negative Declaration

PMND Date: April 20, 2010
Case No.: 2010.0256E
Project Title: Fisherman’s Wharf Public Realm Plan Project
Zoning: Various
Block/Lot: Various
Lot Size: Various
Project Sponsor: Neil Hrushowy – San Francisco Planning Department
(415) 558-6471
Lead Agency: San Francisco Planning Department
Staff Contact: Monica Pereira – (415) 575-9107
Monica.Pereira@sfgov.org

PROJECT DESCRIPTION:

The project sponsor, the Planning Department, on behalf of the City and County of San Francisco, is proposing the Fisherman’s Wharf Public Realm Plan (“FWPRP or proposed project”). The San Francisco Planning Department is the lead agency under the California Environmental Quality Act (CEQA). The proposed project’s general boundaries are San Francisco Bay to the north, The Embarcadero to the east, Bay Street to the south, and Van Ness Avenue to the west. The FWPRP would provide an overall vision for the streets, open spaces and building design in Fisherman’s Wharf. The Plan would adopt design guidelines, minor zoning changes and policies to the Plan Area. It would also implement parking signage program, traffic circulation plan, passenger and freight loading management, two neighborhood gateway improvement projects, nine streetscape improvement projects, and three open space improvement projects to the neighborhood. The FWPRP would include the following design elements: realignment of streetcar rails on Jefferson Street, street trees; raised crosswalks; curb extensions; high visibility crosswalks; permeable paving; stormwater planters and other landscape improvements; seating; informational stationary signage; and pedestrian lighting. The FWPRP does not propose new zoning districts, but will include new restrictions on new adult entertainment establishments to protect the family-focused nature of Fisherman’s Wharf. The project will also include a five foot height increase to be applied on the ground floor only. The Planning Department, on behalf of the City and County of San Francisco, is the sole project sponsor for the proposed project. The proposed project includes changes to streets and public open spaces under the jurisdiction of the Port of San Francisco, Recreation and Parks Department, the San Francisco Bay Conservation Development Commission, and the National Park Service. For more information on design guidelines and standards, please visit the FWPRP Website at: http://www.sf-planning.org/ftp/CDG/CDG_fishermans_wharf.htm

FINDING:

This project could not have a significant effect on the environment. This finding is based upon the criteria of the Guidelines of the State Secretary for Resources, Sections 15064 (Determining Significant Effect), 15065 (Mandatory Findings of Significance), and 15070 (Decision to prepare a Negative Declaration), and the following reasons as documented in the Initial Evaluation (Initial Study) for the project, which is
attached. Mitigation measures are included in this project to avoid potentially significant effects. See pages 183 - 190.

In the independent judgment of the Planning Department, there is no substantial evidence that the project could have a significant effect on the environment.
CONTENT

GLOSSARY

A. PROJECT DESCRIPTION

Project Location 3
Project Sponsor Objectives 3
Fisherman’s Wharf Public Realm Plan Elements 4
Project Design Framework 4
Plan Policies 5
Plan Design Guidelines 7
Plan Proposed Improvements 8
Project Approvals and Next Steps 40

B. PROJECT SETTING 41

C. COMPATIBILITY WITH EXISTING ZONING AND PLANS 42

D. SUMMARY OF ENVIRONMENTAL EFFECTS 47

E. EVALUATION OF ENVIRONMENTAL EFFECTS 47

1. LAND USE AND LAND USE PLANNING 48
2. AESTHETICS 54
3. POPULATION AND HOUSING 62
4. CULTURAL AND PALEONTOLOGICAL RESOURCES 64
5. TRANSPORTATION AND CIRCULATION 90
6. NOISE 170
7. AIR QUALITY 174
8. GREENHOUSE GAS EMISSIONS 181
9. WIND AND SHADOWS 194
10. RECEPTION 196
11. UTILITIES AND SERVICE SYSTEMS 199
12. PUBLIC SERVICES 203
13. BIOLOGICAL RESOURCES 204
14. GEOLOGY AND SOILS 207
15. HYDROLOGY AND WATER QUALITY 210
16. HAZARDS AND HAZARDOUS MATERIALS 215
17. MINERAL AND ENERGY RESOURCES 220
18. AGRICULTURE AND FOREST RESOURCES 222
19. MANDATORY FINDINGS OF SIGNIFICANCE 223

F. MITIGATION MEASURES AND IMPROVEMENT MEASURES 226

G. PUBLIC NOTICE AND COMMENT 240

H. DETERMINATION 241

I. INITIAL STUDY AUTHORS AND PROJECT SPONSOR 242

FIGURES

Figure 1: Plan Area 21
Figure 2: Project Sites 23
Figure 3: SI-1: Jefferson Streetscape Improvements 24
Figure 3.2: Jefferson Street – Proposed 25
List of Tables

Table 1: List of Proposed Street Types 2
Table 2: Summary of Proposed Improvements 9
Table E.5.1 Existing Peak-hour intersection Level of Service 107
Table E.5.2 Transit Travel Delay on north point street weekend Peak Hour 112
Table E.5.3 Transit Travel Delay on north point street weekday Peak Hour 120
Table E.5.4 Level of Service Results for SI-1: Jefferson Street Redesign 127
Existing Plus Project Conditions, Weekend Peak Hour Beach Street Diversion Scenario 126
Table E.5.5 Level of Service Results for SI-1: Jefferson Street Redesign 127
Existing Plus Project Conditions, Weekend Peak Hour North Point Street diversion scenario 127
Table E.5.6 Level of Service Results for SI-1: Jefferson Street Redesign 134
Cumulative (Year 2030) plus Project Conditions, Weekend Peak Hour Beach Street Diversion Scenario 134
Table E.5.7 Level of Service Results for SI-1: Jefferson Street Redesign 135
Cumulative (Year 2030) plus project Conditions, Weekend Peak Hour North Point Street Diversion Scenario 135
Table E.5.8 Level of Service Results for SI-1: Jefferson Street Redesign 142
Redesign Existing Plus Project Conditions, weekday Peak Hour North Point Street Diversion Scenario 142
Table E.5.9 Level of Service Results for SI-1: Jefferson Street Redesign 143
cumulative Plus Project Conditions, Weekday Peak Hour North Point Street Diversion Scenario 143
Table E.7.1. Fisherman’s Wharf Public Realm Plan Construction Criteria 144
Air Pollutant Average Daily Emissions 144
Table E.8.1. GHG Reductions from the AB 32 Scoping Pan Sectors 183
Table E.8.2. Regulations Applicable to Proposed Project 187
Glossary

Bollard: Short post or vertical element designed to separate or buffer pedestrians from vehicle areas.

Bulb-out: See curb extension.

Bus bulb: Curb extension housing a transit stop to allow transit vehicles to board without pulling in and out of traffic.

CBD: Fisherman’s Wharf Community Benefit District.

Contra-flow bike lane: A contra-flow bicycle lane allows bicyclists to travel the opposite direction of motor vehicle traffic on a one-way street.

Corner bulb, corner bulb-out: Curb extension at an intersection.

Crosswalk: Designated location for pedestrians to legally cross from one side of a roadway to the other; may be marked or unmarked.

Curb extension: Location where the sidewalk edge is extended from the prevailing curb line into the roadway at sidewalk grade, effectively increasing pedestrian space. Also called a bulb-out.

Curb radius: Sharpness of the curb edge as the sidewalk turns a corner.

Extended bulb-out: Curb extension that continues significantly beyond the typical corner area, to allow space for landscaping or public use.

Flexible parking zone: Parking lane that is used temporarily for other uses such as café or public sitting.

Gateways: Gateways treatments identify entrance points to the neighborhood in general, and to Jefferson Street in particular.

Living street: Are treatments applied to streets’ excess right-of-way (e.g. triangular plaza spaces) for public space use.

Median: The portion of the roadway separating opposing directions of the traveled way, or local lanes from through travel lanes. Medians are generally linear and continuous through a block, and may be depressed, raised, or flush with the road surface.

Median extension: An extension of an existing median towards an intersection along the axis of the existing median (the median is lengthened, rather than widened into the adjacent travel lanes.)
Median island: An area between traffic lanes used for control of traffic movements; differentiated from medians by being generally not linear or continuous throughout the block.

Mid-block crosswalk: Marked crosswalk at a mid-block (non-intersection) location.

Mixed-use street: A street that accommodates all modes of travel with particular emphasis on supporting pedestrian, bicycle and transit movements.

Multi-use path: Pathway that may be used for a variety of non-motorized, recreational uses, including walking, jogging, biking, and the like.

Podium Parking: Parking in a parking structure that is above ground-level.

Permeable paving: Paving material that provides pervious surface for stormwater to drain to sub-surface materials. May infiltrate to soil and groundwater or provide an underdrain where infiltration is not possible.

Pedestrian signals: Traffic signals specifically aimed at directing pedestrian movement, such as ‘walk/don’t walk’ or the international pedestrian symbol signal (red hand, walking man).

Public Realm: Streets, sidewalks, alleys, and other public right-of-ways, as well as the facades of buildings that are visible from the public right-or-way.

Raised crosswalk or intersection: Area where the level of the crosswalk or intersection is raised to the sidewalk grade.

Recommended Improvements: Recommended improvements for particular street types would not be mandatory for future site-specific streetscape projects or proposed developments in that street type, but should be considered for implementation as budgets, physical conditions, and/or neighborhood preferences permit.

Road diet: Reduction of travel lanes.

Runoff: Water from rainfall that flows over the land surface that is not absorbed into the ground.

Right turn/bus queue jump lanes: Right-turn-only with physical configuration and signage that allow transit vehicles to use the lane for travelling forward. A transit vehicle using the lane to go forward can thus “jump” ahead of non-transit vehicles that may be queuing at the intersection in a non-turning lane.

Standard Improvements: Standard improvements for a particular street type would typically be required to be included in any future site-specific streetscape project or proposed development (that includes streetscape improvements) on any street within that particular street typology.

Standard Block Segment Improvements: Standard block improvements for a particular street type would typically be required to be included in any future site-specific streetscape project or...
proposed development (that includes streetscape improvements) on any street within that particular street typology.

Street Art: Art developed in a public space.

Shared Street: Public right-of-way that is designed as a single surface with no grade differentiation between street and sidewalk areas, and where roadway space is shared between pedestrians and slow-moving vehicles.

Stormwater treatment planters: See rain garden

Street furniture: Fixtures installed along the roadway, at or above grade level, including lamp posts, pedestrian lighting, fire hydrants, street signs, benches, trash cans, bike racks, newspaper boxes, water fountains, and planters.

Thumbnail: See median extension

Traffic calming: Practice of designing streets to encourage vehicles to proceed slowly through neighborhoods, by the use of visual or actual roadway narrowing, horizontal or vertical shifts in the roadway, or other features.

Traffic calming elements: Physical improvements to the roadway designed to encourage vehicles to proceed slowly through neighborhoods.
A. PROJECT DESCRIPTION

Introduction
The project sponsor, the San Francisco Planning Department (Department), is proposing the Fisherman’s Wharf Public Realm Plan¹ (“FWPRP” or “Proposed Project”). The FWPRP is a stand-alone document that would guide changes to the public realm² aspects of the built environment in the Fisherman’s Wharf Neighborhood. The FWPRP is composed of an overall vision and design framework. The FWPRP would adopt design guidelines, policies, minor zoning adjustments³ to the Plan Area. It would also implement parking signage program, traffic circulation plan, passenger and freight loading management, two neighborhood gateway improvements, nine streetscape improvement projects and three open space improvement projects to the existing public right-of-way.

The Plan Area includes both City of San Francisco lands as well as portions of National Park Service (NPS) lands. The boundaries of the Plan Area are roughly San Francisco Bay to the north, The Embarcadero to the east, Bay Street to the south, and Van Ness Avenue to the west, as shown in Figure 1 on pp. 22 of this document. Located within the Plan Area are the Fisherman’s Wharf Neighborhood and Aquatic Park (a National Historic Landmark). The FWPRP was developed through an extensive public outreach process, and its elements are described in Section A-1 through A-5 beginning on pp. 4 of this document.

Streets Categorization
The proposed project uses the San Francisco Better Streets Plan (BSP) street typology. The BSP categorizes streets into different typologies for the purposes of streetscape design and improvements. (See Table 1: List of Proposed Street Types.) The proposed street types are based on the land use characteristics of its location; that is, whether a given street is in a residential, commercial, industrial or mixed-use area of the City, based on the City’s existing Zoning Maps. They are also based on the kind of transportation role a given street would play; for instance, either as a downtown throughway, or neighborhood street, based on existing maps in the Transportation Element of the San Francisco General Plan. The proposed project also includes special street types, including parkways, park edge streets, shared public ways and pedestrian-only streets.

² For the purposes of the FWPRP, the public realm is defined as the streets, sidewalks, alleys, and other public right-of-ways, as well as the facades of buildings that are visible from the public right-of-way. The Fisherman’s Wharf Public Realm Plan graphically illustrates recommended changes to one open space under the jurisdiction of the Recreation and Parks Department, but does not recommend a specific design.
³ This zoning change would allow for a five feet height increase only to be applied to the ground floor. The height increase could not be used to increase the intensity of development, i.e., an additional story.
Table 1: List of Proposed Street Types

<table>
<thead>
<tr>
<th>Category</th>
<th>Street Type4</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>Downtown Commercial</td>
<td>Grant, Kearny, Geary Boulevard</td>
</tr>
<tr>
<td></td>
<td>Commercial Throughway</td>
<td>Van Ness, Divisadero</td>
</tr>
<tr>
<td></td>
<td>Neighborhood Commercial</td>
<td>Clement, Taraval</td>
</tr>
<tr>
<td>Residential</td>
<td>Downtown Residential</td>
<td>Beale (in Rincon Hill), Brannan (in South Beach)</td>
</tr>
<tr>
<td></td>
<td>Residential Throughway</td>
<td>Guerrero, California</td>
</tr>
<tr>
<td></td>
<td>Neighborhood Residential</td>
<td>Noe, 21st Ave.</td>
</tr>
<tr>
<td>Other</td>
<td>Industrial</td>
<td>Evans, Loomis</td>
</tr>
<tr>
<td></td>
<td>Mixed-Use</td>
<td>Folsom, Harrison (in SoMa)</td>
</tr>
<tr>
<td>Special</td>
<td>Parkway</td>
<td>Dolores, Park Presidio</td>
</tr>
<tr>
<td></td>
<td>Park Edge</td>
<td>Lincoln, Fulton</td>
</tr>
<tr>
<td></td>
<td>Boulevard</td>
<td>Octavia</td>
</tr>
<tr>
<td></td>
<td>Ceremonial (Civic)</td>
<td>Market</td>
</tr>
<tr>
<td>Small</td>
<td>Alley</td>
<td>Jessie, Linden</td>
</tr>
<tr>
<td></td>
<td>Shared Public Way</td>
<td>Hotaling, Trinity</td>
</tr>
<tr>
<td></td>
<td>Paseo</td>
<td>Ecker, Annie</td>
</tr>
</tbody>
</table>

As with the BSP, the street types proposed under the project are not intended to replace functional transportation street classifications, but rather they are meant to help direct decisions about the pedestrian environment and streetscape design. For each proposed street type, the proposed project lists standard improvements and recommended improvements that could be applicable to that particular street type.

Project History
The Department initiated the FWPRP at the request of former Supervisor Aaron Peskin. The Fisherman’s Wharf Community Benefit District (CBD) had recently completed a comprehensive community vision plan and wished to build upon the momentum by formalizing their vision in an official City plan. Goals and long-term outcomes were defined in the community vision plan, but specific interventions were not. Because of this demonstrated community consensus for improving the Fisherman’s Wharf area, Supervisor Peskin and the Department agreed that it was timely to prepare a public realm plan for Fisherman’s Wharf. Work on the plan began in December 2007. The plan was to contain five elements, including: 1) Redesign for Jefferson Street; 2) Streetscape Plan for the remaining streets; 3) Parking and Circulation Plan; 4) Open Space Plan; and 5) Urban Design Guidelines for public and private development. There were to be minor zoning adjustments, but not a wholesale rezoning. It was anticipated that the plan would take 12 to 18 months to complete.

To augment its work on the plan, the Department, with the assistance of a grant from the San Francisco Bay Trail Program, hired Gehl Architects to conduct a study of pedestrian activity in

4 Street type is determined by zoning district and general plan designation. Street types vary throughout a neighborhood.

5 Public Space & Public Life in Fisherman’s Wharf, Gehl Architects, Copenhagen, Denmark, 2010.
the Fisherman’s Wharf area and to prepare recommendations for a series of interventions that would improve the quality of the pedestrian and bicycle environment in Fisherman’s Wharf Neighborhood.

The intent of the FWPRP would be to provide the community an advanced conceptual design for Jefferson Street, a series of specific design concepts for streetscape improvements, design guidelines for new development to ensure future buildings would strengthen the pedestrian realm, and a parking and circulation plan that would optimize access to and use of the neighborhood’s existing parking facilities. In addition, a number of specific open space improvements would be implemented for which conceptual drawings have been produced that illustrate their underlying design principles.

ENVIRONMENTAL REVIEW

Under CEQA, project-level environmental analysis examines the environmental impacts of an individual project, and examines phases of the project including construction and operation. Project-level analysis may be conducted once a sufficient level of detail is known regarding a proposed project. With a detailed project description and an understanding of the existing environmental conditions, the potential environmental effects of the proposed project may be understood and analyzed. The FWPRP is analyzed, under CEQA, at the project-level in this document.

Project Location
The proposed project would be located within the City’s northern waterfront. The FWPRP’s general boundaries are San Francisco Bay to the north, The Embarcadero to the east, Bay Street to the south, and Van Ness Avenue to the west. See Figure 1, Site Plan, p.4. See also further description of existing conditions for the Project in Section B – Project Setting, p.42.

Project Sponsor Objectives
The Department, on behalf of the City and County of San Francisco, is the sole project sponsor for the FWPRP. The Plan is partially funded by a grant from the San Francisco Bay Trail.

The overall objective of the project sponsor is to realize the following FWPRP Vision, developed through community participation during a three-day workshop sponsored by the CBD:

The Vision Adopted by the FWPRP:

A. People-Oriented Design: Streets in Fisherman’s Wharf should support all modes of transportation, but prioritize walking, bicycling and transit on Jefferson Street.
B. Connections to the Bay: Connections to San Francisco Bay should be highlighted and strengthened at every opportunity.
C. San Francisco-Focused: Streets and public spaces in Fisherman’s Wharf should provide a compelling reason for San Franciscans to visit the Wharf.
D. Connections to the City: Key north-south streets, such as Taylor Street, should be designed to strengthen the connection between neighborhoods to the south and Fisherman’s Wharf.
E. Rooted in History: The area’s role as the home to San Francisco’s once expansive fishing industry should be celebrated and the remaining active fleet should become an integral element to the visitor’s experience.

Fisherman’s Wharf Public Realm Plan Elements
To carry out the project sponsor’s objectives, the following elements are proposed in the FWPRP’s: (1) design framework, (2) plan-policies, (3) minor zoning changes, (3) parking signage program, (4) passenger and freight loading management, (5) neighborhood gateway treatments (6) nine site-specific streetscape improvement projects and (7) three open space improvement projects.

Project Design Framework
In order to realize the FWPRP Vision, five-focus areas for improvement were developed. The focus areas reinforce each other and share a common purpose to make Fisherman’s Wharf a more beautiful, appealing and comfortable place for people to visit, walk and spend time. The five focus areas are described below:

1. Dramatically improve the quality of the pedestrian and bicycle environment on Jefferson Street:
 o Implement a substantial widening of the pedestrian realm.
 o Create a dramatic increase in the number and quality of pedestrian amenities, including seating, landscaping and lighting.
 o Install a safe and comfortable bicycle route.
 o Implement a roadway design that ensures safe vehicle speeds.
 o Create a significant expansion in the amount of space available for outdoor café seating.

2. Streetscape designs for the remainder of streets in the Plan Area:
 o Create sidewalk and intersection improvements that improve the comfort, appeal and safety of pedestrian routes throughout the Wharf area.

3. New and refurbished open spaces:
 o Create viewing plaza along Jefferson Street overlooking historic fishing fleet.
 o Initiate a community planning process to design a new gateway plaza where Jefferson Street terminates in Aquatic Park.
 o Initiate a community planning process to redesign and revitalize Conrad Square Park and connect the park to the adjacent businesses along Columbus by a strong plaza-like design that prioritizes the needs of pedestrians.

4. Implement a dynamic parking wayfinding signage plan to ease access to existing off-street parking facilities:
 o Direct traffic quickly and efficiently to available spaces via real-time parking availability data, broadcast through on-street signs and web-based applications, including for mobile devices.

5. Implement design guidelines for all new development to ensure high-quality architecture that strengthens the public realm:
 o Implement massing and articulation guidelines to ensure human-scaled buildings.
o Implement active ground-floor guidelines that require active edges to all buildings, regardless of use.

o Implement façade guidelines, including for building materials, to ensure buildings strengthen the pedestrian experience.

Plan Policies
FWPRP’s plan-policies are intended as guidance of which the ultimate actions would result in improvements to the Fisherman’s Wharf Neighborhood public realm. The FWPRP includes the following plan-policies for streets in the Fisherman’s Wharf neighborhood that are analyzed at the program-level:

1. Jefferson Street Policies
Policy 1.1. Pedestrian Connector: Jefferson Street is the primary pedestrian link through the neighborhood. The street should be redesigned to better accommodate pedestrians and their needs. This would entail widening pedestrian footpaths along the entire length of Jefferson Street, except for where the existing streetcar tracks require existing widths to be maintained. Implement efforts to clear the many items that clutter the sidewalk including commercial displays.

Policy 1.2. Spaces for People: Create more places for recreation, both active and passive, along Jefferson Street that appeal to a greater diversity of users, from children to the elderly, singles to families, and locals to international visitors.

Policy 1.3. Heart of the Wharf: Strengthen the clear sense of a center or “heart” on Jefferson Street. The natural location, at the intersection of Taylor and Jefferson streets, could easily be improved by widening sidewalks on Taylor Street and expanding the plaza that is currently the home for the iconic Fisherman’s Wharf sign.

Policy 1.4. Better Cycling Facilities: Jefferson Street is a critical link in the bicycle network and remains one of the largest remaining gaps in the Bay Trail. Therefore, bicycle facilities should be improved and designed to accommodate the growing demand for recreational cycling needs through this corridor.

Policy 1.5. Connections to the Water: Improve the connections to the water throughout Fisherman’s Wharf, including opportunities along Jefferson Street. The most important opportunity on Jefferson Street is the edge along the inner harbor where the historic fishing fleet moors and where the sport fishing and bay tour boats are located; this sidewalk could be widened in anticipation of the historic streetcar line being extended into Fort Mason.

Policy 1.6. Gateways: Emphasize the progression through Fisherman’s Wharf by creating a series of gateways, including at either end of Jefferson Street, to mark the transition from one sub-district to another. While the entire length of Fisherman’s Wharf, from Pier 35 in the east to Fort Mason in the west, remains a very walkable distance, the sense of transition from one area to the next would add interest to the walk and allow the community to highlight the distinct set of attractions available in each.
Policy 1.7. Prioritize Pedestrians: Rationalize right-of-way allocation across modes to better reflect the number of people traveling by each mode. The large presence of cars on Jefferson Street detracts from those qualities that bring people to Fisherman’s Wharf in the first place.

2. Parking Management Policies
Policy 2.1 Develop a set of coherent parking policies: The goal of this plan is to develop a set of coherent parking policies for the Wharf that result in a more efficient use of the existing parking facilities and reduce the uncertainty of visitors searching for parking.

Policy 2.2 Develop pilot initiatives: The Community Benefit District should pilot a number of initiatives that would increase the level of coordination amongst operators, which at this point largely operate very independently and not necessarily in concert with the success of the larger Fisherman’s Wharf business community. Greater coordination across operators to address parking pricing and space availability\(^6\) would be a first step.

Policy 2.3 Develop parking signage program: The City, in coordination with the SFMTA, has developed a proposal for better parking signage in Fisherman’s Wharf that targets the two most important vehicular approaches to Fisherman’s Wharf, The Embarcadero and Van Ness Avenue, and aims to direct the majority of motorists to routes that offer the greatest number of parking options, primarily Beach Street and North Point Street east of Columbus Avenue. Once on these streets, drivers would be directed to those garages with the greatest number of available parking spaces through dynamic signage with real-time parking information.

Policy 2.4 Develop pricing system based on parking demand: Parking pricing would be an effective and necessary tool to optimize the use of existing parking facilities, for both on-street and off-street parking. The current flat-rate pricing schedule used by many operators favors commuters and discourages short-term visitors.

Policy 2.5 Develop and establish a Parking Management Plan: The Fisherman’s Wharf CBD should explore establishing a Parking Management Plan that can begin to bring the various stakeholders together to discuss the opportunities and challenges presented by such a plan.

3. Circulation Policies
Policy 3.1 Create a dynamic parking signage program to divert traffic approaching from the south along The Embarcadero to North Point and Beach streets. Beach and North Point Streets should accommodate a greater proportion of vehicles that approach from the south along The Embarcadero, while Jefferson Street should accommodate fewer vehicles.

Policy 3.2 The intersections where North Point Street and Beach Street meet The Embarcadero should be studied to determine whether a redesign would be warranted to ensure the majority of vehicles use North Point and Beach streets to find parking.

\(^6\) When a lot is full, operators would provide real time signage directing drivers to the nearest lot with available parking spaces.
4. Policies for Open Space Areas
Policy 4.1 Open spaces adjacent to the water should be improved to strengthen the connection to San Francisco Bay, consistent with the design guidelines specified by the Bay Conservation and Development Commission.

Policy 4.2 Streets should be considered as one element of the open space system and should be designed accordingly.

Plan Design Guidelines
As previously stated, FWPRP’s design guidelines are intended as guidance of which the ultimate actions would result in improvements to the Fisherman’s Wharf neighborhood public realm. Design guidelines would serve to guide new development in the Fisherman’s Wharf Neighborhood. The FWPRP includes the following guidelines for new development in the Fisherman’s Wharf Neighborhood:

DG 1- Site Design and Orientation: Sophisticated site design helps to resolve problems posed by such variables as site constraints, community needs and public policy. In San Francisco, the challenge is often ensuring that design solutions result in a high quality pedestrian experience by requiring continuous, active building frontages that are oriented towards the street.

DG 2- Building Mass Articulation7: Massing and articulation would address building spacing, rhythm, and level of detailing. These factors help relate a building’s physical form to the type of human activity that happens within and around it.

DG 3- Ground-floor Design: A building’s ground floor design and use have tremendous impact on the street level pedestrian experience. The design of a building’s ground floor can do much to encourage activities that begin to define public life on the street.

One way to further support walking is to ensure new buildings are designed with active ground floors, regardless of use. Residents coming and going from individual entrances to each unit, transparent ground floor commercial spaces and activities that spill out onto the sidewalk all contribute to a convivial and neighborly street.

Finally, building design should emphasize the quality of materials and level of detailing found at the ground floor over those found on upper floors.

DG 4 – Façade Treatment: The specific design features of building façades help to reinforce and enhance the pedestrian experience. Use of high-quality materials, appropriate colors, rich detailing, and placement of appropriate elements at both residential and retail entrances contributes to a sense of an enlivened pedestrian environment.

DG 5 - Parking and Access: Parking and parking access should be designed to minimize its impact on the public realm and pedestrian experience. How automobile storage is

7 Massing and articulation describes the relationship of a building’s size and shape to both 1) its visibility in the larger cityscape and 2) its impact on immediate surrounding natural features and development.
accommodated can have tremendous negative effects on the quality of the pedestrian environment. Long stretches of blank walls that hide podium parking\(^8\) and excessively wide and/or unnecessarily numerous garage entrances severely detract from the attractiveness of a street from the pedestrian’s perspective.

DG 6 - Open Space in New Development: Common private open space for occupants of residential buildings in San Francisco should provide a high degree of safety, accessibility, and privacy. They are valuable play spaces for children, a setting for “backyard” gatherings, and an extension of interior living areas. Common private open spaces within residential developments are intended to compliment the area’s larger network of public streets and open space, but not substitute for them.

DG 7 - Pier 39 East Park: East Park is the gateway to Fisherman’s Wharf and its design should celebrate this role with appropriate design and signage. The City should encourage a public space hierarchy in Fisherman’s Wharf based on three principles: 1) active edges create better spaces; 2) spaces with different characters better serve the public’s needs; and 3) the spaces should be connected in a network. For East Park, this means considering small-scale building(s) that help to define and activate the path along the water’s edge. These buildings would also contain uses that contribute to a more active and safe public realm and that are an amenity for visitors, such as a visitor information center, bicycle rental space, public bathroom and a café.

DG 8 - Pier 39 West Park: Minor changes could be made to West Park that would improve pedestrian circulation and seating. Specific site improvements have not yet been identified.

Plan Proposed Improvements
To carry out the FWPRP’s design framework and the plan-policies, 16 improvements have been identified. These improvements are summarized below in *Table 2: Summary of Proposed Improvements*, followed by detailed descriptions on p.9 - 15. When applicable the proposed improvements are illustrated by diagrams showing the proposed roadway configurations and other streetscape elements. See Figures 1 through Figure 11.1, pp.39.

\(^8\)Parking, in a parking structure, that is above ground-level.
Table 2: Summary of Proposed Improvements

<table>
<thead>
<tr>
<th>No.</th>
<th>Location/Improvement Name</th>
<th>Improvement Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neighborhood gateway treatments</td>
<td>The Plan includes two neighborhood gateways: (1) Jefferson Street, just west of Powell Street, and (2) The Little Embarcadero just north of the intersection of Jefferson Street/The Little Embarcadero/The Embarcadero. Plan-proposed gateways would be pedestrian-oriented, and of varying scales. They could include architectural elements such as archways or distinctive vertically-oriented signs, open spaces, paving patterns and features, planting design, or public art.</td>
</tr>
<tr>
<td></td>
<td>Minor zoning adjustments</td>
<td>Allow for an additional 5' of building height only to be applied to the ground floor.(^9) Implement new zoning restrictions that prohibit adult entertainment establishments.</td>
</tr>
<tr>
<td></td>
<td>Parking Signage Program</td>
<td>Implement a parking signage program to divert westbound traffic approaching from The Embarcadero off of Jefferson Street and on to Bay, North Point and Beach streets.</td>
</tr>
<tr>
<td></td>
<td>Traffic Circulation Plan</td>
<td>Roadway closure to private vehicles on Jefferson Street during peak periods (11am-7pm daily). Closure limited to one or two block segments; two different traffic circulation variants represent different closure scenarios. Vehicle closure enforced via retractable bollards and signage. Maintain pedestrian, bicycle and streetcar access at all times.</td>
</tr>
<tr>
<td></td>
<td>Passenger and Freight Loading Management</td>
<td>Prohibit tour buses (eight or more passengers) from circulating on Jefferson Street at all times. Remove 540 linear feet of existing passenger loading zones (on Powell, Leavenworth and Hyde streets between Jefferson and Beach streets) which require circulation via Jefferson Street, and convert into general on-street parking and sidewalk bulb-outs. Create 325 linear feet of new all-day passenger loading zones on the block bounded by Taylor, North Point, Mason and Beach streets, and create 235 linear feet of new all-day passenger loading zones on the east and west sides of Taylor Street between Jefferson and Beach streets. Prohibit all trucks (vehicles with six or more wheels) on the entirety of Jefferson Street from 11am-7pm daily. Modify hours of operation of 19 existing metered freight loading spaces (on Jefferson Street, and on Mason and Leavenworth streets between Jefferson and Beach streets) to not be in effect from 11am-7pm daily.</td>
</tr>
</tbody>
</table>

\(^9\) This height increase cannot be used to increase the intensity of development, i.e., an additional story.

\(^10\) A contra-flow bicycle lane allows bicyclists to travel the opposite direction of motor vehicle traffic on a one-way street.
<table>
<thead>
<tr>
<th>No.</th>
<th>Location/Improvement Name</th>
<th>Improvement Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-2</td>
<td>Beach Street (between The Embarcadero and Polk Street)</td>
<td>Traffic calming and streetscape improvements along the sidewalks and the parking lane on the north side of the street, and at intersections, from The Embarcadero to Polk Street. Would not affect vehicle movements or capacity and would coordinate with the proposed historic streetcar extension to Fort Mason.</td>
</tr>
<tr>
<td>SI-3</td>
<td>North Point (between Polk Street and The Embarcadero)</td>
<td>Traffic calming and streetscape improvements along the sidewalks and the parking lanes, and at intersections. Between Columbus Avenue and Polk Street, design would emphasize the predominantly residential character of the street, while the segment between Columbus Avenue and The Embarcadero would reflect the more commercial character of the street. Would not affect vehicle movements or capacity.</td>
</tr>
<tr>
<td>SI-4</td>
<td>Powell, Mason, Jones and Leavenworth streets (between Jefferson and Bay Streets)</td>
<td>Traffic calming and streetscape improvements along the sidewalks and the parking lane zones, and at intersections, on Powell, Mason, Jones and Leavenworth streets. Would not affect vehicle movements or capacity.</td>
</tr>
<tr>
<td>SI-5</td>
<td>Hyde Street (between Beach and Bay streets)</td>
<td>Traffic calming and streetscape improvements along the sidewalks and the parking lane zones, and at intersections on Hyde Street between Beach and Bay streets. Would not affect vehicle movements or capacity.</td>
</tr>
<tr>
<td>SI-6</td>
<td>Hyde Street (between Jefferson and Beach streets)</td>
<td>Traffic calming and streetscape improvements along the sidewalks and the parking lane zones on single block of Hyde Street between Jefferson and Beach streets. Reduce from two to one vehicle lanes. Retain one-way southbound directionality for cars, but establish Class II bike lanes in both directions.</td>
</tr>
<tr>
<td>SI-7</td>
<td>Larkin Street (between Beach and Bay streets)</td>
<td>Traffic calming and streetscape improvements along the sidewalks and the parking lane zones, and at intersections on Larkin Street between Beach and Bay streets. Would not affect vehicle movements or capacity.</td>
</tr>
<tr>
<td>SI-8</td>
<td>Taylor Street (between Jefferson and Bay streets)</td>
<td>Traffic calming and streetscape improvements along the sidewalks and the parking lane zones, and at intersections on Taylor Street from Jefferson to Bay streets. Would not affect vehicle movements or capacity.</td>
</tr>
<tr>
<td>SI-9</td>
<td>Bay Street (between The Embarcadero and Polk Street)</td>
<td>Traffic calming and streetscape improvements along the sidewalks and the parking lane zones, and at intersections on Bay Street from The Embarcadero to Polk Street. Would not affect vehicle movements or capacity.</td>
</tr>
</tbody>
</table>

OPEN SPACE IMPROVEMENTS

| OS-1 | Joseph Conrad Square | Convert this block of Columbus Street to a pedestrian plaza closed to traffic between 11:00 AM and 12:00 Midnight. Add streetscape improvements to the existing square. |
| OS-2 | Aquatic Park and Jefferson Street | Convert surface parking on Jefferson Street, between Hyde Street and Aquatic Park into a pedestrian plaza while |
Neighborhood Gateway Treatments: The Plan includes two neighborhood gateways: (1) Jefferson Street, just west of Powell Street, and (2) The Little Embarcadero just north of the intersection of Jefferson Street/The Little Embarcadero/The Embarcadero. Plan-proposed gateways would be pedestrian-oriented, and of varying scales (see Figure A.3.5: on pp. 29). They could include architectural elements such as archways or distinctive vertically-oriented signs, open spaces, paving patterns and features, planting design, or public art. These improvements would be designed through an interagency process involving participation from San Francisco Planning Department, Department of Public Works, San Francisco Bay Conservation and Development Commission, Port of San Francisco, San Francisco Municipal Transportation Agency, and the Mayor’s Office. The process would include public review participation.

Minor Zoning Adjustments
There will be two minor zoning adjustments, neither of which will impact the intensity of development: (1) A 5-foot height increase that must be used on the ground floor and not for an additional story; and (2) a prohibition against adult entertainment establishments in the Plan Area.

Parking Signage Program
Implement an improved parking signage program for westbound traffic on The Embarcadero approaching Fisherman’s Wharf. The parking signage would direct traffic to off-street parking facilities accessed from Beach and North Point streets. The signage would also inform drivers that parking options were limited on Jefferson Street (SI-1 would remove all on-street parking on Jefferson Street). The signage would provide drivers with information regarding the location and relative price of off-street parking facilities in Fisherman’s Wharf, as well as provide real-time garage occupancy information (i.e. if the garage is fully occupied).

The result of the parking signage program is that Beach and North Point streets would accommodate a greater proportion of westbound vehicles, while Jefferson Street would accommodate fewer westbound vehicles.

The proposed parking signage program includes the following:

11 Signage would also direct traffic to several off-street parking facilities southeast of the Plan Area accessed via Bay Street, along Kearny Street. These parking facilities generally serve nearby office and cruise ship terminal parking demand, and are not always available for visitors to Fisherman’s Wharf. Therefore, traffic volumes are not expected to materially shift onto Bay Street.

12 The parking signage program would be administered and maintained by the SFMTA or the Port of San Francisco, potentially with assistance from the Fisherman’s Wharf Business Improvement District. To fund the program, is anticipated that parking facility operators would pay an annual fee to participate.
• Three Gateway signs (located at Embarcadero/North Point, Embarcadero/Beach and Van Ness/North Point) which would direct drivers to streets where parking facilities are located. These signs would be approximately four feet by six feet in dimension.

• 12 Wayfinding signs (located throughout the Plan Area) which would supplement the Gateway signs to direct drivers to the location of parking facilities. These signs would be approximately four feet by four feet in dimension.

• 26 Garage signs which would be blade signs attached to the parking garage facilities. These signs would be approximately three feet by three feet in dimension.

Placement of Gateway and Wayfinding signs would require excavation on sidewalks and/or medians to install poles and electric connectors for illumination. Signs would not be installed in any historic districts. Placement of Garage signs would be mounted on buildings, and any signs placed on historic buildings would be consistent with the Secretary of the Interior’s Standards for the Treatment of Historic Properties. Installation of all signs would be compliant with the San Francisco Building Code.

Traffic Circulation Plan

Working in parallel with the Parking Signage Program, the Traffic Circulation Plan would involve modifications along the Jefferson Street roadway and at intersections. The modifications would reduce traffic volumes and improve pedestrian and bicyclist safety along Jefferson Street while maintaining vehicular access to all properties. The plan would include closure of one or more blocks of Jefferson Street to vehicular traffic during the peak demand period (11am to 7pm daily), while during off-peak periods, full vehicular access would be permitted similar to existing conditions. Access for pedestrians, bicycles, streetcars, and emergency vehicles would be maintained at all times.\(^\text{13}\)

The Traffic Circulation Plan includes two traffic circulation variants (Variant 1 and Variant 2) that have different limitations on roadway access, see Figure A.3.4 on pp. 28. The only difference between the two variants is whether one block or two blocks of Jefferson Street would be closed to private vehicle circulation during peak demand periods (11am–7pm). The FWPRP seeks environmental clearance for both variants, because it is anticipated that each variant would be implemented at different times of the day or week. For example, Variant 1 may be implemented on weekdays, while Variant 2 may be implemented on weekends. This Mitigated Negative Declaration would provide the FWPRP with the ability to implement Variant 1 or Variant 2, up to eight hours of the day (11am-7pm), and up to seven days of the week.

Variant 1 – Road Closure at Taylor Under this variant, the single block of Jefferson Street between Taylor and Jones streets would be closed to vehicular traffic during peak demand periods (11am-7pm daily). Vehicles driving west on Jefferson Street would be required to turn left or right at Taylor Street, while vehicles driving north or south on Taylor Street would be prohibited from turning onto Jefferson Street. Vehicle access would be maintained to blocks of Jefferson Street to the west via Jones Street. Restrictions would not be in effect during off-peak periods. The roadway closure at Taylor Street would be enforced by retractable bollards, which would block the westbound traffic lane but would not block the westbound streetcar lane (which could also be

\(^{\text{13}}\) All Muni vehicles (e.g. bus shuttles) would be permitted at all times.
used by emergency vehicles) and would not block bicycles or pedestrians. In addition to the retractable bollards, during hours when the roadway closure would be in effect, the westbound traffic signal “GO” indication at Taylor Street would change from a steady green ball to a flashing yellow ball, to emphasize to drivers that they cannot proceed straight and should proceed with caution while turning.

Variant 2 – Road Closure at Powell and Taylor: This variant includes the same roadway closure between the single block of Taylor and Jones streets as described in Variant 1. In addition, under this variant, the single block of Jefferson Street between Powell and Mason streets would also be closed to vehicular traffic during peak demand periods, for a total of two block closures. Vehicles driving west on The Embarcadero would be required to turn left or right at Powell Street, while vehicles driving north or south on Powell Street would be prohibited from turning onto Jefferson Street. Vehicles would be able to access Jefferson Street from Mason Street, but similar to Variant 1, they would be required to turn left or right at Taylor Street, and have access to blocks to the west via Jones Street. Vehicles driving north or south on Taylor Street would be prohibited from turning onto Jefferson Street. These restrictions would not be in effect during off-peak periods. The roadway closures at Powell and Taylor streets would be enforced by retractable bollards, which would block the westbound traffic lane but would not block the westbound streetcar lane (which could also be used by emergency vehicles) and would not block bicycles or pedestrians. In addition to the retractable bollards, during hours when the roadway closure would be in effect, the westbound traffic signal “GO” indication at Powell and Taylor streets would change from a steady green ball to a flashing yellow ball, to emphasize to drivers that they cannot proceed straight and should proceed with caution while turning.

Passenger and Freight Loading Modifications:

Passenger Loading Modifications – The FWPRP would prohibit tour buses (eight or more passengers) from circulating on any block of Jefferson Street at all times. While there are no passenger loading zones that serve tour bus loading on Jefferson Street, 540 linear feet of existing passenger loading zones (on Powell, Leavenworth and Hyde streets, between Jefferson and Beach streets) serve tour buses, and require those tour buses to circulate via Jefferson Street. Because tour buses would no longer need loading zones, the majority of these zones would be converted into general on-street parking and sidewalk bulb-outs, although some white curb zones may be maintained to serve taxis, pedicabs or similar vehicles.

To accommodate tour bus operations, additional passenger loading zones would be created. The block bounded by Beach, Mason, North Point and Taylor streets (which encompasses the Longshoremen’s Hall) currently has both metered parking spaces and three white curb passenger loading zones (totaling 345 linear feet) along its perimeter. All of the existing metered parking spaces on this block would be converted into additional white curb zone, resulting in approximately 325 linear feet of additional white curb (requiring the removal of approximately 17 on-street parking spaces). Driveway access to the Longshoremen’s Hall, and the westbound Muni bus stop on North Point Street, would not be affected. Also, the block of Taylor Street between Jefferson and Beach streets currently has both metered parking spaces and one passenger loading zone on both its east and west sides (totaling 145 linear feet). Most of the

14 The retractable bollard would be manually operated. The bollard would be operated by the SFMTA or the Port of San Francisco, potentially with assistance from the Fisherman’s Wharf Business Improvement District.
existing metered parking spaces on this block would be converted in to additional white curb zones, resulting in approximately 235 liner feet of additional white curb (requiring the removal of approximately ten of the eighteen on-street parking spaces).

Freight Loading Modifications – Before 11am, trucks would be permitted access to Jefferson Street, and the proposed on-street loading pockets along Jefferson Street would be reserved for freight unloading. After 11am daily, trucks (vehicles with six or more wheels) would be prohibited on Jefferson Street between Powell and Leavenworth streets. At that time, trucks would also be prohibited on streets that require circulation via that segment of Jefferson Street (Mason, Jones and Leavenworth streets, between Jefferson and Beach streets).

At all times, truck access would be permitted on the last block of Jefferson Street between Leavenworth and Hyde streets (with access via northbound Leavenworth Street). Truck access would also be permitted at all times on Powell and Taylor streets, and The Little Embarcadero.

Hours of operation of 19 existing metered freight loading spaces (on Jefferson Street, and on Mason and Leavenworth streets between Jefferson and Beach streets) would be modified to not be in effect after 11am, at which point they would convert into general parking or passenger loading. During this time, the proposed loading pockets on Jefferson Street would convert from freight loading into passenger loading pockets.

SI-1. Jefferson Streetscape Improvements (between Powell Street and Hyde Street)

The Jefferson Street design would create a single-surface street for as much of Jefferson Street as possible to create a unified space that visually reads as a floor of an outdoor pedestrian room. See Figure A.3 on pp. 24 for plan and section views of the street. The goal is to have drivers understand they are entering a pedestrian-priority space where they must travel slowly and give way to people walking and cycling. There would be signage clearly stating this hierarchy, but the design would be the most critical piece in conveying to drivers that they must move slowly and carefully.

For private vehicles, the street would function as a single-lane roadway, with a design speed of 5 to 10 miles per hour. Loading pockets would be constructed on each block (except the block between Taylor and Jones streets) that would serve freight loading before 11am, and would serve passenger loading after 11am daily.

Existing traffic signals would remain at the intersections with Powell, Taylor and Jones streets, to permit cross-traffic and enable streetcar movements. Existing all-way STOP signs would remain at the intersections with Leavenworth and Hyde streets. The existing traffic signal at Mason Street could remain, or the intersection could be converted into STOP-control for Mason Street, or an all-way STOP intersection.¹⁵

Streetcars would operate similar to existing conditions, but would benefit from an upgraded transit lane where private vehicles could not enter. The proposal includes a cobblestone texture for the transit lane to discourage pedestrians and bicycles from traveling along the trackway and would warn them of approaching streetcars. The existing streetcar stop midblock between

¹⁵ Intersection control at Jefferson/Mason would be determined during detailed design of Jefferson Street.
Powell and Mason streets could be relocated or removed, but all other streetcar stops on Jefferson, Jones and Beach streets would remain.16 Streetcars are expected to operate at similar speeds as existing conditions, generally 10 to 15 miles per hour.

The street pavers would be arranged in a pattern to demonstrate a non-traditional vehicle area. A combination of landscaping,17 public seating, outdoor cafes, flexible performance spaces, public art, pedestrian lighting, bike racks, traffic signal, bulb outs18 and bollards would be used to create a visually rich and active space. The design of the street would accommodate pedestrians with limited mobility or vision as specified by the Americans with Disabilities Act.

Three different segment designs for the roadway would correspond to the different uses along the street (See Figure 3.2, on p.24). The cross-section of each segment is described below, from north to south.

This project would also add a Class II, contra-flow bike lane on Jefferson Street. This new bike lane is identified in the San Francisco Bicycle Plan as Long-term Improvement L-2: Bay Trail Improvements in the Vicinity of Fisherman’s Wharf, a Bay Trail segment. Although this Bay Trail segment would be linked to the existing Bicycle Route 5, on The Embarcadero south of North Point Street, this trail segment is not part of the bicycle route network. Given the absence of conceptual design, at the time the Bicycle Plan EIR was published, this Bay Trail segment was only analyzed at a programmatic level in that document.19 This Bay Trail segment’s design has been refined in the FWPR, and its potential environmental impacts are analyzed in this document.

Powell to Taylor streets

Along the south side of the street would be the southern Pedestrian Safety Zone, where pedestrians would not encounter vehicles.20 This zone would have a smooth surface and would include street furniture such as benches, street trees, poles for streetlights. This zone would also accommodate on-street loading pockets. The width would be 40½ feet. The southern Pedestrian Safety Zone would be constructed underneath the existing Muni overhead wire and traffic signals.

North of the Pedestrian Safety Zones would be the contra-flow bike lane and westbound travel lane, which would jointly encompass the Pedestrian Priority Zone. Pedestrians would be able to walk within this zone, as well as walk across it. This zone would be smooth but would be demarcated from the Pedestrian Priority Zone through a variety of tactile treatments, including truncated domes and street furniture, to communicate to visually impaired pedestrians that they may encounter a vehicle or bicycle within this zone. The contra-flow bike lane would be six feet wide, while the westbound travel lane would be ten feet wide, for a total width of sixteen feet.

16 Location of streetcar stop at Mason Street would be determined during detailed design of Jefferson Street.

17 Landscaping includes street trees and planters.

18 Installation of bulb outs could require drainage alterations.

19 The Bicycle Plan report can be accessed at: http://www.sfmta.com/cms/bproj/bikeplan.htm

20 The Pedestrian Safety Zone is similar to a typical sidewalk, where pedestrians can walk, stand or sit without encountering vehicle. The definition is used to differentiate between the Pedestrian Priority Zone, where pedestrians have priority but would encounter vehicles.
North of the Pedestrian Priority Zone would be the Muni streetcar lane. The existing streetcar track and infrastructure would remain in place, including the cobblestone pavers. The streetcar lane would be converted from a semi-exclusive facility (where cars can enter the transit lane to turn right or access off-street parking) into a fully-exclusive transit lane. Cars would not be able to enter the transit lane, enforced by a curb. In addition to the construction of the curb, there would be roadway modifications at two locations. The existing curb cut and entrance from Jefferson Street into the triangle parking lot (west of Powell Street) would be closed; vehicles would access the triangle parking lot from the Little Embarcadero and Taylor Street. At the intersection of Jefferson and Taylor streets, private vehicles would no longer enter the transit lane to turn right onto Taylor Street, but would instead turn right from the single westbound vehicle travel lane (westbound streetcars and westbound traffic would be governed by separate signal phases). These two modifications remove the two locations where private vehicles can currently enter the streetcar lane, and would therefore convert the streetcar lane into a fully-exclusive transit facility.

The curb would also provide demarcation for visually-impaired pedestrians that they are crossing the streetcar lane. The streetcar lane would remain at thirteen feet in width. At intersections the curb would be broken so that wheelchairs could cross.

North of the streetcar lane, the existing curb and sidewalk would remain and encompass the northern Pedestrian Safety Zone, which would remain 15 feet wide. The curb would continue to demarcate the streetcar lane from the sidewalk for visually-impaired pedestrians.

Taylor to Jones streets -

Along the south side of the street would be the southern Pedestrian Safety Zone, where pedestrians would not encounter a vehicle. This zone would have a smooth surface and would include street furniture such as benches, street trees, and poles for streetlights, Muni overhead wire and traffic signals. The width would be 30½ feet.

North of the Pedestrian Safety Zones would be the contra-flow bike lane and westbound travel lane, which would jointly encompass the Pedestrian Priority Zone. Pedestrians would be able to walk within this zone, as well as walk across it. This zone would be smooth but would be demarcated from the Pedestrian Priority Zone through a variety of tactile treatments, including truncated domes and street furniture, to communicate to visually impaired pedestrians that they may encounter a vehicle or bicycle within this zone. The contra-flow bike lane would be six feet wide, while the westbound travel lane would be ten feet wide, for a total width of sixteen feet.

North of the Pedestrian Priority Zone would be the Muni streetcar lane. On the east half of this block, the existing streetcar track and infrastructure would remain in place (including the cobblestone pavers). On the west half of this block, the existing tracks would be shifted southward (about 10 feet) in order to widen the north sidewalk into a plaza and boardwalk. The reconstructed trackway would also have cobblestone pavers. Private vehicles would not be able to enter the transit lane, enforced by a curb. The curb would also provide demarcation for visually-impaired pedestrians that they are crossing the streetcar lane. The streetcar lane would remain at thirteen feet in width. At intersections the curb would be broken so that wheelchairs could cross.

North of the streetcar lane, the northern sidewalk would be widened and a boardwalk constructed, which together would encompass the northern Pedestrian Safety Zone. The north
sidewalk and boardwalk would total 25 feet in width, and would be separated from the streetcar lane by a curb. The curb would demarcate the streetcar lane for visually-impaired pedestrians.

Jones to Hyde streets -

Along the south side of the street would be the southern Pedestrian Safety Zone, where pedestrians would not encounter a vehicle. This zone would have a smooth surface and would include street furniture such as benches, street trees, and poles for streetlights, Muni overhead wire and traffic signals, as well as on-street loading pockets. The width would be 15 to 23 feet.

North of the Pedestrian Safety Zones would be the contra-flow bike lane and westbound travel lane, which would jointly encompass the Pedestrian Priority Zone. Pedestrians would be able to walk within this zone, as well as walk across it. This zone would be smooth but would be demarcated from the Pedestrian Priority Zone through a variety of tactile treatments, including truncated domes and street furniture, to communicate to visually impaired pedestrians that they may encounter a vehicle or bicycle within this zone. The contra-flow bike lane would be six feet wide, while the westbound travel lane would be ten feet wide, for a total width of sixteen feet.

North of the streetcar lane would be the northern Pedestrian Safety Zone, which would vary between 15 and 25 feet. This zone would be smooth but would be demarcated from the Pedestrian Priority Zone through a variety of tactile treatments, including truncated domes and street furniture.

North of the northern Pedestrian Safety Zone would be an outdoor elevated terrace with tables and chairs, which would vary between 20 and 25 feet in width.

SI-2. Beach Street (between The Embarcadero and Hyde Street)

This streetscape design would improve the pedestrian comfort and safety along the sidewalk and at intersections and emphasize Beach Street’s role as an increasingly important pedestrian destination in the Wharf. See Figure A.4 on pp. 26. The improvements would be restricted to the sidewalk and parking lane on the north side of the street, as well as intersections, and it would extend from The Embarcadero to Polk Street. This project would coordinate with the proposed historic streetcar extension to Fort Mason, making changes as necessary to accommodate the final track alignment.21 Standard block-segment design would include roadway resurfacing, stormwater control measures, flexible use of the parking lane, sidewalk bulb-outs, street trees, pedestrian-scale lighting, street furniture22 and special paving in the furniture zone. Standard intersection improvements23 would include marked crosswalks and ramps, and pedestrian signals. Considerations would be made for transit infrastructure, such as placement of trees. Recommended improvements include high-visibility crosswalks, sidewalk planter boxes, and (if compatible with the For Mason streetcar extension project) raised crosswalks at Leavenworth,

21 The Fort Mason Streetcar Extension is a project separate from the FWPRP that would extend the streetcar tracks westward, from Jones Street to Fort Mason. This project is being sponsored by the National Parks Service in collaboration with the SFMTA. The Draft Environmental Impact Statement for this project was released on March 18, 2011.

22 Fixtures installed along the roadway, at or above grade level, including lamp posts, pedestrian lighting, fire hydrants, street signs, benches, trash cans, bike racks, newspaper boxes, water fountains, and planters.

23 Standard improvements for a particular street type would typically be required to be included in any future site-specific streetscape project or proposed development (that includes streetscape improvements) on any street within that particular street typology.
Larkin and Polk streets, and Columbus Avenue. Sidewalk bulb-outs at the intersection of Polk and Beach streets would be designed to accommodate turning movements of Golden Gate Transit buses. Any on-street loading spaces that would be eliminated (to implement sidewalk bulb-outs or other improvements in the parking lane) would be replaced by converting several on-street parking spaces into a new loading zone, on the same block face. There would be no changes to vehicle movement or capacity.

SI.3. North Point (between Polk Street & Columbus Ave, and Powell Street & Embarcadero)

This streetscape improvement would improve the pedestrian comfort and safety along the sidewalk and at intersections. See Figure 5 on pp.31-32. The segment between Columbus Ave and Polk Street would emphasize the predominantly residential character of the street, while the segment between Columbus Ave and The Embarcadero would reflect the more commercial character of the street. Standard intersection improvements would include roadway resurfacing, sidewalk bulb-outs, ramps, pedestrian signals and marked crosswalks. Standard block segment improvements would include street trees, parking-lane planters, pedestrian-scale lighting and stormwater control measures. Recommended improvements24 would include raised crosswalks across minor streets, such as Larkin Street. Any on-street loading spaces that would be eliminated (to implement sidewalk bulb-outs or other improvements in the parking lane) would be replaced by converting several on-street parking spaces into a new loading zone, on the same block face. There would be no changes to vehicle movement or capacity.

SI.4. Powell, Mason, Jones and Leavenworth streets (between Jefferson and Bay streets)

This streetscape improvement would improve the pedestrian comfort and safety along the sidewalk and at intersections, which would strengthen the connection between the Wharf and the adjacent neighborhoods to the south. Standard intersection improvements would include roadway resurfacing, bulb-outs, marked crosswalks and ramps, pedestrian signals, and public space amenities at intersections (such as furnishings and wayfinding signage on bulb-outs). Standard block-segment improvements would include pedestrian-scale lighting, sidewalk bulb-outs, flexible use of the parking lane, parking-lane planters, stormwater control measures and street trees. Recommended improvements would include high-visibility crosswalks, sidewalk planter boxes and extended bulb-outs. Any on-street loading spaces that would be eliminated (to implement sidewalk bulb-outs or other improvements in the parking lane) would be replaced by converting several on-street parking spaces into a new loading zone, on the same block face. There would be no changes to vehicle movement or capacity.

SI.5. Hyde Street (between Beach and Bay streets)

This project would strengthen the existing character of Hyde Street, while providing improved pedestrian comfort and safety along the sidewalk and at intersections. Speeds should remain low and cars should move slowly, as Hyde has a strong residential and pedestrian character and higher volumes of pedestrians as a result of the cable cars; however, it would continue to serve both local and limited through traffic. Standard improvements25 at intersections would include roadway resurfacing, sidewalk bulb-outs, and marked crosswalks and ramps. Standard block-

24 Recommended improvements for particular street types would not be mandatory for future site-specific streetscape projects or proposed developments in that street type, but should be considered for implementation as budgets, physical conditions, and/or neighborhood preferences permit.
segment improvements include flexible use of the parking lane and pedestrian-scale lighting. The recommended improvements include parking lane planters and high-visibility crosswalks. Any on-street loading spaces that would be eliminated (to implement sidewalk bulb-outs or other improvements in the parking lane) would be replaced by converting several on-street parking spaces into a new loading zone, on the same block face. There would be no changes to vehicle movement or capacity.

SI.6. Hyde Street (between Jefferson and Beach streets)

This section of Hyde Street is an important link in the area’s pedestrian network and improvements would focus on strengthening its pedestrian character. See Figure 6 on pp. 34. Improvements to the park edge would help knit Fisherman’s Wharf together with important adjacent destinations. Standard improvements at intersections would include roadway resurfacing, crosswalks, sidewalk bulb-outs and curb ramps. Standard block-segment improvements would include parking lane planters, stormwater control measures, street trees, pedestrian-scale lighting, and sidewalk planter boxes. Recommended improvements would include high-visibility crosswalks and extended bulb-outs. The roadway would remain one-way southbound for cars, but would be reduced from two to one travel lanes. Class II bike lanes would be installed in both directions.

SI.7. Larkin Street (between Beach and Bay Streets)

This project would strengthen the existing character of Larkin Street, while providing improved pedestrian amenities. See Figure 7 on pp. 35. The goal of the improvements would be to ensure traffic moves slowly, since Larkin Street has an elevated level of pedestrian activity associated with the popular Ghirardelli Square. Standard improvements at intersections would include crosswalks and curb ramps. Standard block-segment improvements would include roadway resurfacing, sidewalk bulb-outs, stormwater control measures and street trees. Recommended improvements would include high-visibility crosswalks, a raised crosswalk at Bay Street, parking-lane planters, and pedestrian-scale lighting. Any on-street loading spaces that would be eliminated (to implement sidewalk bulb-outs or other improvements in the parking lane) would be replaced by converting several on-street parking spaces into a new loading zone, on the same block face. There would be no changes to vehicle movement or capacity.

SI.8. Taylor Street (between Jefferson and Bay Streets)

The improvements would be restricted to the sidewalk and parking lane level on the both sides of the street, and would extend from Jefferson Street to Bay Street. See Figure 8 on pp. 36. Implementation of this project would also improve the pedestrian comfort and safety along the sidewalk and at intersections, as well as establish a stronger pedestrian connection between the cable car turnaround at Bay Street and Fisherman’s Wharf. Standard intersection improvements would include roadway resurfacing, sidewalk bulb-outs, marked crosswalks and ramps, pedestrian signals, and public space amenities at intersections (such as furnishings and wayfinding signage on bulb-outs). Standard block-segment improvements would include pedestrian-scale lighting, flexible use of the parking lane, sidewalk planter boxes, parking lane planters, stormwater control measures and street trees. Recommended improvements would include high-visibility crosswalks, and extended bulb-outs. Any on-street loading spaces that would be eliminated (to implement sidewalk bulb-outs or other improvements in the parking lane) would be replaced by converting several on-street parking spaces into a new loading zone, on the same block face. There would be no changes to vehicle movement or capacity.
SI-9. Bay Street (between The Embarcadero and Polk Street)
The improvements would be restricted to just the sidewalk on the north side of the street, and the sidewalk and parking lane on the south side of the street. Standard block-segment design would include stormwater control measures, parking-lane planters on the south side, and street trees. Standard intersection improvements would include marked crosswalks and ramps, sidewalk bulb-outs on the south side, and pedestrian signals. Considerations would be made for transit infrastructure, such as placement of trees. Recommended improvements include high-visibility crosswalks, sidewalk planter boxes, and a raised crosswalk at Larkin Street on the south side of the street. Any on-street loading spaces that would be eliminated (to implement sidewalk bulb-outs or other improvements in the parking lane) would be replaced by converting several on-street parking spaces into a new loading zone, on the same block face. There would be no changes to vehicle movement or capacity.

A6.2. Open Space Improvements

OS.1. Joseph Conrad Square
Joseph Conrad Square would be improved to better meet the needs of residents and visitors. See Figure 9 on pp. 38. It would include a new children’s play area and seating and landscaping. The refurbishment of the park would also include the final block of Columbus Avenue. The improvement would convert this block of Columbus Avenue to a pedestrian plaza that is closed to through traffic between 11:00 AM and midnight. Stormwater control measures and permeable paving would be used to convert this street from a hardscape to a landscape. The project would also include roadway resurfacing if necessary.

OS.2. Aquatic Park and Jefferson Street
This project would convert a segment of the final block of Jefferson Street between Hyde Street and where it terminates in Aquatic Park from a surface parking lot to a pedestrian plaza that acts as a gateway to Aquatic Park and Fort Mason beyond. See Figure 10 on pp. 39. The design would: provide uninterrupted visual and physical access to the Aquatic Park beach; create a new pedestrian plaza as a gateway between Fisherman’s Wharf and Fort Mason; create a connection between the MUNI cable car turnaround and the beach; provide two-way bike access to Aquatic Park; and, maintain sufficient vehicular access to the swim and boat clubs. The project would also include roadway resurfacing if necessary.

OS.3. Columbus Avenue, Leavenworth Street and North Point Street Intersection
This intersection improvement would reduce the scale of the intersection and would make it more attractive and safer for pedestrians. See Figure 11 on pp. 40. The design would close the short segment of Leavenworth Street between North Point Street and Columbus Avenue. This would result in a public plaza while reducing the size of the intersection. As part of that closure, there would be extended bulb-outs, pedestrian-scale lighting, stormwater control measures,

27 This block of Columbus Avenue provides a redundant traffic purpose and there are a number of cafes, restaurants and pubs lining the western edge of the street that could help activate the new space with outdoor seating.

28 The parking needs of the adjacent swim clubs should be carefully managed to ensure they have enough access to affordable parking within an easy walk, including access for disabled members. The exact amount would be determined during the detailed design phase, with input from the community.
street trees, pedestrian signals, flexible use of the parking lane and crosswalks and ramps. Recommended improvements would include raised crosswalk across Leavenworth Street, high-visibility crosswalks across all intersections, parking lane planters and sidewalk planter boxes. The improvement would result in a minor rerouting of southbound vehicles, but would not preclude any vehicle movements that are currently permitted. The project would also include roadway resurfacing if necessary.

INTENTIONALLY LEFT BLANK SPACE
Figure 1: Plan Area
Figure 2: Project Sites
Figure 3- SI-1: Jefferson Streetscape Improvements
Figure 3.2: Jefferson Street – Proposed
Figure 3.3: Jefferson Street Proposed Sections

** THE MARITIME WHARF **
JEFFERSON STREET - JONES TO HYDE

** THE INNER LAGOON **
JEFFERSON STREET - TAYLOR TO MASON

Design Priorities for All of Jefferson Street:
- Provide 15’ minimum safe zone for pedestrians on both sides of the street
- Maintain visibility for pedestrians to see traffic on both sides of street
- Provide ample places for people to sit and step out of flow of traffic/movement
- Design streets for safe movement (e.g. Denmark) for all modes
Figure 3.3a: Jefferson Street Proposed Sections

THE MODERN WHARF
JEFFERSON STREET - POWELL TO TAYLOR

DESIGN PRIORITIES FOR ALL OF JEFFERSON STREET:
- Provide 15' minimum safe zone for pedestrians on both sides of the street
- Maintain invitation for pedestrians to use full right-of-way
- Provide ample places for people to sit and step out of flows of traffic/movement
- Design street for safe movement (<10mph) for all modes

THE MODERN WHARF
JEFFERSON STREET - POWELL TO TAYLOR, SPECIAL MID-BLOCK ZONES

DESIGN PRIORITIES FOR ALL OF JEFFERSON STREET:
- Provide 15' minimum safe zone for pedestrians on both sides of the street
- Maintain invitation for pedestrians to use full right-of-way
- Provide ample places for people to sit and step out of flows of traffic/movement
- Design street for safe movement (<10mph) for all modes
Figure 3.4: Traffic Circulation

Fisherman's Wharf Circulation Plan: Variant 1-Closure at Taylor St

Fisherman's Wharf Circulation Plan: Variant 2

Case No. 2010.0256E
28
Fisherman's Wharf Public Realm Plan
Figure 3.5: Neighborhood Gateway Treatments

Source: City Design Group, San Francisco Planning Department.
Figure 4: SI-2 - Beach Street Improvements

Figure 4.1: Beach Street at Polk Street: Existing Conditions

Figure 4.2: Beach Street at Polk Street: Proposed
Source: City Design Group, San Francisco Planning Department. Preliminary drawing only. Not to scale.
Figure 4.3: Beach Street at Taylor Street: Existing Conditions

Figure 4.4: Beach Street at Taylor Street: Proposed

Source: City Design Group, San Francisco Planning Department. Preliminary drawing only. Not to scale.
Figure 5: SI-3 - North Point Street Improvements

Figure 5.1: North Point Street at Grant Avenue: Existing

Figure 5.2: North Point Street at Grant Avenue: Proposed

Source: City Design Group, San Francisco Planning Department. Preliminary drawing only. Not to scale.
Figure 5.3: North Point at Larkin Street: Existing

Figure 5.4: North Point Street at Larkin Street: Proposed

Source: City Design Group, San Francisco Planning Department
Preliminary drawing only. Not to scale.
Figure 6: SI-6 - Hyde Street Improvements

Figure 6.1: Hyde Street between Jefferson and Beach streets: Existing

Figure 6.2: Hyde Street between Jefferson and Beach streets: Proposed
Figure 7: SI-7 - Larkin Street Improvements

Figure 7.1: Bay Street at Larkin Street: Existing Conditions

Figure 7.2: Bay Street at Larkin Street: Proposed
Source: City Design Group, San Francisco Planning Department

Preliminary drawing only. Not to scale.
Figure 8: SI-8 - Taylor Street Improvements

Figure 8.1: Taylor Street: Existing Conditions
Figure 8.2: Taylor Street: Proposed
Source: City Design Group, San Francisco Planning Department

Preliminary drawing only. Not to scale.
Figure 9, OS-1: Joseph Conrad Square Improvements

Figure 9.1: Joseph Conrad Square: Existing Conditions

Figure 9.2: Joseph Conrad Square: Proposed
Source: City Design Group, San Francisco Planning Department

Preliminary drawing only. Not to scale.
Figure 10: OS-2 - Aquatic Park Improvements

Figure 10.1 - Aquatic Park: Existing Conditions

Figure 10.2: Aquatic Park & Jefferson Street: Proposed

Source: City Design Group, San Francisco Planning Department
Preliminary drawing only. Not to scale.
Figure 11: OS-3 - Columbus Avenue, Leavenworth Street & North Point Street Intersection

Figure 11.1: Columbus Avenue, Leavenworth Street & North Point Street Intersection: Existing Conditions

Source: City Design Group, San Francisco Planning Department
Preliminary drawing only. Not to scale.
Project Approvals and Next Steps

The proposed project is expected to require the following approvals, which would be considered in the future by various City decision-makers:

The FWPRP would require the following approvals by the Planning Commission and the Board of Supervisors:

- Amendments to the *San Francisco General Plan and Urban Design Element*;

- Amendments to the *Planning Code* to require streetscape improvements to conform to the projects described in the FWPRP.

- Board approval for sidewalk grade changes would require.

Amendments to the *San Francisco General Plan and Planning Code* may be required to undergo additional environmental evaluation at which time their potential environmental impacts will be assessed.

In addition, individual projects described in the FWPRP would require specific project-related approval actions, including:

- Individual projects that would create changes to existing curb lines would require sidewalk legislation changes by the Board of Supervisors;

- Individual projects that would create changes to existing vehicle and bicycle movements, traffic signs and signals, location and placement of bus stops and bus zones, or parking arrangements, meters, or permits would require approvals by the San Francisco Municipal Transportation Agency;

- Individual projects that would add encroachments to the public right-of-way (such as new site furnishings) would require approvals by the Department of Public Works;

- Individual projects that would add new street lighting would require approvals by the San Francisco Public Utilities Commission;

- Individual parcels or open space (such as parks and plazas, etc.) on non-City right-of-way that disturb greater than 5000 sf of ground surface would trigger compliance with the San Francisco Public Utilities Commission Design Guidelines and therefore require submittal of a Stormwater Control Plan for San Francisco Public Utilities Commission approval, and

- A permit from the San Francisco Bay Conservation and Development Commission (BCDC) for work performed within the 100 foot shoreline band.

29 All sidewalks, parking, driveways, and landscaped and irrigated areas constructed in conjunction with the Development Project are included in the projects associated area.
Many transportation elements of the FWPRP would be subject to a public hearing prior to implementation. All elements would require approval at one or more of the following public hearings:

SFMTA Board of Directors: Major traffic and parking changes may require a hearing at the SFMTA Board of Directors, which is a public hearing.

SFMTA Engineering Public Hearings: Proposed parking and traffic changes are subject to an Engineering hearing, which is a public hearing.

SFMTA Color Curb Public Hearing: All proposed additions and removals of Color Curbs are subject to a Color Curb hearing, which is a public hearing.

Port of San Francisco: Major changes to the roadway within the jurisdiction of the Port of San Francisco would require the approval of the Port Commission.

Board of Supervisors (Sidewalk Width): Any proposed changes to grade and width of a sidewalk require legislation by the Board of Supervisors, amending the official sidewalk width (Ordinance 1061). This would be subject to a public hearing.

California Public Utilities Commission (CPUC): CPUC permits maybe required for the construction and/or removal of rail tracks.

The proposed project would be used to inform the City’s 10-Year Capital Plan. Implementation of the proposed project would involve creating a detailed capital plan, identifying potential revenue sources for construction of specific projects from the project list above, identifying potential pilot projects, and facilitating the ability of community members and private developers to make improvements consistent with the proposed project.

B. PROJECT SETTING

Existing Conditions

As illustrated in Figure 1, the project site consists of various locations throughout the Fisherman’s Wharf Neighborhood. The project site is primarily along the public right-of-way. The land uses within the Plan Area are a mix, consisting of General Commercial, Public Trust, Public, High Density Residential, Moderately Low Residential and Community Business. Commercial uses such as hotels, restaurants, and souvenir shops line Jefferson Street and other streets in the Plan Area. Aquatic Park is located in the northwestern-most part of the Plan Area.

Fisherman’s Wharf, a major visitor attraction in San Francisco, encompasses approximately 374 acres of land and water generally bounded by the US Pier Head Line in the bay to the north, Pier 35 on the east, Bay Street and Francisco Street to the south, and Municipal Pier (Aquatic Park) to the west. Fisherman’s Wharf is a center of the San Francisco Bay Area’s fishing industry and retains many fish handling and processing facilities, including 108,000 sq. ft. of new fish off-loading, handling and distribution space at Pier 45. In addition to Pier 45, the Hyde Street Commercial Fishing Harbor (Hyde Street Harbor) constitutes a major element of the Fisherman’s Wharf commercial fishing center. Hyde Street Harbor extends into the Bay just beyond the Outer
Lagoon at the northern terminus of Hyde Street Harbor Access Road. The Hyde Street Harbor opened in 2001 with a total of 190 berths. Fishing-related uses are also assembled around Fish Alley, such as F. Alioto’s and Cal Shell’s operations along Jefferson Street between Hyde and Leavenworth Streets and Coast Marine and Industrial Supply, Inc. at the northeast corner of Jefferson and Leavenworth Streets.

In general, Jefferson Street, between Pier 39 and the San Francisco Maritime Museum National Historic Park (located at the western terminus of Jefferson Street roughly between Hyde Street and Van Ness Avenue), contains a high concentration of visitor-related commercial development, including over 120 shops and other visitor attractions such as a carousel, an aquarium and a 300-boat marina. The north side of Jefferson Street is dominated by the fresh seafood restaurants, chowder houses, and crab shacks, for which Fisherman’s Wharf is well-known. Additionally, ferry services and bay cruises launch from the piers lining the north side of Jefferson Street, particularly at Piers 39 and 41.

Other prominent destinations along the south side of Jefferson Street include The Cannery and the Argonaut Hotel located on the block bounded by Jefferson, Beach, Leavenworth and Hyde Streets. The Cannery, a brick warehouse that was originally built as a peach cannery in 1907, was renovated in the 1960s into a shopping complex featuring clothing boutiques, art galleries, offices, restaurants, and a jazz club. The Argonaut Hotel borders The Cannery to the west and is located in the renovated historic Haslett Warehouse, a four-story timber and brick building completed in 1909 by the California Fruit Canners Association. In addition to a hotel, which opened in 2003, the Argonaut houses the Visitors Center for the San Francisco Maritime National Historic Park.

Ghirardelli Square at 900 North Point Street between Polk and Larkin Street is similar to The Cannery, in the sense that it is a former industrial building containing clothing boutiques, restaurants, art galleries, and a Ghirardelli Chocolate store. The building was built in the 1890s as a chocolate factory for Ghirardelli. In the early 1960s, Ghirardelli moved its chocolate factory across the bay to San Leandro and by the mid-1960s the building was restored and converted into its present use as a shopping complex.

Generally, Fisherman’s Wharf enjoys views both back to the City and its northern hills, and also out to San Francisco Bay, Alcatraz and the North and East bays.

C. COMPATIBILITY WITH EXISTING ZONING AND PLANS

<table>
<thead>
<tr>
<th>Description</th>
<th>Applicable</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discuss any variances, special authorizations, or changes proposed to the Planning Code or Zoning Map, if applicable.</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Discuss any conflicts with any adopted plans and goals of the City or Region, if applicable.</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Discuss any approvals and/or permits from City departments other than the Planning Department or the Department of Building Inspection, or from Regional, State, or Federal Agencies.</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
SAN FRANCISCO PLANNING CODE

The San Francisco Planning Code, which incorporates by reference the City’s Zoning Maps, governs permitted uses, densities, and the configuration of buildings within San Francisco. Permits to construct new buildings (or to alter or demolish existing ones) may not be issued unless (1) the proposed project conforms to the Planning Code, (2) allowable exceptions are granted pursuant to provisions of the Planning Code, or (3) amendments to the Planning Code are included as part of the proposed project.

The proposed project would not require variances, special authorizations, or changes to the Zoning Maps. However, incorporation of the FWPRP policy framework and design guidelines would include changes to the Planning Code, primarily related to requirements for pedestrian realm and streetscape facilities, including pedestrian safety features such as corner or mid-block curb extensions, street trees and sidewalk planting, streetscape furnishings, street lighting, and stormwater management facilities.

The following zoning designations are located within the Plan Area:

- **C-2** refers to Community Business Districts. Generally, this designation has a maximum dwelling unit density of one dwelling unit per 800 square feet of lot area and a basic floor area ratio of 3.6 to 1. Areas with this designation are permitted to provide shopping goods and services. Uses such as retail, office, restaurant, and residential are permitted in these areas.

- **RH-3** refers to Residential-Mixed Districts, Medium Density. These districts have some smaller structures, but are predominantly devoted to apartment buildings of six, eight, 10 or more units. Many buildings exceed 40 feet in height.

- **RM-4** refers to Residential-Mixed Districts, High Density. These districts are devoted almost exclusively to apartment buildings of high density, usually with smaller units, close to downtown. Building over 40 feet in height is very common and other tall buildings may be accommodated in some instances.

- **NC-1** refers to Neighborhood Commercial Cluster District. These districts are intended to serve as local neighborhood shopping districts, providing convenience retail goods and services for the immediately surrounding neighborhoods primarily during daytime hours.

- **P** refers to Public Use District and it applies to land that is owned by a governmental agency and in some form of public use, including open space.

- **Waterfront Special Use District 1** refers to a district created in order to provide for certain areas with unique natural and man-made physical characteristics, distinct maritime character, special traffic, parking and use considerations, recognized development potential, and proximity to residential, public and commercial areas of regional, national and international significance.
PLANS AND POLICIES

San Francisco General Plan. The City’s General Plan provides general policies and objectives to guide land use decisions. Any conflict between the proposed project and policies that relate to physical environmental issues are discussed in Section E, Evaluation of Environmental Effects. The compatibility of the proposed project with General Plan policies that do not relate to physical environmental issues will be considered by decision-makers as part of their decision regarding whether to approve the proposed project. Any potential conflicts identified as part of this process would not alter the physical environmental effects of the proposed project. As described in Checklist Item 1, Land Use and Land Use Planning, p.49, the proposed project would amend the General Plan to reflect the goals and objectives of the FWPRP.31

Proposition M. In November 1986, the voters of San Francisco approved Proposition M, the Accountable Planning Initiative, which added Section 101.1 to the City’s Planning Code to establish eight Priority Policies. These policies, and the sections of this Environmental Evaluation addressing the environmental issues associated with the policies, are: (1) preservation and enhancement of neighborhood-serving retail uses; (2) protection of neighborhood character (Question 1c, Land Use); (3) preservation and enhancement of affordable housing (Question 3b, Population and Housing, with regard to housing supply and displacement issues); (4) discouragement of commuter automobiles (Questions 5a, b, f, and g, Transportation and Circulation); (5) protection of industrial and service land uses from commercial office development and enhancement of resident employment and business ownership (Question 1c, Land Use); (6) maximization of earthquake preparedness (Questions 13a-d, Geology and Soils); (7) landmark and historic building preservation (Question 4a, Cultural Resources); and (8) protection of open space (Questions 8a and b, Wind and Shadow, and Questions 9a and c, Recreation). Prior to issuing a permit for any project which requires an Initial Study under CEQA, and prior to issuing a permit for any demolition, conversion, or change of use, and prior to taking any action which requires a finding of consistency with the General Plan, the City is required to find that the proposed project or legislation is consistent with the Priority Policies.

The consistency of the proposed project with the environmental topics associated with the Priority Policies is discussed in Section E, Evaluation of Environmental Effects. The case report and approval motions for the proposed project will contain the Planning Department’s comprehensive project analysis and findings regarding consistency of the proposed project with the Priority Policies.

LOCAL & REGIONAL PLANS AND POLICIES

Street design in San Francisco is subject to federal, state, and local laws, policies, standards, and guidelines. Key federal, state and local policies and standards related to street design include the following:

__

31 Proposed General Plan amendments will be available to the public and discussed at multiple public hearings prior to any adoptions, per City requirements.
Locally, San Francisco has passed the “Transit-First Policy” (City Charter City’s Charter Article 8A, Section 8A.115), the “Better Streets Policy” (Administrative Code Chapter 98), and the “Complete Streets Policy” (Public Works Code 2.4.13). These policies prioritize street and streetscape improvements that encourage transit, pedestrian, bicycle, and carpool modes of transportation over the single-occupant vehicle mode of transportation, as well as encourage pedestrian-oriented and multi-functional street design. In addition, the San Francisco Bicycle Plan sets forth policies, actions, near- and long-term improvements, and design elements for improving the San Francisco bicycle network. Additional street design-related City policies can be found in the San Francisco General Plan and its constituent elements. Existing City standards related to street design can also be found in the Administrative Code, Building Code, Fire Code, Planning Code, Public Works Code, and Transportation Code.

The five principal regional planning agencies and their over-arching policy-plans to guide planning in the nine-county Bay Area include the Association for Bay Area Governments’ (ABAG) A Land Use Policy Framework and Projections 2005, the Bay Area Air Quality Management District’s (BAAQMD’s) Clean Air Plan and Bay Area 2005 Ozone Strategy, The Metropolitan Transportation Commission’s Regional Transportation Plan – Transportation 2030, The San Francisco Regional Water Quality Control Board’s San Francisco Basin Plan, and the San Francisco Bay Conservation and Development Commission’s San Francisco Bay Plan. Other plans relevant to the implementation of the FWPRP include:

- **The Golden Gate National Recreation Area (GGNRA) General Management Plan.** The GGNRA’s 1980 General Management Plan established management objectives to ensure that the park’s purpose was fulfilled.

- **San Francisco Waterfront Special Area Plan.** The San Francisco Waterfront Special Area Plan, developed by the BCDC, is an amendment to the Bay Plan. The Special Area Plan does not supersede the San Francisco Bay Plan, rather in reconciles the differences between the Bay Plan and the Port’s Waterfront Land Use Plan.

- **The Bay Trail Plan.** The Bay Trail Plan, was prepared by the Association of Bay Area Governments pursuant to Senate Bill 100 which mandated that the Bay Trail: provide connections to existing park and recreation facilities; create links to existing and proposed transportation facilities, and be planned in such a way as to avoid adverse effects on environmentally sensitive areas. The Plan was adopted by the Association of Bay Area Governments (ABAG) in July 1989.

32 The National Pollutant Discharge Elimination System (NPDES) regulates stormwater runoff into receiving waters of the United States. The Water Permits Division (WPD) within the U.S. Environmental Protection Agency’s Office of Wastewater Management leads and manages the NPDES permit program in partnership with EPA Regional Offices, states, tribes, and other stakeholders.
• **San Francisco Bicycle Plan.** The San Francisco Bicycle Plan project consists of the adoption of a citywide bicycle transportation plan and the implementation of near-term, long-term and other minor improvements to the City’s bicycle route network, as well as amendments to the *San Francisco General Plan* and the *San Francisco Planning Code*. The overall goal of the San Francisco Bicycle Plan is to make bicycling an integral part of daily life in the City.

• **The Better Streets Plan.** The BSP project consists of the adoption of standards and guidelines for the design of the pedestrian environment in San Francisco to achieve a more livable streetscape environment.

• **The San Francisco Maritime National Historical Park (SF Maritime NHP) General Management Plan.** The SF Maritime NHP GMP which was completed in 1997, is the master plan document for SF Maritime NHP. The document describes the existing character and setting of SF Maritime NHP and sets forth goals for future development within the park.

• **Northeastern Waterfront Plan.** The Northeastern Waterfront Plan (NEWP), an area plan of the General Plan, guides growth and development along San Francisco’s northeastern waterfront, an irregularly shaped area that includes four subareas: Fisherman’s Wharf, Base of Telegraph Hill, Ferry Building, and South Beach. The Plan Area is within the NEWP’s Fisherman’s Wharf subarea. The NEWP recommends objectives and policies designated to, “contribute to the waterfront’s environmental quality, maintain and enhance the maritime character of the Fisherman’s Wharf area, and enhance the area as a center for the commercial fishing industry.”

• **Waterfront Land Use Plan.** The Waterfront Land Use Plan (Waterfront Plan) was initially adopted by the San Francisco Port Commission in 1997, and amended in July and October 2000, defining acceptable uses, policies and land use information applicable to all properties under the Port Commission’s jurisdiction. Developed through a lengthy public planning process, the Waterfront Plan has enabled the Port Commission, the City and the community to jointly define locations for new public-private partnership projects, coordinated with major public open space, maritime, and historic preservation improvements along the waterfront.

Due to the size and nature of the proposed project, there would be no anticipated conflicts with regional plans.
D. SUMMARY OF ENVIRONMENTAL EFFECTS

The proposed project could potentially affect the environmental factor(s) checked below. The following pages present a more detailed checklist and discussion of each environmental factor.

- Land Use
- Aesthetics
- Air Quality
- Greenhouse Gas Emissions
- Biological Resources
- Geology and Soils
- Population and Housing
- Cultural and Paleo. Resources
- Wind and Shadow
- Recreation
- Hazards/Hazardous Materials
- Transportation and Circulation
- Utilities and Service Systems
- Mineral/Energy Resources
- Noise
- Public Services
- Agricultural and Forest Resources
- Mandatory Findings of Significance

E. EVALUATION OF ENVIRONMENTAL EFFECTS

This Initial Study examines the project to identify potential effects on the environment. All items on the Initial Study Checklist that have been checked “Less than Significant Impact”, “No Impact” or “Not Applicable” indicates that, upon evaluation, staff has determined that the proposed project could not have a significant adverse environmental effect relating to that topic. A discussion is included for those issues checked “Less than Significant Impact” and for most items checked with “No Impact” or “Not Applicable”. For all items checked “Not Applicable” or “No Impact” without discussion, the conclusions regarding potential significant adverse environmental effects are based upon field observation, staff experience and expertise on similar projects, and/or standard reference material available within the Department, such as the Department’s Transportation Impact Analysis Guidelines for Environmental Review, or the California Natural Diversity Database and maps, published by the California Department of Fish and Game. For each checklist item, the evaluation has considered the impacts of the proposed project both individually and cumulatively.

On the basis of this study, project-specific effects that have been determined to be potentially significant include: aesthetics, cultural and paleontological resources, transportation and circulation, biological resources, air quality, and hazards/hazards materials. These issues are discussed in Section E below. For issues requiring mitigation to reduce the impact to a less-than-significant level, this Initial Study identifies mitigation measures which would reduce impacts to less-than-significant level. These mitigation measures are referred to in the environmental analysis, presented at the end of each individual Check List topic of discussion, and in Section F of this document, pp. 230-241.
For each checklist topic analyzed, the evaluation has considered the impacts of the proposed project both individually and cumulatively. The items checked below have been determined to be “Less than Significant with Mitigation Incorporated.”

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LAND USE AND LAND USE PLANNING—Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Physically divide an established community?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Have a substantial impact upon the existing character of the vicinity?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Impact LU-1: The proposed project would not conflict with or physically divide an established community. (Less than Significant)

Land use impacts are considered significant if they disrupt or divide the physical arrangement of an established community, conflict with local land use plans or policies as they relate to environmental effects, or if they have substantial impacts on the existing character of the project vicinity. The Plan Area is bound by the Port of San Francisco properties to the northeast; the Marina District the west; the National Parks’ lands to the northwest; Russian Hill Neighborhood to the south; and North Beach Neighborhood to the south and southeast. The FWPRP would adopt design guidelines, policies, and minor zoning adjustments. The Plan would also implement parking signage program, traffic circulation plan, passenger and freight loading management, two neighborhood gateway improvements, nine streetscape improvement projects and three open space improvement projects to the existing public right-of-way in the Fisherman’s Wharf Neighborhood.

The proposed project would be constructed within the City’s existing street network in the plan Area. Streetscape improvements would include: two neighborhood gateway structures on Jefferson Street, installation of raised sidewalks, parking lane planters, sidewalk planters, street trees, stormwater treatment improvements, sidewalk furniture, street lighting, public art work, special sidewalk/roadway paving treatments, rail realignment, and medians. With the exception of gateway improvements, Plan-proposed improvements would not be bulky or substantial and would not interfere with or change the existing street plan nor impede the passage of persons or vehicles.

33 This zoning change would allow for a five feet height increase only to be applied to the ground floor. The height increase could not be used to increase the intensity of development, i.e., an additional story.
Plan-proposed neighborhood gateways would be located on (1) Jefferson Street, just west of Powell Street, and (2) The Little Embarcadero just north of the intersection of Jefferson Street/The Little Embarcadero/The Embarcadero. Although, potentially large in scale, gateways would be pedestrian-oriented. They would demarcate the user’s transition from the auto-oriented City streets, to the Jefferson Street pedestrian-oriented zone. Unless an actual gate is installed as part of the structure, by design, architectural gateways would not physically divide communities.

Project SI-1: Jefferson Street Improvements, would involve the realignment of the existing streetcar tracks several feet to the south on the western half of the block between Taylor and Jones Streets to improve pedestrian/transit conflicts. The streetcar tracks would be realigned, but they would remain at the street-level and on the same block as existing conditions. Improvements would be made to create a dedicated transit lane for the streetcar and would clearly differentiate the transit lane from pedestrian walkways. These improvements would be similar to the existing streetcar track improvements along The Embarcadero, which prevent cars from using the streetcar tracks but do not divide a neighborhood. This project, would also add a Class II, contra-flow bike lane on Jefferson Street, improving a Bay Trail connection and liking it to the existing Bicycle Route 5 on The Embarcadero south of North Point Street. Thus, the proposed project would improve the pedestrian environment in the neighborhood while facilitating the coexistence of all modes of transportation.

The surrounding uses and activities would continue on their own sites and would interrelate with each other as they do at present without significant disruption from the proposed project. The proposed project would not divide or disrupt an established community but would continue the same pattern of commercial, residential and industrial uses characteristic of the proposed project vicinity. Although the proposed project would add streetscape improvements to the existing roadways and sidewalks that could result in street lanes’ reconfiguration, the proposed project would not divide or disrupt an established community, thus this impact would be less than significant.

Impact LU-2: The proposed project would be consistent with applicable land use plans, policies, or regulations of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect. (Less than Significant)

The proposed project, as discussed in Section C. Compatibility with Existing Zoning and Plans, above, would be consistent with local plans, policies and code requirements as they relate to environmental effects. Environmental plans and policies are those, like the Bay Area Air Quality Plan, that address environmental issues and/or contain targets or standards, which must be met in order to preserve or improve characteristics of the City’s physical environment.

The Plan-proposed policies are intended to guide streetscape improvements for the residents and visitors of the Plan Area. Adoption of Plan-proposed policies would have no direct impacts on the physical environment. However, implementation of these policies could have a foreseeable indirect impact of the subsequent implementation of physical changes and improvements in the Plan Area. These physical changes and improvements include minor zoning adjustments, parking signage program, traffic circulation plan, passenger and freight loading management,
nine streetscape improvement projects, and three open space improvement projects, analyzed in this section and throughout this document.

As a result of Plan-proposed policies and guidelines, new streetscape improvement projects could be identified for the Plan Area in the future; however, as with the proposed project, future streetscape improvement projects, other than the previously described Plan-proposed elements analyzed in this land use and land use planning section, would be subject, on a project-by-project basis, to independent CEQA review as well as policies in the San Francisco General Plan, governing area plans, design guidelines, and other applicable land use plans that are intended to reduce impacts related to land use impacts.

For the reasons discussed above, the proposed project would not obviously or substantially conflict with any such adopted environmental plan or policy. Therefore, the proposed project would have a less-than-significant effect on existing plans and zoning.

Impact LU-3: The proposed project would not have a substantial impact upon the existing character of the Project vicinity. (Less than Significant)

The proposed project would not introduce new or incompatible land uses to the Fisherman’s Wharf Neighborhood or its vicinity. The majority of the areas surrounding the Plan Area’s streets are already densely developed with a mix of hotel, residential, commercial and entertainment structures interspersed with some open spaces, vacant piers, parking garage structures and parking lots.

The land uses within the Plan Area are a mix, consisting of General Commercial, Public Trust, Public, High Density Residential, Moderately Low Residential and Community Business. Commercial uses such as hotels, restaurants, and souvenir shops line Jefferson Street and other streets in its vicinity. An active fishing fleet operates off the piers along Jefferson Street. With the exception of 1050 North Point Street (Fontana Towers), at 18 stories high and 990 Bay Streets, seven stories high, building heights within the Plan Area generally vary from single- to-four-story buildings (approximately 15-45 feet).

As previously stated, with the exception of two neighborhood gateway improvements on Jefferson Street, implementation of the proposed project would not include construction of substantial above-ground structures on the public right-of-way, other than possible alterations of certain streets, sidewalks and crosswalks in the Plan Area.

Construction of neighborhood gateway improvements are intended to give the user a sense of transition from the auto-oriented City streets to the pedestrian-oriented Jefferson Street. Given their potential height and bulk, gateway structures could result in changes to the neighborhood character. However, the area surrounding Jefferson Street is a highly developed urban setting. Existing structures contain a high number of advertising signs placed on buildings.

35 Most of the boats berthed at Fisherman’s Wharf belong to a third generation of fishing craft piloted by descendants of the fishermen who have made their livelihoods on the waters of San Francisco Bay for many generations. http://www.fishermanswharf.org/history
To maintain the neighborhood characteristics, building architecture and other architectural elements in the Plan Area would be taken into consideration during the neighborhood gateway design process. The need to improve the existing conditions; while honoring the sense of history of the Fisherman’s Wharf neighborhood, would also be taken into account. Additionally, proposed gateway structures would be developed through design collaboration among various City agencies and a public review process.

New landscaping improvements are proposed in the FWPRP that could result in potentially beneficial aesthetic changes to the neighborhood. An increase in landscaped areas could lead to changes to the neighborhood character. However, like the rest of the City, the Plan Area is experiencing a trend towards adding landscaped surface to the public right-of-way to improve residents and visitors’ experience. New landscape installed in the Plan Area would be installed following City guidelines and would not be bulky or substantial.

Plan-proposed design guidelines would serve to guide new development in the Fisherman’s Wharf Neighborhood. The following would be applicable to land use and planning in the Plan Area:

- **DG 1- Site Design and Orientation:** Sophisticated site design helps to resolve problems posed by such variables as site constraints, community needs and public policy. In San Francisco, the challenge is often ensuring that design solutions result in a high quality pedestrian experience by requiring continuous, active building frontages that are oriented towards the street.

- **DG 2- Building Mass Articulation:** Massing and articulation would address building spacing, rhythm, and level of detailing. These factors help relate a building’s physical form to the type of human activity that happens within and around it.

The FWPRP design guidelines are intended as guidance of which the ultimate actions would result in improvements to the Fisherman’s Wharf Neighborhood public realm. The Plan-proposed design guidelines would not necessarily attract new development to the neighborhood; however, they could influence project sponsors to make changes to their design that could result in a better pedestrian experience in the Plan Area. The design guidelines were developed to meet the Plan Area’s architectural character, and therefore any new development adherent to the guidelines would have a less-than-significant impact on the neighborhood’s existing character.

Plan-proposed changes to zoning would apply to limiting the number of adult entertainment venues in the Plan Area, and to an increase in height for first floor height requirements for new buildings in the Plan Area. Prohibition against adult entertainment establishments in the Plan Area, would reflect the predominantly family-oriented nature of neighborhood. The first-floor only-height increase is to support a more comfortable pedestrian scale between the building edge and the sidewalk while not increasing development intensity. These proposed changes would not interfere with existing operating adult entertainment business in the Plan Area; nor would they increase the bulk and height requirements in the Plan Area. Therefore, the proposed project

36 Massing and articulation describes the relationship of a building’s size and shape to both 1) its visibility in the larger cityscape and 2) its impact on immediate surrounding natural features and development.
would be consistent with the surrounding area’s character and would thus result in a **less than-significant-impact** on neighborhood’s character.

Impact LU-4: The proposed project, in combination with past, present or reasonably foreseeable future projects in the vicinity, would result in less-than-significant cumulative land use impacts. (Less than Significant)

The geographic context for cumulative land use impacts is the Fisherman’s Wharf Neighborhood and its vicinity. Cumulative impacts occur when impacts that are significant or less than significant from a proposed project combine with similar impacts from other past, present, or reasonably foreseeable projects in a similar geographic area. The following cumulative projects are past, present and reasonably foreseeable projects that have been and/or are expected to be developed in the Plan Area:

- The San Francisco Bicycle Plan, consisting of the adoption of a citywide bicycle transportation plan and the implementation of near-term, long-term and minor improvements to the City’s bike route network. The San Francisco Bicycle Plan identifies bike routes number 2 (North Point Street) and 11 (Columbus Avenue) and a long-term project on Jefferson Street in the Plan Area;
- Extension of F-Line Street Service to Fort Mason, which proposes an extension of the historic streetcar from Fisherman’s Wharf to Fort Mason;
- The E-Embarcadero Historic Streetcar Line, which proposes to initiate a basic 20-hour-day historic streetcar service from the Caltrain Terminal to Fisherman’s Wharf.
- Van Ness Avenue Bus Rapid Transit, which proposes a dedicated transit lane on Van Ness Avenue between Mission and Lombard streets;
- Hornblower Cruise Piers 31.5 & 33 Improvements Project, which proposes improvements to Piers 31.5 & 33 to accommodate their current tour operations to Alcatraz Island;
- The Northeast Embarcadero Study, which provides design criteria for Port tenants so alterations and improvements to Port properties can be coordinated to ensure changes would support public enjoyment of the waterfront while maintaining the cohesive character in the waterfront;
- The Embarcadero Promenade Design Criteria, which provides policy and design direction to further improve public circulation and placement of street furnishings and other public and tenant improvements within the promenade. The promenade extends from Third Street at the AT&T Ballpark at its south end, to the entry of Pier 45 in Fisherman’s Wharf at its north end;
- America’s Cup and Pier 27 Cruise Terminal Projects, which proposes improvements on the northern waterfront and Pier 80 to host the 34th America’s Cup Sailing Race and construction of the cruise terminal building shell.

38 The MUNI currently operates historic streetcar service on Market Street and along the San Francisco waterfront (F-Line) to the lines existing terminus at Jones Street and Beach Street (in the Fisherman’s Wharf area). The E-Line extension would begin at the terminus of the F-Line and extend west to San Francisco Maritime National Historical Park and on to Fort Mason. The project is currently under the National Park’s NEPA review process. Project information can be found at http://parkplanning.nps.gov/projectHome.cfm?projectID=15547

39 The building on Pier 27 will be used during the America’s Cup event as the race’s hub of hospitality. After the America’s Cup event is over, the building shell will be finished to house the James R. Herman Cruise Terminal.
The FWPRP would adopt design guidelines, policies, minor zoning adjustments40 to the Plan Area. It would also implement parking signage program, traffic circulation plan, passenger and freight loading management, two neighborhood gateway improvements, nine streetscape improvement projects and three open space improvement projects to the existing public right-of-way. Cumulative projects in the Plan Area are primarily zoning and streetscape plans, facility upgrades to host the 34th America’s Cup and transportation improvements.

With the exception of neighborhood gateway improvements, the FWPRP does not propose the implementation of substantial above-ground structures that would affect land use in the Plan Area. Gateway improvements are intended to give the user a sense of transition from the auto-oriented City streets to the pedestrian-oriented Jefferson Street. They would be built on the existing City’s streets and in accordance to the bulk and height applicable to the Plan Area; thus, they would not result in land use impacts.

The FWPRP does not propose zoning changes that would affect the neighborhood characteristic. The FWPRP establishes design guidelines for site design, massing, articulation and quality of materials that reinforce the pedestrian realm and create a distinct place unique to the Plan Area (including sections of The Embarcadero). The Plan-proposed guidelines would complement the guidelines proposed in the Port’s Northeast Embarcadero Study (PNES). The FWPRP, would also be carrying the PNES goals further through implementation of streetscape and open space improvement projects in the Plan Area. The FWPRP would complement the public access improvements proposed for the America’s Cup, The Embarcadero Promenade Design Criteria and the Bicycle Plan by upgrading existing open spaces, upgrading and creating pedestrian zones, improving multi-modal conflicts, and installing bike lanes.

Improvements to existing open spaces and design guidelines for new development in combination with cumulative projects could physically change the character of the neighborhood over time. The changes in neighborhood character, although noticeable, would be consistent with the mixed-use nature of the Plan Area. These changes would potentially enhance the experience of both visitors and residents in the Plan Area.

Implementation of cumulative projects in combination with the FWPRP would not divide an established neighborhood or conflict with any applicable land use plans, policies or regulations. The proposed project and cumulative projects were developed in conformance with existing plans, ordinances and policies. Furthermore, neither the proposed project nor cumulative projects will include bulky above ground new development. Therefore, the proposed project, alone or in combination with past, present and reasonably foreseeable projects in the Plan Area would not contribute considerably to cumulative impacts related to the division of an established community; nor would it conflict with applicable land use plans, and regulations; or contribute to permanent changes in the existing character of the Plan Area. The proposed project’s construction activities could overlap with the construction activities of cumulative projects in the Plan Area; however, construction activities would be temporary and intermittent. Thus, for the reasons described above, implementation of the proposed project would result in a less than considerable contribution to cumulative land use effects in the Plan Area and its vicinity.
2. AESTHETICS—Would the project:

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Have a substantial adverse effect on a scenic vista?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b)</td>
<td>Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and other features of the built or natural environment which contribute to a scenic public setting?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c)</td>
<td>Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d)</td>
<td>Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area or which would substantially impact other people or properties?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

A visual quality/aesthetic analysis is somewhat subjective and considers the project design in relation to the surrounding visual character, heights and building types of surrounding uses, its potential to obstruct scenic views or vistas, and its potential for light and glare. The proposed project’s specific design elements would be considered to have a significant adverse environmental effect on visual quality only if it would cause a substantial demonstrable negative change. The proposed project, a neighborhood plan, would adopt design guidelines, policies, minor zoning adjustments\(^4\) to the Plan Area. It would also implement parking signage program, traffic circulation plan, passenger and freight loading management, two neighborhood gateway improvements, nine streetscape improvement projects and three open space improvement projects to the existing public right-of-way in the Fisherman’s Wharf Neighborhood. The project is intended to improve the public realm in the Fisherman’s Wharf, therefore *less-than-significant impacts* to aesthetics would occur.

Impact AE-1: The proposed project would not result in a substantial adverse impact on scenic views and vistas. (Less than Significant)

As previously stated, except for Fontana Towers and 990 Bay Street, building heights within the Plan Area generally vary from single- to-four-story high (approximately 15-45 feet). The Plan Area is densely developed and views of particular sections of streets are generally limited to occupants and workers in nearby buildings, and occupants of vehicles, transit users, pedestrians, and bicyclists on adjacent roadways. In general, the existing view corridors along the Plan Area’s streets are defined by often continuous streetwalls of buildings interspersed with a few open

\(^4\) This zoning change would allow for a five feet height increase only to be applied to the ground floor. The height increase could not be used to increase the intensity of development, i.e., an additional story.
landscaped spaces, and limited views of the Bay from some south-north streets such as Polk and Hyde Streets (see Figures AE-1 below). Any potential long-range views from corridors along streets in the Plan Area are therefore largely dominated by surrounding existing dense urban development, particularly mid- and low-rise development. The implementation of the proposed project could potentially lead to physical changes within the public right-of-way in the Fisherman’s Wharf Neighborhood. However, no substantial above-ground structures are expected to be constructed within the public right-of-way, other than possible neighborhood gateways, alterations of certain streets, sidewalks and crosswalks and installation of signs.

Plan-proposed neighborhood gateways would be located on (1) Jefferson Street, just west of Powell Street, and (2) The Little Embarcadero just north of the intersection of Jefferson Street/The Little Embarcadero/The Embarcadero. Although, potentially large in scale, gateways would be pedestrian-oriented. They intend to emphasize the user’s transition from the auto-oriented City streets, to the Jefferson Street pedestrian-oriented zone. Given their potential height and bulk, gateway structures could result in changes to the neighborhood visual character, but they would not have an adverse impact on scenic views and vistas; although Jefferson Street is located on the waterfront, the area surrounding Jefferson Street is a highly developed urban environment, and waterfront views from the street are intermittently blocked by existing structures. Additionally, neighborhood gateway improvements would be installed in BCDC’s jurisdictional 100ft shoreline band and would be required to abide by their permitting requirements related to public access and public views to the Bay. Therefore, no scenic vistas, public views or scenic resources would be affected by installation of neighborhood gateways.

Proposed SI-1: Jefferson Street Improvements, would involve the realignment of the existing street car tracks several feet to the south on the western half of the block between Taylor and Jones Streets to improve transit/pedestrian conflicts. This project would also add a Class II, contra-flow bike lane on Jefferson Street, linking the Bay Trail to the existing Bicycle Route 5 on The Embarcadero south of North Point Street. While the construction work of this streetscape improvement, when compared to the construction work required for the remainder eight streetscape and three open space projects, would be more complex; the streetscape improvement project in itself would not construct substantial above-ground structures that would compromise public views. The street car tracks would be realigned, but they would remain at the street-level. Therefore, no scenic vistas, public views or scenic resources would be affected by construction and operation of the FWPRP.

Implementation of Plan-proposed parking signage program, would result in the installation of 41 signs throughout the Plan Area. The proposed parking signage program includes the following:

- Three Gateway signs (located at Embarcadero/North Point, Embarcadero/Beach and Van Ness/North Point) which would direct drivers to streets where parking facilities are located. These signs would be approximately four feet by six feet in dimension.
- 12 Wayfinding signs (located throughout the Plan Area) which would supplement the Gateway signs to direct drivers to the location of parking facilities. These signs would be approximately four feet by four feet in dimension.
- 26 Garage signs which would be blade signs attached to the parking garage facilities. These signs would be approximately three feet by three feet in dimension.
Proposed signs would not be bulky and would be placed in a manner to prevent blockage of public views. Generally, they would be installed on posts and any placement of Garage signs would be mounted on buildings. Also, installation of all signs would be compliant with the San Francisco Building and Planning Codes.

Several trees42 would be planted in the public right-of-way in the Plan Area as part of site-specific improvement projects and open space improvement projects listed on pp.5–12. Although the addition of new trees to the Plan Area would represent a change in the existing environment; it would not constitute an adverse physical effect on scenic vista, or resources in the Plan Area. Planting new trees could instead visually enhance the residents and visitors’ experience in the Plan Area. Except for SI-6 Hyde Street (between Beach and Bay Streets), all proposed streetscape improvement projects and open space improvement projects would include tree planting.

Columbus Avenue and Bay, North Point, Beach, Jefferson and Mason Streets are identified in the General Plan as streets important to urban design and views or those that have excellent or good views.43 Proposed streetscape improvements to these streets would improve their aesthetics which could enhance users’ experience. As previously stated, these improvements would be implemented in accordance to the General Plan.

Open space improvements are proposed for two existing public open spaces and one excess right-of-way location the in the Plan Area:

- Aquatic Park
- Joseph Conrad Square, and
- Excess right-of-way at the intersection of Columbus Avenue, Leavenworth and North Point Streets.

Views of these public open spaces and of the Bay from site specific streetscape improvement projects and from these public open spaces would likely be blocked by intervening buildings. Site-specific streetscape improvements that would be visible would not be expected to be excessively large or dominating, or to substantially obstruct views from surrounding public areas. Therefore, the proposed project would not degrade or obstruct public scenic views.

For the reasons described above, project implementation is not expected to block or degrade scenic views or vistas; or adversely impact scenic resources in the Fisherman’s Wharf Neighborhood; thus, impacts under scenic vistas would be considered less than significant.

Figure AE-1: Bay Views Looking North (from left to right): Polk and Bay Streets; Hyde and Bay Streets; North Point & Leavenworth Streets

42 The number of trees to be planted in the Plan Area is unknown at this time.
43 Urban Design Element of the General Plan. Maps titled: Street Areas Important to Urban Design and Views and Quality of Street Views.
Figure AE.2: Existing Conditions on Jefferson Street, and Figure AE.3: Jefferson Street Proposed Improvements, below, illustrates how site-specific streetscape improvements could be applied in general to the Plan Area streets to improve pedestrians’ experience. The proposed streetscape view in Figure E.3 depicts streetscape elements that would be used to improve Jefferson Street in the Fisherman’s Wharf Neighborhood. The elements depicted in the proposed streetscape view include special pavement, street trees, public art and a dedicated right-of-way for the streetcar.

Figure AE-2: Existing Conditions Jefferson Street

![Existing Conditions Jefferson Street](image1.png)

Figure AE-3: Jefferson Street Proposed Improvements

![Jefferson Street Proposed Improvements](image2.png)

The proposed streetscapes shown in the above (Figures EA.3) are for visualization purposes only, and are not intended to show specific details or dimensions for particular sections of the Fisherman’s Wharf Neighborhood’s streets.
Impact AE-2: The proposed project would not substantially damage any scenic resources. (Less than Significant)

Although the Plan Area offers views to the Bay, there are no known scenic resources in the Plan Area. As discussed in Impact AE-1, no substantial above-ground structures are expected to be constructed with the public right-of-way that impede existing public views to the Bay; therefore, the proposed project would have less than significant impacts on scenic resources such as trees, rock outcroppings, and other features of the built or natural environment which contribute to a scenic public setting.

Impact AE-3: The proposed project would not degrade the existing visual character or quality of the site and its surroundings. (Less than Significant)

As discussed in Section E.1. Land Use and Land Use Planning, the prevalent neighborhood character (most of the area surrounding the Fisherman’s Wharf Neighborhood streets) is defined by dense urban development typified by a mix of low- and mid-rise residential, commercial, hotels, and piers, interspersed with some open spaces and parking lots. As previously stated, with the exception of two neighborhood gateway improvements along Jefferson Street, implementation of the proposed project would not include construction of substantial above-ground structures on the public right-of-way, other than possible alterations of certain streets, sidewalks and crosswalks in the Plan Area.

Jefferson Street and its vicinity, is a highly developed urban setting with limited views to the Bay, due to existing buildings. In general, existing buildings on Jefferson Street and its vicinity, contain a high number of business and advertising signs showcasing tourist attractions and retailers.

Due to their bulk and height, neighborhood gateway improvements would result in changes to the neighborhood character. However, based on Jefferson Street’s existing neighborhood character, and the fact that neighborhood gateway would require a BCDC permit that would address impacts to existing public views to the Bay; neighborhood gateways would not degrade the existing character or quality of the Plan Area.

The parking signage program would be implemented in accordance with the Planning Code requirements. Proposed wayfinding and garage signs would be similar to other signs placed throughout the City; thus the parking signage program would not degrade the existing characteristics or quality of the Plan Area.

Implementation of Plan-proposed streetscape improvement projects and open space improvement projects would result in an increase in the number of streetscape elements on Plan Area sidewalks, crosswalks, and roadways. However, these improvements would not change the appearance of the public right-of-way adversely.

Site-specific streetscape improvements would be apparent to viewers, but because they would be streetscape improvements at the street pavement level and not large scale above-ground
development, they would not constitute a substantial adverse physical change to existing street conditions in the Fisherman’s Wharf Neighborhood, when seen in short- and mid-range views of such streets. The proposed site-specific streetscape improvements would generally be indistinguishable in the context of existing development in long-range views and would tend to blend into the dense urban character of the surrounding area. Overall, the visual character and quality of streets in the Fisherman’s Wharf Neighborhood would not substantially change or be adversely affected by implementation of the proposed project. The placement of new streetscape elements in these public rights-of-way would thus constitute a less than significant impact, because the scale and concentration of streetscape elements in public rights-of-way would be designed to be unobtrusive and consistent with the existing scale of surrounding development.

As a result of implementing Plan-proposed policies and design guidelines, physical changes and streetscape improvements to the Plan Area could also include future streetscape improvements in the Fisherman’s Wharf Neighborhood (not currently proposed in the FWPRP and therefore not analyzed in this Initial Study). Any new proposed project resulting from the implementation of Plan-proposed policies, would be required to undergo their own CEQA environmental review process on a project-by-project basis at which time their potential environmental impacts will be assessed. For the reasons discussed above, implementation of the proposed project would have less than significant adverse impacts related to visual character.

Impact AE-4: The proposed project would result in a new source of light, and potentially glare, but not to an extent that would affect day or nighttime views in the area or which would substantially affect other people or properties. (Less than Significant)

Development within the Fisherman’s Wharf Neighborhood generally includes residential buildings, buildings’ storefronts, signs, and street lighting that contribute to the existing nighttime lighting conditions in the Plan Area. Nighttime light in the Plan Area would not change substantially from the existing lighting with project implementation.

All Plan-proposed parking signage program site-specific streetscape improvement projects and open space improvement projects would add street lighting elements to the public right-of-way. These projects are summarized in Table 2: Summary of Proposed Improvements, p.9, and described in pp.10-20 of this IS.

The implementation of Plan-proposed site-specific streetscape improvement projects and open space improvement projects would likely result in the future addition, removal or relocation of street lighting in the public right-of-way. Street lighting would be expected to be consistent with light produced by existing land uses and the existing street lighting in the neighborhood. Therefore, the proposed project would not have a substantial effect, nor would it create new sources of substantial light or glare. Overall, the proposed project would have less-than-significant impacts with respect to light or glare.
Impact AE-5: The proposed project, in combination with past, present, and reasonably foreseeable future development in the project vicinity, would result in less-than-significant impacts to aesthetic resources. (Less than Significant)

The geographic scope of potential cumulative aesthetic impacts is the Fisherman’s Wharf Neighborhood and its vicinity, including view sheds that could be affected by project implementation. Cumulative impacts occur when impacts that are significant or less than significant from a proposed project combine with similar impacts from other past, present, or reasonably foreseeable projects in a similar geographic area. Other past, present and reasonably foreseeable projects have been and are expected to be developed in the Plan Area. No scenic vistas, public views or scenic resources would be affected by construction and operation of the proposed project; therefore, the proposed project would not contribute to cumulative impacts related to these issue areas. Cumulative projects within the Plan Area are listed above on page 52.

The FWPRP would change the aesthetic character in the Fisherman’s Wharf Neighborhood by adding streetscape elements to the public realm. Implementation of the FWPRP would improve the public realm in the Plan Area by installing street furniture, traffic calming design elements, neighborhood gateways and other multi-modal improvements on the public right-of-way. Proposed streetscape improvements would not construct substantial above-ground structures that would compromise public views.

Plan-proposed gateway improvements would change the existing visual character in the Plan Area, however, the overall existing condition on Jefferson Street is urban and includes a myriad of buildings with advertisement signs. Change in visual character in itself is not adverse and can be beneficial to the neighborhood. Adding new neighborhood gateways on Jefferson Street could enhance the experience of both visitors and residents by diverting their attention from advertising signage to architectural designed structures along the street. Proposed SI-1: Jefferson Street Improvements project in itself would not construct substantial above-ground structures that would compromise public views. With this project’s implementation, the street car tracks would be realigned, but they would remain at the street-level. Thus, no scenic vistas, public views or scenic resources would be affected by construction and operation of the FWPRP. Furthermore, the FWPRP would not contribute to any substantial degradation of the existing visual character along the Plan Area, because the Fisherman’s Wharf Neighborhood is an already developed urban area.

Together, the proposed FWPRP and cumulative projects would add improvements to the public realm in the Plan Area that would result in physical changes. Additional physical changes could occur in the Plan Area as a result of new projects potentially carrying out the FWPRP design guidelines in combination with The Embarcadero Promenade Design Criteria and design criteria in The Northeast Embarcadero Study. Although noticeable, the changes would be consistent with the mixed-use character of the Plan Area. Furthermore, it is anticipated that all future projects proposed in the Plan Area would be consistent with the adopted goals, policies and objectives of the governing area Plans, as well as, policies in the San Francisco General Plan, design guidelines, planning codes and zoning maps (including development standards), and other applicable land use plans that are intended to reduce impacts to aesthetics. Since development of cumulative
projects within the defined geographic context would not likely result in an adverse impact on existing visual character, there would be no cumulative impact to which the FWPRP could contribute. Even if there were an adverse change in existing visual character due to the cumulative development, however, FWPRP’s incremental contribution would not be cumulatively considerable, as the project would not result in an adverse change in visual character. Therefore, the proposed project’s impacts related to aesthetics, both individually and cumulatively, would be less than significant.

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. POPULATION AND HOUSING—Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Displace substantial numbers of existing housing units or create demand for additional housing, necessitating the construction of replacement housing?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Impact PH-1: The proposed project would not induce substantial population growth, either directly or indirectly. (Less than Significant)

The FWPRP does not include construction designated for housing or commercial uses, therefore no residents or employees would be introduced to the Plan Area as a direct result of the implementation of the FWPRP. However, implementation of the Proposed Project would enhance the pedestrian environment and could attract some new businesses and residents to the Plan Area. However, new residents and businesses would have to move into current existing available structures in the neighborhood. Thus, any increase in residents and employees in the Plan Area would be incremental and would occur over a long period of time since the FWPRP improvements would occur between 2010 and 2030. Thus, the FWPRP would not be expected to contribute to a substantial growth or concentration of population in the Plan Area. Therefore, the Proposed Project would have less-than-significant impacts on population growth.
Impact PH-2: The proposed project would not displace housing units, create a demand for additional housing, or displace a substantial number of people necessitating the construction of replacement housing elsewhere. (No Impact)

The project site does not include residential uses, nor does the project propose residential uses, therefore the proposed project would have no impact with respect to displacement of existing housing or displacement of people that necessitates the construction of replacement housing elsewhere. The potential for the proposed project to induce population growth is addressed above.

Impact PH-3: The proposed project, in combination with past, present, and reasonably foreseeable future development in the project vicinity, would result in less-than-significant cumulative impacts on population and housing. (Less than Significant)

The geographic context for cumulative housing impacts is the Fisherman’s Wharf Neighborhood and its vicinity. Cumulative impacts occur when impacts that are significant or less than significant from a proposed project combine with similar impacts from other past, present, or reasonably foreseeable projects in a similar geographic area.

The project would not result in any significant impact with respect to population and housing since the proposed project does not include any residential uses and would not result in demolition of existing housing or necessitate the construction of relocation housing.

Other past, present and reasonably foreseeable projects have been and are expected to be developed in the Plan Area. Cumulative projects in the Plan Area can be found above, listed on page 52 above.

The proposed project would enhance the public realm in the Plan Area, and consequently could induce new development in the Plan Area that would occur incrementally and over a long period of time. However, this growth would be negligible and not above that expected in dense urban areas like San Francisco.

The FWPRP, in combination with the implementation of improvements for the 34th America’s Cup and Cruise Terminal projects, could temporarily increase the population numbers in the neighborhood’s public realm, as spectators might gather along improved open spaces as they are already in the area watching the races. However, this population surge would only be temporary and related to the America’s Cup event, which is currently under CEQA environmental review.

Proposed SI-1: Jefferson Street Improvements, would add a Class II, contra-flow bike lane on Jefferson Street. This new bike lane would improve the Bay Trail connection and would link it to the existing Bicycle Route 5 on The Embarcadero south of North Point Street. Improving the Bay Trail link to the bicycle network route could increase the number of people, from other parts of the City, visiting the Plan Area which would temporarily increase the Plan Area population. However, this population surge would be temporary and likely to occur during weekends.
The FWPRP combined with the E and F-Line extensions and Bicycle Plan improvements could temporarily create a population surge in the Plan Area, as the transportation improvements would facilitate the movement of people from other parts of the City into the Fisherman’s Wharf Neighborhood. However, this population surge would likely occur during weekends and tourist season, which by nature would likely be temporary and not different than what the neighborhood experiences today.

As discussed above, the proposed project would not have significant physical environmental effects on housing demand or population and any population growth resulting from project implementation would be negligible. For the reasons discussed above, the proposed project’s impacts related to population and housing, both individually and cumulatively, are less than significant.

Topics:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
</table>

4. CULTURAL AND PALEONTOLOGICAL RESOURCES—Would the project:

a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5, including those resources listed in Article 10 or Article 11 of the San Francisco Planning Code?

b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?

c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

d) Disturb any human remains, including those interred outside of formal cemeteries?

HISTORIC CONTEXT

Prehistory

The Fisherman’s Wharf Public Realm Plan Project (FWPRP) is located today in the northern waterfront, but historically the Plan area was submerged within San Francisco Bay with the exception of an eight-block area in the southwest corner of the Plan area, historically known as Tonquin Point. Since the late Pleistocene, when Indigenous peoples may have first arrived in the Bay Area, the region has undergone significant environmental changes as a result of global climate fluctuations including rising sea levels and changes in the distribution and availability of natural resources. Beginning around 11,000 years ago, as the colder Pleistocene geological era

44 This section was prepared by the Planning Department’s Staff: Randall Dean, Archeologist and Shelley Caltagirone, Historic Preservation Tech Specialist.
gave way to the warmer Holocene era, the broad inland valley now forming San Francisco Bay became progressively inundated. Older archaeological sites at lower elevations within the Bay would have been submerged by rising sea levels or buried beneath sedimentary deposits up to the beginning of the Late Holocene as is evidenced by discoveries of prehistoric human remains at Treasure Island and off the Bay shoreline of San Mateo County.

To date, no dense concentration of prehistoric sites has been documented along San Francisco’s northern waterfront unlike in SOMA, Hunter’s Point, the Bayview District, and Candlestick Point. Of the ten recorded prehistoric sites along/near the northern Bay shoreline, three (CA-SFR-5, -21, -24) were temporary encampments for food procurement/processing near Sutro Baths and three sites (CA-SFR-6, 26, -129) were within the Presidio consisting of human burials and a sizable shell midden. Within the Late Holocene period, permanent or semi-permanent prehistoric settlements were present along the bluff bordering the Bay in the Fisherman’s Wharf – Fort Mason area (CA-SFR-23, 29, 30 and 31). All four sites are shell middens and generally have contained artifactual and ecofactual material (e.g., worked obsidian, Haliotis disk beads, fire cracked rock) and features such as hearths. Human burials were present in the Fisherman’s Wharf site (CA-SFR-23) which was curio-hunted during the 1850s. The Fort Mason sites have been dated to approximately between 1350 and 1050 BP (Before the Present). The Fort Mason sites are known to have substantially undisturbed deposits. The prehistoric occupation site, SFR-23 was located on a bluff cut at Tonquin Point within the FWPRP. Although SFR-23 was last documented in 1861 there is a reasonable probability that intact deposits associated with this site are still present.

Costanoan-speaking tribal groups occupied the area from the Pacific Coast to the Diablo Range and from San Francisco to Point Sur. Modern descendants of the Costanoan prefer to be known as Ohlone. The name Ohlone is derived from the Oljon group, which occupied the San Gregorio watershed in San Mateo County. The two terms, Costanoan and Ohlone, are used interchangeably. Prehistorians differ as to when Ohlone-speaking populations arrived in the San Francisco Bay Area. A commonly-held view is that this arrival occurred around 4,000 BP. The Ohlone are thought to have introduced a language, cultural patterns, and mortuary practices quite distinct from that of the older Hokan-speaking populations who were for several thousand years already present in much of the region. The Costanoan tribelet group that occupied the northern end of the San Francisco peninsula in the late 18th century is known under the general term Yelamu. The Yelamu were divided into three semi sedentary village groups. The Yelamu were composed of at least five settlements (Chutchi, Sitlintac, Amuctac, Tubsinte, and Petlenuc) located within present day San Francisco. Yelamu may have also been the name of an additional settlement within the vicinity of Mission Dolores. Sitlintac may have been located on the bay shore near the large tidal wetlands of the Mission Creek estuary. Chutchui was located near the lake (Laguna de los Dolores) east of the current Mission Dolores, two to three miles inland. These two villages were probably the seasonal settlements of one band of the Yelamu who used them alternately. Another Yelamu band seasonally occupied the settlement sites of Amuctac and Tubsinte ethnohistorically associated with Visitation Valley and perhaps, archaeologically identifiable with the Ralston Shellmound and CA-SFR-35. A third Yelamu band, the Petlenuc, may have had a small settlement on the northern waterfront within the Presidio, perhaps CA-SFR-129.

45 19th Century hobby pot-hunting prehistoric middens for artifacts, etc.
Within less than two months after the arrival of the Spanish who had begun construction of the first Mission Dolores, all of the Yelamu villages in San Francisco were attacked and burned by an expedition sent by the Shasla tribe, the Costanoan tribe of the San Mateo area. The Yelamu survivors abandoned all of the San Francisco settlements seeking refuge with other groups in East Bay and Marin. Until they were missionized in the late 18th century, the Yelamu only returned to San Francisco for occasional hunting. Prehistoric Costanoan and/ or pre-Costanoan peoples may have maintained settlements or specialized activity within the FWPRP Area.

Descendant individuals and groups of the Ohlone peoples are active today in the revival of indigenous arts and cultural practices; the preservation of indigenously significant sites; and in serving as a voice for the Ohlone peoples. Currently no Ohlone group has acquired federal tribal recognition but the State Native American Heritage Commission maintains a list of Ohlone representatives for San Francisco for the purposes of referral and consultation.

Site Formation:

Historically, the eastern two-thirds of the FWPRP area was submerged below San Francisco Bay waters within what was known as North Beach Cove extending from Tonquin Point (near the crossing of Beach and Leavenworth Streets) to North Point (a little west of Bay and Kearny Streets). The eight-block area in the southwest corner of the FWPRP, between Black Point or Punta San José and Tonquin Point, was an area of transverse sand dunes behind a bluff overlooking the long straight beach running along the southern edge of this embayment. No significant infilling of North Beach Cove occurred until the 1880’s as a result of the construction of Sections A, 1 and 2 of the New Seawall extending from the terminus of Powell Street to a point south of Bay Street (along The Embarcadero of today). By the late 1880’s the eastern portion of the FWPRP area had been filled in as far as Powell Street and, south of Beach Street, as far west as Mason Street. The southern end of the cove was also filled in bringing the shoreline from below Francisco Street to a point north of the alignment of Bay Street. With the construction of Sector B (1890-1893), which extended the Seawall west to Taylor Street, the cove was reduced by the end of the decade to the small basin between Leavenworth and Mason Streets and, south of Beach Street, to the area between Columbus Avenue and Taylor Street. By 1913, much of the remaining cove had been filled in as far north as Jefferson Street, in anticipation of the opening of the Pacific Panama International Exposition (PPIE) in 1915, for which the beltline railroad was to transport construction materials by extending down Jefferson until tunneling through Fort Mason toward the PPIE site in today’s Marina and Crissy Field. Much of the large-scale reclamation project was accomplished by dumping earthquake debris from various points in the city into yet unfilled portions of the cove at Fisherman’s Wharf.

Gold Rush Period (1852-1855)

Most of the Plan area was submerged during this period, north of the shoreline that was nearly as far south as Chestnut Street. It nonetheless figured prominently in the failed attempt of Henry Meiggs to transform North Beach, the cove between Tonquin Point and North Point into a maritime port superior to that on Yerba Buena Cove. To this end, Meiggs heavily invested in the construction of a substantial 1,600-foot long pile-and-platform timber wharf (Meiggs’ Wharf) projecting from the shoreline along Francisco Street between today’s Powell and Mason Streets.
Meiggs’ principal purpose for construction of the wharf was for lumber shipments from Meiggs’ timber interests along the northern coast. Construction of Meiggs’ Wharf was completed in 1853 and remained operative at least until 1870s or early 1880s. Meiggs’ great maritime plan for North Beach was never realized, since Meiggs fled to Chile in 1855 to avoid exposure for embezzlement of city funds.

Also during the Gold Rush period, the Tonquin, sailing from New York was wrecked on Whaleman’s Reef (subsequently named “Tonquin Shoal”) on November 19, 1849. The shipwreck location is within the FWPRP.

Industrial district (1860s – 1890)

Even with the absence of Meiggs, this portion of North Beach continued to be important as an access point for lumber shipments from the northern coast. By the mid-1860s, the sandy area between Tonquin Point and Black Point, saw the development of large-scale industries requiring water access for trade and production processes and large expanses of affordable land. The first was Heyneman, Pick, and Company’s woolen mill, the first factory in California, built in 1858 on the current site of the Ghirardelli Factory. The woolen mill manufactured uniforms, flannels, and blankets for the Union troops during the Civil War. The wood-frame structure burned down in 1861. The following year, a larger masonry wool mill, the Pioneer Woolen Factory (1862-1893), occupied the site. By 1882, the mill employed a workforce of 800 workers, including 300 Chinese workers who occupied tenement housing opposite the factory. Thomas Selby established a second foundry (the first foundry being the Selby Shot Works on Second Street in SOMA) on Tonquin Point (the current Cannery site), known as the Selby Smelting and Lead Works (1864-1885). The smelting plant refined lead-based and other types of ores so as to obtain pure silver and gold, or industrial grade lead.

By 1870, Selby’s plant had a workforce of 120, assumedly, skilled and semi-skilled workers. Selby’s plant had the highest production rate of any comparable foundry in the county at this time. The technique employed by Selby, required processing of the ore through three types (desilvering, smelting, and cupel) refining furnaces. The industry was heavily dependent on water transport for supplies of ore to be refined and for market shipment of the refined silver and lead products. Thus, a large bulkhead wharf was constructed to meet the specific needs of Selby’s foundry. The plant continuously deposited slag (an industrial by-product) into the Bay to extend the bulkhead wharf into deeper waters to facilitate shipping. In the 1880’s a number of local “chemical works” were merged to form the Staufer Chemical Co. for which a plant was built on the block bounded by Grant, North Point, Bay, and Stockton Streets. These were hazardous industries (the Giant Powder Co. plant on Potrero Point was destroyed by an explosion in 1892) whose primary product was sulfuric acid and they were typically located in isolated areas.

The areas immediately surrounding the North Beach chemical works remained undeveloped for many years. These industries also were dependent on Chinese labor who, following passage of the Exclusion Act of 1882, had very limited avenues of employment open to them. Andrew Hallidie, the designer of suspension bridges and later of the cable car, established the California Wire Works in 1883. The company designed and manufactured heavy-duty metal cable for large-scale or innovative engineering projects. The plant occupied the entire block bounded by Mason, North Point, Powell, and Bay Streets. It is unclear if the wire works depended on access to
coastal or bay transport but an unusually broad wharf adjoined the company yard opposite Mason Street until at least the 1890’s. It can be seen that during this period the kind of industries drawn to the Plan area tended to need sizable tracts of inexpensive land, access to water for transportation or for industrial processes, or isolation from heavily populated districts because of the potential hazardousness of the industry. All of these locational criteria would be threatened if the area became more densely developed, which by the end of the 1890’s, in fact, occurred.

Stations balnéaires (1860s – 1890s)

Sea bathing, unlike bathing in a swimming pool which is generally done for pleasure or for exercise, came to be thought in the 19th century to have curative or therapeutic value. Similar to mineral springs, sea water was viewed having medicinal benefits that were enhanced by therapeutic exposure to the sun and to sea air. Beginning with Joseph Dunkley’s Sea Baths, later known as Neptune and Mermaid Swimming Baths, the area around Black Point Beach (today’s Bay Street) became overwhelmed by the mid-1880s with thalassotherapeutic clubs (North Beach Swimming Baths, Bird’s Club, Triton Swimming Club, Crystal Springs Baths, Sea and Surf Bathing, Golden Gate Sea Baths, Sheltered Cove Baths, Sanitarium Sea Baths). The salt water spas offered up to 300 bathing cabins for daily rent, endless lines of dressing rooms, and a confusion of swimming platforms projecting into the Bay. With the appearance of grand enclosed salt water natatoriums like the Sutro Baths (1896-1966) and the high-toned Palace Baths (1887-1906), the open-air sea bathing establishments east of Black Point had nearly disappeared by the end of the century. The Crystal Salt Water Baths, deciding to go with changing tastes, doubled the size of its facilities and featured heated plunge pool, tile baths, and an on-site laundry to provide bathing suits and towels.

Industrial Domestication (1890 – 1906)

By the end of the century residential development, still largely single-family or two-flat dwellings, had moved further north, fairly solidly lining Bay Street and fingerling up to North Point Street and beyond. The local economy also had importantly changed during this period so that the heavy industry’s production for distant mining fields was becoming greatly overshadowed by domestic-goods industries. Both of these factors may explain the disappearance or conversion of “nuisance” industries in the FWPRP area by the turn of the last century. The closures of Selby Smelting and Lead Works and the San Francisco Sulphur Works easily fall into the first category. The product adaptations of the Stauffer Chemical Works and the re-adaptation of the Pioneer Woolen Mill plant to canned fruit (Fontana Co.) and chocolate and spice production (Ghirardelli Co.) show a re-orienting of production towards domestic household consumption. The Stauffer Chemical Works which had specialized in the manufacture of sulfuric acid shifted to the production of household products like cream of tartar, whiting and refined sulfur. Earlier local industries that fit the new model, like C.C. Burr & Co. Spice Mill who manufactured mustard, expanded their operations. The California Wire Works probably increased its production and design of large specialized cable but production of barbed fence wire was replaced by the manufacture of nails. New industries in the Plan area by 1900 included the Leduc Tule Improvement Co. that made rubber life-preservers and rafts. Near the marginal wharves along East Street (the Embarcadero) a number of timber pile preservation businesses appeared (San Francisco Preserving Co., W.R. Rood & Co. Perfection Pile Preserving Works) in response to the pestilent arrival of the naval “shipworm” Toredo navalis which threatened the city’s timber pile
wharves. The BSHC favored creosote-coated piles rather than concrete caisson or concrete-encased piles to address the problem. It appears that the city’s pile-creosoting businesses were centered near the base of Powell Street.

Fisherman’s Wharf (Italian fishing industry)

In the 1860s Italian fishermen made up a sizable share of the local fishing industry. The fishermen were Genoese (Ligurian) who sailed Mediterranean lateen sailboats (Feluccas) from their base at the foot of Vallejo and Union Streets. They initially harvested crab, salmon, and sardines. This expanded to shrimp in the late 1860s and to oysters in the 1870s. Sicilian fishermen arrived in larger numbers in the 1880s, but the Genoese monopolized the deep-sea fisheries. After the Board of State Harbour Commissioners (BSHC) was awarded jurisdiction over the Port of San Francisco in 1864, the Italian fishermen operations relocated to the foot of Meiggs Wharf near Francisco between Powell and Mason Streets. In 1872, the BSHC granted the Union Street Wharf exclusively to the Italian fishing community. Again, in 1885, the fishermen were forced to relocate to the Filbert Street Wharf which was to remain the “permanent” port for their fleet of 265 boats. In 1900, the BSHC undertook the construction of four new piers between Union and Lombard Streets. For a fifth time, the several hundred boat-strong Italian fishing fleet and fish markets had to move. This move was to the shallow cove at the foot of Taylor Street which would in time acquire the hard-won toponymic of “Fisherman’s Wharf”. By this time the Italian fishermen monopolized both the deep-sea and bay fisheries. Their only rival, the Chinese fishing community, probably was established in the Bay Area earlier than the Italians since there were Chinese fishing camps at Hunter’s Point and Rincon Point in the early 1850s, but beginning in the 1860s and more ruthlessly after 1880s State regulations progressively undermined the ability of local Chinese fishermen to compete by restricting fishing seasons, techniques, and even the ability to sell harvests. However, the Chinese held an unchallenged monopoly in abalone fishing for which there was a strong local market for the polished shell and an overseas Chinese market for the dried meat. To whatever extent it may have benefited from regulatory burdening of its competitor, the Italian fishing industry dominated the market for other reasons including technological competitiveness and strong unionization. The Italians adopted the more efficient Paranzella double boat seine in the mid-1870s and by 1885 the use of steam-powered fishing vessels was common. Italian fishermen were one of the first industries to unionize on the West Coast, forming the Fishermen’s Mutual Aid Society in 1850, the Fishermen’s Protective and Benevolent Association in 1877, and the Italian Fishermen’s Association in 1883. At the turn of the 20th century, San Francisco’s fishing industry was among the busiest on the continent, processing more fish than all the combined ports from Washington State to Mexico, but by 1952, sardines had disappeared from local waters, limiting the role of the Fisherman’s Wharf lagoon to berthing crab and salmon fleets.

Post-1906 Earthquake and Fire Development and Recent Past (1906 - present)

The period following the San Francisco Earthquake and Fire of 1906 was one of steady development in the Fisherman’s Wharf area. Extensive amounts of fill, comprised in part from the earthquake debris, were deposited in what remained of the North Beach cove between 1906 and 1913, resulting in new land north of Jefferson Street. In 1907-1909, the California Fruit Canners
Association built a brick warehouse and cannery on the old smelter-gas plant site at Hyde and Jefferson Streets. The area to the west of the Cannery was developed for boat building. Other developments in the area at this time included the creation of facilities for oil storage, a fish market, a net drying area, and lumber yards. In 1914, the State Harbor Commission constructed two bulkhead wharves for the use of the fishing fleet. Around the same time, the State Belt Line Railroad—San Francisco’s waterfront rail system—was extended along Jefferson Street across the cove at Aquatic Park to Fort Mason. The last phase of extensive filling in the Fisherman’s Wharf area occurred in the 1920s and early 1930s when the Hyde Street Pier and Pier 45 were built and Aquatic Park was completed. The Hyde Street Pier was completed to accommodate the Golden Gate Ferry Company, which initially connected Sausalito and San Francisco, and Pier 45 was completed to accommodate the needs of the shipping companies for additional ship berthing space.

One byproduct of the increased development in the area came in the form of restaurants, which in the 1930s began to relocate to Fisherman’s Wharf both for access to fresh fish and to take advantage of the colorful scenery. By the 1950s—the same time that many west coast fisheries began to decline in earnest—many fishing operations at the Wharf likewise became increasingly focused on the steadier and more lucrative opportunities offered by the restaurant and tourist trade. This trend intensified in the latter half of the century, with fishing and industrial production steadily giving way to businesses focused on tourism.

In the 1960s, both the Ghirardelli chocolate factory and the California Fruit Canners Association Cannery were redeveloped as shopping complexes. Nearby, the Hyde Street ferry terminal became the site of a maritime state park in the late 1950s, and then, along with Aquatic Park, became the heart of the San Francisco Maritime National Historical Park in 1988. Within a few years the warehouses, boat building shops, lumber and rail yards that had once been common were being rapidly replaced with hotels, restaurants and other commercial businesses. Fort Mason ceased to function as a military facility and became part of the Golden Gate National Recreation Area in 1972. Today the Fisherman’s Wharf area is considered the center of tourist activities in San Francisco.

Impact CP-1: The proposed project would not result in a significant impact to historic architectural resources. (Less than Significant Impact with Mitigation Measure)

The FWPRP Area contains multiple known and potential historic resources, including many notable late 19th and early 20th century buildings and structures related primarily to the fishing industry in San Francisco. The area’s historic resources are typically located adjacent to public right-of-ways and in some cases the public right-of-ways are related to or part of individual historic resources and/or historic districts. In general, a project would cause a significant impact to historical resources if implementation of the project would result in adverse change in the significance of a historical resource as defined in CEQA § 15064.5.

A “known” historic resource is a property that is officially designated, or that has been formally determined as eligible to be officially designated, in a local, state, and/or national register. A “potential” historic resource is a property that is not officially designated, nor that has been formally determined as eligible to be officially designated, in a local, state, and/or national register, but that may be eligible based upon age, appearance, and/or other existing information, pending formal determination.
While the FWPRP proposed streetscape improvements would not result in the construction of large-scale new structures, they could potentially have an effect on individual historic resources as well as historic districts. Several aspects of the FWPRP are related to the topic of potential impacts to historic resources and are evaluated in this section, including:

- Gateway Treatments
- A-5 Urban Design Guidelines 1-8
- SI-1 Jefferson Streetscape Improvements (between Powell/Hyde)
- SI-2 Beach Street (between Embarcadero/Polk)
- SI-3 North Point (between Polk/Embarcadero)
- SI-4 Powell, Mason, Jones, and Leavenworth Streets
- SI-5 Hyde Street (between Beach/Bay)
- SI-6 Hyde (between Jefferson/Beach)
- SI-7 Larkin (between Beach/Bay)
- SI-8 Taylor (between Jefferson/Bay)
- SI-9 Bay Street (between Embarcadero/Polk)
- OS-1 Joseph Conrad Square
- OS-2 Aquatic Park and Jefferson Street
- OS-3 Columbus/Leavenworth/North Point Intersection

Known and potential historic resources located within the Fisherman’s Wharf area that may potentially be affected by the Plan-proposed projects are categorized by type and discussed below:

Historic Districts and Cultural Landscapes. Historic districts are comprised of groupings of thematically related buildings and other properties that contribute to the overall historic character of an area. The Fisherman’s Wharf neighborhood public right-of-ways play an integral role in the interpretation and appreciation of historic districts within the area, contributing to their context and setting. In some cases, streetscape features may be considered to be contributor to historic districts. Therefore, proposed streetscape improvements such as, but not limited to, modifying sidewalk and street grades and widths, changing curb alignments, planting/removing street trees or other plant material, introducing new street lighting and street furniture, and/or modifying alignments should be analyzed for potential effects to the character of historic districts.

Within the FWPRP Area, two identified historic districts contain public right-of-ways that are affected by FWPRP projects: (1) Aquatic Park National Historic Landmark District and Cultural Landscape and (2) Port of San Francisco Embarcadero Historic District.

(1) **Aquatic Park National Historic Landmark District and Cultural Landscape.** The Aquatic Park Historic District is listed as a National Historic Landmark (NHL) as one of California’s largest Works Progress Administration (WPA) projects reflecting President Franklin D. Roosevelt’s policy of providing employment to architects and artists during the Great Depression. It is significant under Criterion A (Events) within the areas of social/humanitarian movements, military history, and recreation. Aquatic Park is also significant under Criterion C (Design)
within the areas of architecture and landscape, community planning and development, and art. The site is particularly noteworthy for its Streamline Moderne architectural style and its associations with Frederick Law Olmsted and Daniel Hudson Burnham. The Aquatic Park NHL District contains ten acres of land with three buildings and five structures, which are significant for the period from 1920-1945. The Aquatic Park National Register Historic District was extended to the west side of Van Ness Avenue through concurrence determination of eligibility with SHPO in August 2004, so that the National Register-listed district coincides with the Cultural Landscape. Aquatic Park is located within the San Francisco Maritime National Historical Park. The only contributing features of the district that appear to be in or near the public right-of-ways affected by the FWPRP are two retaining walls, one stone retaining wall and one concrete retaining wall, located at the southwestern corner of the park near Van Ness Avenue.

Within the listed Aquatic Park National Historic District, the FWPRP proposes the OS-2 Aquatic Park and Jefferson Street project, which would convert a segment of the final block of Jefferson Street between Hyde Street and where it terminates in Aquatic Park from a surface parking lot to a pedestrian plaza as a gateway to Aquatic Park and Fort Mason beyond. Because the project would occur within the boundaries of the historic district, the project could potentially affect the resource. Implementation of mitigation measure CP-1 would reduce potentially significant impacts to less than significant levels.

Mitigation Measure CP-1: Secretary of the Interior’s Standards for the Treatment of Historic Properties, Aquatic Park National Historic Landmark District and Cultural Landscape. In order to avoid substantial impact to Aquatic Park, the project shall be designed in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties (Standards). Prior to the design development stage of the project, personnel who meet the Secretary of the Interior’s Professional Qualifications Standards shall produce a report that assesses the physical condition of specific segments of the historic district that are potentially affected by the project, including inventory of historic and altered features, and recommendations for project design that comply with the Secretary of the Interior’s Standards for the Treatment of Historic Properties (Standards). The FWPRP final project design shall incorporate such recommendations so as to be in accordance with the Standards. Compliance with the Standards shall be addressed during the project’s design phase by submittal of project plans and materials to the Department for review and approval by personnel who meet the Secretary of the Interior’s Professional Qualifications Standards prior to the finalization of the project design. A project-level design consistent with the Standards will take into account the materials, style, and placement of proposed new construction in accordance with the existing historic character of the historic district, including historic curbs, materials, profiles, shapes, landscaping, and spatial relationships.

(2) Port of San Francisco Embarcadero Historic District. The Port of San Francisco Embarcadero Historic District was listed on the National Register of Historic Places in 2006. It is significant within the areas of government, commerce, transportation, labor, engineering, architecture, and community planning under Criteria A (Events), B (Persons), and C (Design). It includes an approximately three-mile curving stretch of San Francisco’s northeastern waterfront from Pier 45 at Fisherman’s Wharf, south to Pier 48 at China Basin. The district includes pier structures, other waterfront structures such as the Ferry Building, Agricultural Building and the Fireboat House,
as well as the waterside portion of the Embarcadero corridor including the Seawall, Herb Caen Way/Embarcadero Promenade and the Bulkhead Wharf. The Bulkhead wharf is asphalt covered between piers that parallel the Embarcadero, and in some locations of the district is the supporting platform and substructure that supports bulkhead building portions of piers. Most of the district resources were constructed between 1908 and 1938, however the construction of the seawall dates from 1896 and the construction of the Ferry Building to 1896. The full period of significance for the district is 1878 to 1946. Contributing features of the Embarcadero Historic District that lie within the public right-of-ways are Pier 45 and the seawall.

Within the Port of San Francisco Embarcadero Historic District, the FWPRP proposes two components that could potentially affect the resource: (1) the Neighborhood Gateway Treatments and (2) the Urban Design Guidelines, specifically No. 7 (Pier 39 East Park) and No. 8 (Pier 39 West Park). Of the Neighborhood Gateway Treatments, one gateway location is proposed for Jefferson Street, just west of Powell Street and adjacent to the Embarcadero Historic District, and the other gateway location is proposed for the Little Embarcadero, just north of its intersection with Jefferson Street and within the Embarcadero Historic District. The gateways could include architectural elements such as archways or distinctive vertically-oriented signs, open spaces, paving patterns and features, planting design, or public art. The Urban Design Guidelines Nos. 7 and 8 would consider the construction of small-scale building(s) at the east and west ends of Pier 39 that would help to define and activate the path along the water’s edge. These guidelines would also encourage minor changes that would improve pedestrian circulation and seating. Because the Neighborhood Gateway Treatment and Design Guideline projects would occur within the boundaries of the Embarcadero Historic District or immediately adjacent to the Embarcadero Historic District, the work could potentially affect the resource. Implementation of mitigation measure CPI-1 would reduce potentially significant impacts to less than significant levels.

Mitigation Measure M-CP-1a: Secretary of the Interior’s Standards for the Treatment of Historic Properties, Port of San Francisco Embarcadero Historic District. In order to avoid substantial impact to the Embarcadero Historic District, the Neighborhood Gateway Treatments and the Urban Design Guideline Nos. 7 and 8 components of the project shall be designed in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties (Standards). Prior to the design development stage of the two projects, personnel who meet the Secretary of the Interior’s Professional Qualifications Standards shall produce: a report that assesses the physical condition of specific segments of the historic district that are potentially affected by the projects, including inventory of historic and altered features, and recommendations for project designs that comply with the Secretary of the Interior’s Standards for the Treatment of Historic Properties (Standards). The FWPRP final project designs shall incorporate such recommendations to be in accordance with the Standards. Compliance with the Standards shall be addressed during the project design phases by submittal of project plans and materials to the Department for review and approval by personnel who meet the Secretary of the Interior’s Standards.

Professional Qualifications Standards prior to the finalization of the project design. A project-level design consistent with the Standards will take into account the materials, style, and placement of proposed new construction in accordance with the existing historic character of the historic district, including historic curbs, materials, profiles, shapes, landscaping, and spatial relationships.

Historic Buildings and Structures. The Fisherman’s Wharf neighborhood public right-of-ways play an integral role in the interpretation and appreciation of individual historic buildings and structures that are singularly significant for their historic and/or cultural values by providing context and setting. In some cases, streetscape features may be considered to be related to individual resources. Therefore, streetscape improvements should be analyzed for potential effects to the character of individual historic buildings or structures. Based upon a survey of the Planning Department’s databases and archives, there are 19 known individual historic buildings and structures within the Plan Area.

<table>
<thead>
<tr>
<th>Historic Building/Structure</th>
<th>Assessor’s Block/Lot</th>
<th>Historic Resource Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haslett Warehouse</td>
<td>0010/002</td>
<td>National Register</td>
</tr>
<tr>
<td>Ghirardelli Square</td>
<td>0452/001 and 002</td>
<td>National Register/Article 10</td>
</tr>
<tr>
<td>San Francisco Cable Cars</td>
<td>N/A</td>
<td>National Register</td>
</tr>
<tr>
<td>Hyde Street Pier and Historic Ships</td>
<td>0405/008 and 009</td>
<td>National Register</td>
</tr>
<tr>
<td>The Eagle Café at Pier 39</td>
<td>9900/001</td>
<td>National Register</td>
</tr>
<tr>
<td>Otis Elevator Company, 1 Beach Street</td>
<td>0018/001</td>
<td>National Register</td>
</tr>
<tr>
<td>Beiderman Place</td>
<td>0007/001</td>
<td>National Register</td>
</tr>
<tr>
<td>The Cannery, 2801 Leavenworth</td>
<td>0010/001</td>
<td>Here Today Survey/Structure of Merit</td>
</tr>
<tr>
<td>Piedmont Winery, 781 Beach Street</td>
<td>0025/014</td>
<td>Here Today Survey</td>
</tr>
<tr>
<td>844 Bay Street</td>
<td>0026/014</td>
<td>Here Today Survey</td>
</tr>
<tr>
<td>740 Bay Street</td>
<td>0027/008</td>
<td>Here Today Survey</td>
</tr>
<tr>
<td>734 Bay Street</td>
<td>0027/035</td>
<td>Here Today Survey</td>
</tr>
<tr>
<td>736 Bay Street</td>
<td>0027034</td>
<td>Here Today Survey</td>
</tr>
<tr>
<td>2626 Hyde Street</td>
<td>0027/012</td>
<td>Here Today Survey</td>
</tr>
<tr>
<td>2646 Hyde Street</td>
<td>0027/018</td>
<td>Here Today Survey</td>
</tr>
<tr>
<td>2650 Hyde Street</td>
<td>0027/019</td>
<td>Here Today Survey</td>
</tr>
<tr>
<td>2654 Hyde Street</td>
<td>0027/020</td>
<td>Here Today Survey</td>
</tr>
<tr>
<td>2907-2909 Jones Street</td>
<td>0006/001</td>
<td>California Register-eligible</td>
</tr>
<tr>
<td>2907-2909 Jones Street</td>
<td>0006/001</td>
<td>California Register-eligible</td>
</tr>
</tbody>
</table>

There are also several buildings and structures within the Fisherman’s Wharf area that are over 50 years of age but that have not been evaluated for eligibility for listing on the California or National Registers. These potential historic resources would require further research and evaluation if they were to be directly impacted by a Plan project. Currently, no existing buildings are proposed for either demolition or alteration so that project impacts would be limited to the change in a known or potential resource’s setting.
The proposed FWPRP projects that would affect the area’s streetscapes and should be evaluated for potential impacts to the setting of individual historic resources are listed and evaluated below. The projects are divided into those pertaining to architecture within the Plan Area and those pertaining to public right-of-ways.

Projects Pertaining to Architecture
A-5 Urban Design Guidelines 1-6: The FWPRP design guidelines are intended as guidance of which the ultimate actions would result in improvements to the Fisherman’s Wharf neighborhood public realm. Only the first six guidelines are evaluated here as the last two are site-specific and are evaluated under the Port of San Francisco Embarcadero Historic District discussion above. The six pertinent guidelines include:

DG 1 Site Design and Orientation - require continuous, active building frontages that are oriented towards the street

DG 2 Building Mass Articulation – address building spacing, rhythm, and level of detailing

DG 3 Ground-floor Design - ensure new buildings are designed with active ground floors, regardless of use, and emphasize the quality of materials and level of detailing found at the ground floor over those found on upper floors

DG 4 Façade Treatment - use of high-quality materials, appropriate colors, rich detailing, and placement of appropriate elements at both residential and retail entrances contributes to a sense of an enlivened pedestrian environment

DG 5 Parking and Access - minimize parking structure impacts on the public realm and pedestrian experience

DG 6 Open Space in New Development - provide a high degree of safety, accessibility, and privacy for common private open space

The proposed design guidelines are intended to inform the appearance of new buildings within the Plan Area. For this reason, they will have no direct impact on existing buildings as they do not require the modification of existing buildings. However, because the guidelines would affect the appearance of new buildings within the Plan Area, over time they may change the setting of known and potential historic resources. The proposed guidelines do not recommend any building orientations, forms, materials, ornamentation, or colors that would compromise the setting of historic resources within the Plan Area. In general they promote an active ground floor space with relatively high transparency, quality materials and finishes, and a high level of architectural detail relative to the upper floors. These principles are in keeping with the design approach utilized in the construction of the majority of the historic buildings located in the Fisherman’s Wharf area, which tend to date from the late 19th century and early 20th century. The building forms from this period often displayed tall ground floors to allow maximum natural light into retail and work spaces and to create a classical hierarchy in the floor heights of the buildings. Rich architectural detail and the base and cornice level of these buildings is also a common feature. For these reasons, the design guidelines would promote a building form that is compatible with the historic building stock in the Fisherman’s Wharf area. Over time, this would
improve the visual cohesiveness of the streetscapes, which would improve the setting of the individual historic buildings and structures. Therefore, implementation of the FWPRP would have a less-than-significant effect on individual historic buildings, and would not require implementation of mitigation measures.

Projects Pertaining to Public Right-of-ways
SI-1 through SI-9 Streetscape Improvements. There are nine proposed FWPRP street improvement projects that affect the majority of the public right-of-ways within the Plan Area that should be evaluated for potential impacts to historic resources (listed below). The improvements generally include: stormwater control measures; street trees plantings; and installation of pedestrian-scale lighting, street furniture, special paving, marked crosswalks and ramps, pedestrian signals, sidewalk planter boxes, raised crosswalks, and bulb outs.

OS-1 Joseph Conrad Square. Joseph Conrad Square would be improved with a children’s play area, seating, and landscaping. The project would also convert the final block of Columbus Avenue to a pedestrian plaza. Stormwater control measures and permeable paving would be used to convert this street from a hardscape to a landscape.

OS-3 Columbus Avenue, Leavenworth Street, and North Point Street Intersection. This intersection improvement would reduce the scale of the intersection would close the short segment of Leavenworth Street between North Point Street and Columbus Avenue to create a public plaza. There would be extended bulb-outs, pedestrian-scale lighting, stormwater control measures, street trees, pedestrian signals, flexible use of the parking lane, crosswalks, and ramps. Recommended improvements would include raised crosswalk across Leavenworth Street, high-visibility crosswalks across all intersections, parking lane planters and sidewalk planter boxes.

Based upon a field survey conducted by Planning Department qualified staff,⁵⁰ there are no individual historic buildings or structures (known or potential) located within the Plan Area or public right-of-ways that are affected by the FWPRP. Furthermore, the public right-of-ways that are affected by the FWPRP do not appear to contain any existing physical elements that relate to adjacent individual historic buildings (known or potential). Most individual historic resources that are located adjacent to public right-of-ways are not materially connected in important ways by design, function, and/or historical association to those public right-of-ways. Moreover, individual historic resources that are located adjacent to public right-of-ways, and that may relate to those public right-of-ways by design, function, and/or historical association, are unlikely to be affected significantly by alterations to the public right-of-way in the Plan Area. This is because public right-of-way features are typically subordinate in importance to the primary features of adjacent historic resources that convey historic significance. Therefore, implementation of the FWPRP would have a less-than-significant effect on individual historic buildings, and would not require implementation of mitigation measures.

Historic Street Trees. The Fisherman’s Wharf public right-of-ways contain street trees that were planted during its history to ornament the area’s streetscapes. In some cases, trees may be considered to be parts of historic landscapes, contributing to historic districts, and/or individually

⁵⁰ Information provided by Shelley Caltagirone, Planner, City of San Francisco Planning Department. March 2011.
significant historic resources. Therefore, streetscape improvements related to the planting or removing of street trees or other plant material could result in potential impacts to historic trees. The FWPRP SI-1 Jefferson Streetscape Improvement project proposes tree replacement along Jefferson Street. According to the Planning Department’s records, there are no landmarked trees located along Jefferson Street. Furthermore, all street removal/planting would be reviewed by the Department of Public Works for potential impacts to significant street trees. Thus, impacts of site-specific streetscape improvement and open space improvement projects to historic street trees would be reduced to less-than-significant levels.

Historic Cultural Markers and Monuments.
Fisherman’s Wharf public right-of-ways contains historic markers and monuments of cultural importance, which denote the occurrence of significant events, the existence of memorable people, and cultural perspectives that are intertwined with San Francisco’s historical development. In some cases, monuments and markers may be found to be parts of historic landscapes, contributing properties to historic districts, and/or individually significant historic resources. The FWPRP projects propose no alteration to existing markers or monuments within the Plan Area; therefore, the FWPRP projects would have less-than-significant effect on historic markers and monuments, and would not require implementation of mitigation measures for such.

Historic Light Standards, Utility Poles, Signage, and Street Furniture. The Fisherman’s Wharf public right-of-ways contain installations of lights, utilities, signage, and street furniture, such as benches, transit shelters, and telephone enclosures that were installed during various periods of streetscape development. In some cases, these features may be found to be parts of historic landscapes, contributing properties to historic districts, and/or individually significant historic resources. Within the FWPRP Area there is one identified historic resource of this type – the Van Ness Avenue Trolley Poles/Light Standards. These trolley poles/light standards run from Market Street to North Point Street on the edge of the eastern and western sidewalks of Van Ness Avenue. The poles were installed in 1914-1915 and appear to be eligible for listing on the California Register under Criteria A (Events) and C (Design) for their association with the 1915 Panama-Pacific International Exposition, the City Beautiful Movement, and for possessing high artistic quality. The FWPRP projects propose no alteration to the Van Ness Avenue Trolley Poles/Light Standards; therefore, the FWPRP projects would have less-than-significant effect on historic light standards, utility poles, signage, and street furniture, and would not require implementation of mitigation measures for such.

Historic Street Paving, Sidewalk Paving, and Curbing Materials
The Fisherman’s Wharf public right-of-ways contain paving and curbing materials that were installed during various periods of streetscape development. In some cases, these materials may be found to be parts of historic landscapes, contributing properties to historic districts, and/or individually significant historic resources. No historically significant paving and curbing materials have been identified within the Plan Area; therefore, the FWPRP projects would have less-than-significant effect on these features and would not require implementation of mitigation measures for such.
Summary
While FWPRP-proposed improvements to public right-of-ways of the Fisherman’s Wharf area would not result in the construction, alteration, or demolition of large-scale structures, they would result in activities including, but not limited to, modifying sidewalk and street grades and widths, changing curb alignments, planting/removing street trees or other plant material, introducing new street lighting and other street furniture, and/or modifying alignments. Of the many known and potential historic resources that are located within the area, the vast majority would not be potentially affected by FWPRP projects. Very few individual historic resources are actually located within (or partially within) public right-of-ways in the Plan Area; and most individual historic resources that are located adjacent to public right-of-ways are not materially connected in important ways by design, function, and/or historical association to those public right-of-ways. Moreover, individual historic resources that are located adjacent to public right-of-ways, and that may relate to those public right-of-ways by design, function, and/or historical association, are unlikely to be affected significantly by alterations to the public right-of-way in the Plan Area. This is because public right-of-way features are typically subordinate in importance to the primary features of adjacent historic resources that convey historic significance.

It is recognized that the streetscapes of the FWPRP Area, including those in and around existing historic resources, have undergone various improvements and modernization at different times during the area’s development, without apparent widespread impairment to the overall historic character of the area. The majority of FWPRP projects have no potential or minimal potential to affect historic resources, based upon analysis of project activities in relation to existing conditions. In particular, FWPRP proposed improvements to existing modernized public right-of-ways (i.e. those that currently contain no distinctive historic streetscape materials) would not significantly impact individual historic buildings and/or historic districts, wherever they may be located in the Plan Area (including public right-of-ways located adjacent to individual historic resources and/or within historic districts in the Plan Area). Other FWPRP projects could have potential to affect historic resources. In particular, FWPRP proposed improvements to existing public right-of-ways that contain known or potential historic resources. As discussed above, implementation of Mitigation Measures M-CP-1 and M-CP-1a would reduce the potential impacts of FWPRP projects to Plan Area historic resources (known and potential) to less-than-significant levels.

ARCHEOLOGICAL RESOURCES

Regulatory Context:
CEQA considers archaeological resources as an intrinsic part of the physical environment and, thus, requires for any project that the potential of the project to adversely affect archaeological resources be analyzed (CEQA Sect. 21083.2). For a project that may have an adverse effect on a significant archeological resource, CEQA requires preparation of an environmental impact report (CEQA and Guidelines. Sect. 21083.2, Sect. 15065). CEQA recognizes two different categories of significant archeological resources: “unique” archeological resource (CEQA Sect. 21083.2) and an archeological resource that qualifies as a “historical resource” under CEQA (CEQA and Guidelines. 21084.1, 15064.5).
Significance of archeological resources

An archeological resource can be significant as both or either a “unique” archeological resource and as an “historical resource” but the process by which the resource is identified, under CEQA, as either one or the other is distinct (CEQA and Guidelines 21083.2(g) and 15064.5(a)(2)).

An archeological resource is an “historical resource” under CEQA if the resource is:

1) listed on or determined eligible for listing on the CRHR (CEQA Guidelines Sect. 15064.5). This includes National Register-listed or –eligible archeological properties.

2) listed in a “local register of historical resources” 51

3) listed in a “historical resource survey”. (CEQA Guidelines Sect. 15064.5(a)(2))

Generally, an archeological resource is determined to be an “historical resource” due to its eligibility for listing to the CRHR/NRHP because of the potential scientific value of the resource, that is, “has yielded, or may be likely to yield, information important in prehistory or history” (CEQA and Guidelines Sect. 15064.5 (a)(3)). An archeological resource may be CRHR-eligible under other Evaluation Criteria, such as Criterion 1, association with events that have made a significant contribution to the broad patterns of history; Criterion 2, association with the lives of historically important persons; or Criterion 3, association with the distinctive characteristics of a type, period, region, or method of construction. Appropriate treatment for archeological properties that are CRHR-eligible under Criteria other than Criterion 4 may be different than that for a resource that is significant exclusively for its scientific value.

Failure of an archeological resource to be listed in any of these historical inventories, is not sufficient to conclude that the archeological resource is not an “historical resource”. When the lead agency believes there may be grounds for a determination that an archeological resource is a “historical resource”, then the lead agency should evaluate the resource for eligibility for listing to the CRHR (CEQA Guidelines Sect. 15064.5(a)(4)).

A “unique archeological resource” is a category of archeological resources created by the CEQA statutes (CEQA Guidelines Sect. 21083.2(g)). An archeological resource is a unique archeological resource if it meets any of one of three criteria:

1) Contains information needed to answer important scientific research questions and that there is a demonstrable public interest in that information;

2) Has a special and particular quality such as being the oldest of its type or the best available example of its type;

3) Is directly associated with a scientifically recognized important prehistoric or historic event or person.

Under CEQA, evaluation of an archeological resource as an “historical resource” is privileged over the evaluation of the resource as a “unique archaeological resource”, in that, CEQA requires that “when a project will impact an archaeological site, a lead agency shall first determine whether the site is an historical resource” (CEQA Sect. 15064.5 (c)(1)).

51 A “local register of historical resources” is a list of historical or archeological properties officially adopted by ordinance or resolution by a local government. (Public Resources Code 5020.1 (k).)
Evaluation of an archaeological resource as scientifically significant

In requiring that a potentially affected archeological resource be evaluated as an historical resource, that is as an archeological site of sufficient scientific value to be CRHR-eligible, CEQA presupposes that the published guidance of the California Office of Historic Preservation (OHP) for CEQA providers is to serve as the methodological standard by which the scientific, and thus, the CRHR-eligibility, of an archeological resource is to be evaluated. As guidance for the evaluation of the scientific value of an archeological resource, the OHP has issued two guidelines: Archaeological Resource Management Reports (1989) and the Guidelines for Archaeological Research Designs (1991).

Integrity of archeological resource

Integrity is an essential criterion in determining if a potential resource, including an archeological resource, is an historical resource. In terms of CEQA “integrity” can, in part, be expressed in the requirement that an historical resource must retain “the physical characteristics that convey its historical significance” (CEQA § 15064.5 (b)).

For an archeological resource that is evaluated for CRHR-eligibility under Evaluation Criterion 4, “has yielded or may be likely to yield information important to prehistory or history”, integrity is conceptually different than how it is usually applied to the built environment. For an historic building, possessing integrity means that the building retains the defining characteristics from the period of significance of the building. In archeology, an archeological deposit or feature may have undergone substantial physical change from the time of its deposition but it may yet have sufficient integrity to qualify as a historical resource. The integrity test for an archeological resource is whether the resource can yield sufficient data (in type, quantity, quality, diagnosticity) to address significant research questions. Thus, in archeology “integrity” is often closely associated with the development of a research design that identifies the types of physical characteristics (“data needs”) that must be present in the archeological resource and its physical context to adequately address research questions appropriate to the archeological resource.

Significant adverse effect on an archeological resource

The determination of whether an effect on an archeological resource is significant depends on the effect of the project on those characteristics of the archeological resource that make the archeological resource significant. For an archeological resource that is an historical resource because of its prehistoric or historical information value, that is, its scientific data, a significant effect is impairment of the potential information value of the resource.

The depositional context of an archeological resource, especially soils stratigraphy can be informationally important to the resource in terms of datation and reconstructing characteristics of the resource at time of deposition and interpreting the impacts of later deposition events on the resource. Thus, for an archeological resource eligible to the CRHR under Criterion 4, a significant adverse effect to its significance may not be limited to impacts on the artifactual material but may include effects on the soils matrix in which the artifactual matrix is situated.

Mitigation of adverse effect to an archeological resource
Preservation in place is the preferred treatment of an archeological resource (CEQA and Guidelines Sect. 21083.2(b); 15126.4 (b)(3)(a)). When preservation in place of an archeological resource is not feasible, data recovery, in accord with a data recovery plan prepared and adopted by the lead agency prior to any soils disturbance, is the appropriate mitigation (CEQA 15126.4 (b)(3)(C)). In addition to data recovery, under CEQA, the mitigation of effects to an archeological resource that is significant for its scientific value, requires curation of the recovered scientifically significant data in an appropriate curation facility (CEQA 15126.4(b)(3)(C), that is a curation facility compliant with the Guidelines for the Curation of Archaeological Collections (California Office of Historic Preservation. 1993). Final studies reporting the interpretation, results, and analysis of data recovered from the archeological site are to be deposited in the California Historical Resources Regional Information Center (CEQA Guidelines 15126.4(b)(3)(C).

Effects to human remains

Under State law, human remains and associated burial items may be significant resources in two ways: they may be significant to descendent communities for patrimonial, cultural, lineage, and religious reasons and human remains may also be important to the scientific community, such as prehistorians, epidemiologists, and physical anthropologists. The specific stake of some descendent groups in ancestral burials is a matter of law for some groups, such as Native Americans (CEQA Guidelines 15064.5 (d), Public Resources Code Sect. 5097.98). In other cases, the concerns of the associated descendent group regarding appropriate treatment and disposition of discovered human burials may become known only through outreach. Beliefs concerning appropriate treatment, study, and disposition of human remains and associated burial items may be inconsistent and even conflictual between descendent and scientific communities. CEQA and other State regulations concerning Native American human remains provide the following procedural requirements to assist in avoiding potential adverse effects to human remains within the contexts of their value to both descendents communities and the scientific community:

- When an initial study identifies the existence or probable likelihood that a project would impact Native American human remains, the lead agency is to contact and work with the appropriate Native American representatives identified through the Native American Heritage Commission (NAHC) to develop an agreement for the treatment and disposal of the human remains and any associated burial items (CEQA Guidelines 15064.5 (d), Public Resources Code Sect. 5097.98)

- If human remains are accidentally discovered, the county coroner must be contacted. If the county coroner determines that the human remains are Native American, the coroner must contact the NAHC within 24 hours. The NAHC must identify the most likely descendant (MLD) to provide for the opportunity to make recommendations for the treatment and disposal of the human remains and associated burial items. If the MLD fails to make recommendations within 24 hours of notification or the project applicant rejects the recommendations of the MLD, the Native American human remains and associated burial items must be reburied in a location not subject to future disturbance within the project site (Public Resources Code Sect. 5097.98).
• If potentially affected human remains/burial may have scientific significance, whether or not having significance to Native Americans or other descendent communities, then under CEQA, the appropriate mitigation of effect may require the recovery of the scientific information of the remains/burial through identification, evaluation, data recovery, analysis, and interpretation (CEQA Guidelines 15064.5(c)(2)).

Prior Archeological Research Within FWPRP Area:

There are only three documented archeological sites within the FWPRP area, CA-SFR-23, CA-SFR-163H and an unassociated historical archeological deposit recovered in 1949. As noted above, SFR-23 is a prehistoric midden deposit whose documentation is based on Alexander Taylor’s description of the site in his series of articles on California Native Americans. The SFR-163H site consists of the fragmentary remains of Meiggs’ Wharf (1852-1881) that were exposed and documented in 2005 in conjunction with the development of a parcel on Bay Street. Meiggs’ pier, constructed to accommodate lumber schooners, was the longest wharf in the City. The feature consisted of redwood timbers, a crosspiece, and a wooden pile. A vertical ferrous cylinder was conjectured to be a part of a crane or elevator system for loading small watercraft. The archeological remains were determined not to be CRHR-eligible. The 1949 historical archeological deposit was recovered in excavations for the sewage disposal plant at the terminus of Bay Street. Information regarding the deposit is limited to the inventory record which describes a deposit of bottles, porcelain and ceramic ware tentatively falling within the period 1860-1900. A large portion of the assemblage was pre-1900 Chinese stoneware and porcelain ceramic pieces. Although little professional archeological field work has been done within the FWPRP area, the Plan area and portions of the Plan area have been the subject of study in a number of archeological and historical overviews.

Expected Archeological Resources:

Based on the historic context and previous archeological research the following archeological resources are expected to be or potentially to be present within the Plan area.

Prehistory

• Midden deposits
• Human burials

54 California Archaeological Survey, Phoebe A. Hearst Museum of Anthropology, University of California, Berkeley. Archaeological Field Specimen Inventory Record 59-94.
• Food procurement/processing stations

Gold Rush Period (1852-1855)

• Meiggs’ Wharf (1852-1880s?)
• Shipwreck remains (the *Tonquin*, 1849)

Industrial district (1860s – 1890s)

• *Pioneer Woolen Mill* (1862-1893)
• *Selby Smelting and Lead Works* (1864-1885)
• *Stauffer Chemical Works*
• *California Wire Works*
• Chinese industrial workers housing
• Domestic deposits associated with discrete households

Stations balnéaires (1860s – 1890s)

• Various swimming and bathhouses, natatoriums

Industrial Domestication (1890 – 1906)

• *Stauffer Chemical Works*
• *C.C. Burr & Co. Spice Mill*
• *Leduc Tule Improvement Co.*

Potential Effects of the Proposed Project to Archeological Resources:

In general, any archeological deposits that may be present within the FWPRP area would be below or within the basal depths of historic fill on or within former prehistoric or historical living surfaces (developed/developing soils/paleosols). Since more than three-fourths of the Plan area was submerged beneath San Francisco Bay until the late 19th or early 20th century, the majority of the archeological resources expected to be present within the Plan area would lie below historic fill deposits. Only two activities associated with project-specific components of the FWPRP are expected to result in soils disturbance at a depth in areas determined to be archeological sensitive: 1) installation of new stormwater sewers and catch basins and 2) installation of new traffic signals with a mast arm. Excavations required by these two activities have the potential to disturb soils to a depth of ten feet below existing grade. Installations of new stormwaters or of new traffic signals with a mast arm within archeological sensitive areas within the following project improvement areas have the potential to adversely affect CRHR-eligible archeological resources:
Impact CP-2: The proposed project could result in a potential adverse effect on documented or currently undocumented and unforeseeable archeological resources. (Less than Significant with Mitigation)

Any disturbance of existing soils resulting from the project in excess of five feet below existing grade such as stormwater control measures, or installation of traffic signals in conjunction with the following Improvement projects may result in a potential adverse effect or either documented, expected, or currently undocumented and unforeseeable, archeological resources:

- SI-2. Beach Street (between The Embarcadero and Polk Street)
- SI-3. North Point (between Polk Street & The Embarcadero)
- BI-5. Hyde Street (between Beach Street and Bay Street)
- SI-6. Hyde Street (between Jefferson and Beach Street)
- SI-9. Bay Street (between The Embarcadero and Polk Street)

Implementation of mitigation measures **CP-2 – Archeological Monitoring** presented below and in Section F, Mitigation Measures, p.165, would reduce potential project effects to documented or expected archeological resources to a *less-than-significant level*.

CP-3 - Accidental Discovery of Archeological Resource, presented below and in Section F, Mitigation Measures, p.168, would reduce potential project effects to currently undocumented and unforeseeable archeological resources to a *less-than-significant level*.

Mitigation Measure CP-2 – Archeological Monitoring:
Based on the reasonable potential that archeological resources may be present within the project site, the following measures shall be undertaken to avoid any potentially significant adverse effect from the proposed project on buried or submerged historical resources. The project sponsor shall retain the services of an archaeological consultant from the pool of qualified archaeological consultants maintained by the Planning Department archaeologist. The archaeological consultant shall undertake an archeological monitoring program. All plans and
reports prepared by the consultant as specified herein shall be submitted first and directly to the ERO for review and comment, and shall be considered draft reports subject to revision until final approval by the ERO. Archeological monitoring and/or data recovery programs required by this measure could suspend construction of the project for up to a maximum of four weeks. At the direction of the ERO, the suspension of construction can be extended beyond four weeks only if such a suspension is the only feasible means to reduce to a less than significant level potential effects on a significant archeological resource as defined in CEQA Guidelines Sect. 15064.5 (a)(c).

Archeological monitoring plan (AMP). The archeological monitoring program shall minimally include the following provisions:

- The archeological consultant, project sponsor, and ERO shall meet and consult on the scope of the AMP reasonably prior to any project-related soils disturbing activities commencing. The ERO in consultation with the project archeologist shall determine what project activities shall be archeologically monitored. In most cases, any soils disturbing activities, such as demolition, foundation removal, excavation, grading, utilities installation, foundation work, driving of piles (foundation, shoring, etc.), site remediation, etc., shall require archeological monitoring because of the potential risk these activities pose to archaeological resources and to their depositional context;
- The archeological consultant shall advise all project contractors to be on the alert for evidence of the presence of the expected resource(s), of how to identify the evidence of the expected resource(s), and of the appropriate protocol in the event of apparent discovery of an archeological resource;
- The archeological monitor(s) shall be present on the project site according to a schedule agreed upon by the archeological consultant and the ERO until the ERO has, in consultation with the archeological consultant, determined that project construction activities could have no effects on significant archeological deposits;
- The archeological monitor shall record and be authorized to collect soil samples and artifactual/eco-factual material as warranted for analysis;
- If an intact archeological deposit is encountered, all soils disturbing activities in the vicinity of the deposit shall cease. The archeological monitor shall be empowered to temporarily redirect demolition/excavation/pile driving/construction crews and heavy equipment until the deposit is evaluated. If in the case of pile driving activity (foundation, shoring, etc.), the archeological monitor has cause to believe that the pile driving activity may affect an archeological resource, the pile driving activity shall be terminated until an appropriate evaluation of the resource has been made in consultation with the ERO. The archeological consultant shall immediately notify the ERO of the encountered archeological deposit. The archeological consultant shall, after making a reasonable effort to assess the identity, integrity, and significance of the encountered archeological deposit, present the findings of this assessment to the ERO.

If the ERO in consultation with the archeological consultant determines that a significant archeological resource is present and that the resource could be adversely affected by the proposed project, at the discretion of the project sponsor either:

A) The proposed project shall be re-designed so as to avoid any adverse effect on the significant archeological resource; or
B) An archeological data recovery program shall be implemented, unless the ERO determines that the archeological resource is of greater interpretive than research significance and that interpretive use of the resource is feasible.

If an archeological data recovery program is required by the ERO, the archeological data recovery program shall be conducted in accord with an archeological data recovery plan (ADRP). The project archeological consultant, project sponsor, and ERO shall meet and consult on the scope of the ADRP. The archeological consultant shall prepare a draft ADRP that shall be submitted to the ERO for review and approval. The ADRP shall identify how the proposed data recovery program will preserve the significant information the archeological resource is expected to contain. That is, the ADRP will identify what scientific/historical research questions are applicable to the expected resource, what data classes the resource is expected to possess, and how the expected data classes would address the applicable research questions. Data recovery, in general, should be limited to the portions of the historical property that could be adversely affected by the proposed project. Destructive data recovery methods shall not be applied to portions of the archeological resources if nondestructive methods are practical.

The scope of the ADRP shall include the following elements:

- **Field Methods and Procedures.** Descriptions of proposed field strategies, procedures, and operations.
- **Cataloguing and Laboratory Analysis.** Description of selected cataloguing system and artifact analysis procedures.
- **Discard and Deaccession Policy.** Description of and rationale for field and post-field discard and deaccession policies.
- **Interpretive Program.** Consideration of an on-site/off-site public interpretive program during the course of the archeological data recovery program.
- **Security Measures.** Recommended security measures to protect the archeological resource from vandalism, looting, and non-intentionally damaging activities.
- **Final Report.** Description of proposed report format and distribution of results.
- **Curation.** Description of the procedures and recommendations for the curation of any recovered data having potential research value, identification of appropriate curation facilities, and a summary of the accession policies of the curation facilities.

Final Archeological Resources Report. The archeological consultant shall submit a Draft Final Archeological Resources Report (FARR) to the ERO that evaluates the historical significance of any discovered archeological resource and describes the archeological and historical research methods employed in the archeological testing/monitoring/data recovery program(s) undertaken. Information that may put at risk any archeological resource shall be provided in a separate removable insert within the draft final report.

Copies of the Draft FARR shall be sent to the ERO for review and approval. Once approved by the ERO copies of the FARR shall be distributed as follows: California Archaeological Site Survey Northwest Information Center (NWIC) shall receive one (1) copy and the ERO shall receive a copy of the transmittal of the FARR to the NWIC. The Major Environmental Analysis division of the Planning Department shall receive three copies of the FARR along with copies of any formal site recordation forms (CA DPR 523 series) and/or documentation for nomination to the National...
Register of Historic Places/California Register of Historical Resources. In instances of high public interest or interpretive value, the ERO may require a different final report content, format, and distribution than that presented above.

Mitigation Measure CP-3 - Accidental Discovery of Archeological Resource:

The following mitigation measure is required to avoid any potential adverse effect from the proposed project on accidentally discovered buried or submerged historical resources as defined in CEQA Guidelines Section 15064.5(a)(c). The project sponsor shall distribute the Planning Department archeological resource “ALERT” sheet to the project prime contractor; to any project subcontractor (including demolition, excavation, grading, foundation, pile driving, etc. firms); or utilities firm involved in soils disturbing activities within the project site. Prior to any soils disturbing activities being undertaken each contractor is responsible for ensuring that the “ALERT” sheet is circulated to all field personnel including, machine operators, field crew, pile drivers, supervisory personnel, etc. The project sponsor shall provide the Environmental Review Officer (ERO) with a signed affidavit from the responsible parties (prime contractor, subcontractor(s), and utilities firm) to the ERO confirming that all field personnel have received copies of the Alert Sheet.

Should any indication of an archeological resource be encountered during any soils disturbing activity of the project, the project Head Foreman and/or project sponsor shall immediately notify the ERO and shall immediately suspend any soils disturbing activities in the vicinity of the discovery until the ERO has determined what additional measures should be undertaken.

If the ERO determines that an archeological resource may be present within the project site, the project sponsor shall retain the services of an archeological consultant from the pool of qualified archeological consultants maintained by the Planning Department archaeologist. The archeological consultant shall advise the ERO as to whether the discovery is an archeological resource, retains sufficient integrity, and is of potential scientific/historical/cultural significance. If an archeological resource is present, the archeological consultant shall identify and evaluate the archeological resource. The archeological consultant shall make a recommendation as to what action, if any, is warranted. Based on this information, the ERO may require, if warranted, specific additional measures to be implemented by the project sponsor.

Measures might include: preservation in situ of the archeological resource; an archeological monitoring program; or an archeological testing program. If an archeological monitoring program or archeological testing program is required, it shall be consistent with the Major Environmental Analysis (MEA) division guidelines for such programs. The ERO may also require that the project sponsor immediately implement a site security program if the archeological resource is at risk from vandalism, looting, or other damaging actions.

The project archeological consultant shall submit a Final Archeological Resources Report (FARR) to the ERO that evaluates the historical significance of any discovered archeological resource and describing the archeological and historical research methods employed in the archeological monitoring/data recovery program(s) undertaken. Information that may put at risk any archeological resource shall be provided in a separate removable insert within the final report.
Copies of the Draft FARR shall be sent to the ERO for review and approval. Once approved by the ERO, copies of the FARR shall be distributed as follows: California Archaeological Site Survey Northwest Information Center (NWIC) shall receive one (1) copy and the ERO shall receive a copy of the transmittal of the FARR to the NWIC. The Major Environmental Analysis division of the Planning Department shall receive three copies of the FARR along with copies of any formal site recordation forms (CA DPR 523 series) and/or documentation for nomination to the National Register of Historic Places/California Register of Historical Resources. In instances of high public interest or interpretive value, the ERO may require a different final report content, format, and distribution than that presented above.

Impact CP-3: The proposed project would result in damage to, or destruction of, as-yet unknown paleontological resources, should such remains exist beneath the project site. (Less than Significant with Mitigation)

Paleontological resources include fossilized remains or traces of animals, plants and invertebrates, including their imprints, from a previous geological period. Collecting localities and the geologic formations containing those localities are also considered paleontological resources; they represent a limited, nonrenewable resource and once destroyed they could not be replaced.

Paleontological resources are lithologically dependent; that is, deposition and preservation of paleontological resources are related to the lithologic unit in which they occur. If the rock types representing a deposition environment conducive to deposition and preservation of fossils are not favorable, fossils will not be present. Lithological units which may be fossiliferous, include sedimentary and volcanic formations. The Plan Area is thoroughly urbanized with concrete, asphalt, or buildings covering nearly the entire surface area. Geologic materials underlying the Plan Area alignment that would be disturbed by project grading and excavation consist of artificial fill. Construction would occur in relatively flat terrain along existing Plan Area streets, which are underlain primarily by artificial fill, and would involve minimal grading and excavations ranging from three- to ten feet deep. Due to low likelihood of encountering fossil containing beds during construction, any impacts on paleontological resources would be less than significant.

Impact CP-4: The proposed project would result in less than significant impacts to human remains. (Less than Significant)

Mitigation Measure M-CP-4 – Discovery of Human Remains:
The treatment of human remains and of associated or unassociated funerary objects discovered during any soils disturbing activity shall comply with applicable State and Federal Laws, including immediate notification of the Coroner of the City and County of San Francisco and in the event of the Coroner’s determination that the human remains are Native American remains, notification of the California State Native American Heritage Commission (NAHC) who shall appoint a Most Likely Descendant (MLD) (Pub. Res. Code Sec. 5097.98). The archeological consultant, project
sponser, and MLD shall make all reasonable efforts to develop an agreement for the treatment of, with appropriate dignity, human remains and associated or unassociated funerary objects (CEQA Guidelines. Sec. 15064.5(d)). The agreement should take into consideration the appropriate excavation, removal, recordation, analysis, curation, possession, and final disposition of the human remains and associated or unassociated funerary objects. The archeological consultant shall submit to the ERO for review and approval a treatment plan for Non-Native American human remains if such remains are encountered. Non-Native American human remains may have significant scientific value with respect to understanding past dietary, labor, recreational, and health-related practices and of 19th century pathologies and epidemiology.

Impact CP-5: The proposed project, in combination with past, present, and reasonably foreseeable future projects in the vicinity, would result in less-than-significant cumulative impacts to cultural resources. (Less than Significant)

The geographic context for cumulative cultural impacts is the Fisherman’s Wharf Neighborhood and its vicinity. Cumulative impacts occur when impacts that are significant or less than significant from a proposed project combine with similar impacts from other past, present, or reasonably foreseeable projects in a similar geographic area. The cumulative projects that have been and/or are expected to be developed in the Plan Area, can be found listed on page 52 above. Cumulative projects in the Plan Area are primarily zoning and streetscape plans, facility upgrades to host the 34th America’s Cup and transportation improvements.

The streetscapes of the FWPRP Plan Area, including those in and around existing historic resources, have undergone various improvements and modernization at different times during the area’s development, without apparent widespread impairment to the overall historic character of the area. Federal and state laws protect historic resources in most cases through project redesign. Implementation of historic resources **Mitigation Measures CPI-1 and CPI-1a**, will ensure that any potential project effect to historic resources would not contribute to a cumulative considerable adverse effect to historical resources.

Archeological resources are non-renewable members of a finite class. All adverse effects to archeological resources erode a dwindling cultural/scientific resource base. Federal and state laws protect archeological resources in most cases either through project redesign or requiring that the scientific data present within an archeological resource is archeologically recovered. Even so, it is not always feasible to protect these resources, particularly when preservation in place would frustrate implementation of project objectives. Implementation of Archeological **Mitigation Measure CP-1, CP-2, CP-3, and CP-4** will ensure the any potential Project effect to an archeological resource would not contribute to a cumulative considerable adverse effect to archeological resources.

Furthermore, it is anticipated that all future projects proposed in the Plan Area would be consistent with the adopted goals, policies and objectives of the governing area Plans, as well as, policies in the San Francisco General Plan, , design guidelines, planning codes and zoning maps (including development standards), and other applicable land use plans that are intended to reduce impacts related to cultural resources.
Topics:

TRANSPORTATION AND CIRCULATION — Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>b) Conflict with an applicable congestion management program, including but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels, obstructions to flight, or a change in location, that results in substantial safety risks?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>e) Result in inadequate emergency access?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
</tr>
</tbody>
</table>

Below is a list of significance criteria used by the San Francisco Planning Department to assess whether a proposed project would result in significant impacts to the transportation network. These criteria are organized by transportation mode to facilitate the transportation impact analysis; however, the transportation significance thresholds are essentially the same as the ones presented above in the checklist.

- The operational impact on signalized intersections is considered significant when project-related traffic causes the intersection level of service to deteriorate from LOS D or better to LOS E or F, or from LOS E to LOS F. [The operational impacts on unsignalized intersections are considered potentially significant if project-related traffic causes the level of service at the worst approach to deteriorate from LOS D or better to LOS E or F and Caltrans signal warrants would be met, or would cause Caltrans signal warrants to be met when the worst approach is already operating at LOS E or F.] The project may result in significant adverse impacts at intersections that operate at LOS E or F under existing conditions depending upon the magnitude of the project’s contribution to the worsening of the average delay per vehicle. In addition, the project would have a significant adverse impact if it would cause major traffic hazards or contribute considerably to cumulative traffic increases that would cause deterioration in levels of service to unacceptable levels.
- The project would have a significant effect on the environment if it would cause a substantial increase in transit demand that could not be accommodated by adjacent transit capacity, resulting in unacceptable levels of transit service; or cause a substantial increase in delays or operating costs such that significant adverse impacts in transit service levels could result. With the Muni and regional transit screenlines analyses, the project would have a significant effect on the transit provider if project-related transit trips would cause the capacity utilization standard to be exceeded during the PM peak hour.

- The project would have a significant effect on the environment if it would result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility to the site and adjoining areas.

- The project would have a significant effect on the environment if it would create potentially hazardous conditions for bicyclists or otherwise substantially interfere with bicycle accessibility to the site and adjoining areas.

- A project would have a significant effect on the environment if it would result in a loading demand during the peak hour of loading activities that could not be accommodated within proposed on-site loading facilities or within convenient on-street loading zones, and created potentially hazardous conditions or significant delays affecting traffic, transit, bicycles or pedestrians.

- The project would have a significant effect on the environment if it would result in inadequate emergency access.

- Construction-related impacts generally would not be considered significant due to their temporary and limited duration.

TRANSPORTATION SETTING

The Fisherman’s Wharf Public Realm Plan would implement streetscape improvements and modifications to circulation patterns within the Fisherman’s Wharf area of San Francisco. This section of the document sets forth a description of the existing transportation conditions in Fisherman’s Wharf and vicinity to provide a basis for assessing the potential impacts that these improvements could have on pedestrians, bicycles, transit, loading, emergency vehicle access, and traffic, as well as any potential transportation impacts related to construction of the proposed streetscape improvements. The report also provides a parking analysis for informational purposes.

Pedestrian Conditions

Major attractions are shown in Figure E.5.1 on pp. 94. Sidewalks and crosswalks are provided throughout the Plan Area. Sidewalks on both sides of Jefferson Street are about fifteen feet wide, although tables and chairs, street furniture, signs, street performers and vendors regularly obstruct portions of the sidewalk. During peak demand periods (generally 11 AM—7 PM), pedestrian volumes along Jefferson Street are relatively high, causing overcrowded conditions.
Many pedestrians were observed to walk in the street in order to avoid crowding on sidewalks and at corners. The crowding can present a significant challenge to pedestrians in wheelchairs, as well as pedestrians with strollers or wheeled luggage.

Crosswalks are striped at all intersections within the Plan Area, and all signalized intersections along The Embarcadero, Jefferson and Beach streets have pedestrian signal heads with countdown timers. Two signalized intersections (Jefferson/Mason and Jefferson/Jones) employ pedestrian “scramble” phases, where pedestrians do not proceed with adjacent vehicular traffic flow but instead are provided a separate phase, allowing pedestrians to cross the intersection diagonally. While this signal phasing technique is common at other San Francisco intersections with very high pedestrian volumes, field observations indicate that many pedestrians (primarily tourists) are unfamiliar with the concept, and instead cross against the pedestrian signal with adjacent vehicular traffic.

PURPOSELY LEFT BLANK SPACE
Figure E.5.1: Major Destinations

Source: San Francisco Planning Department, 2011.
Bicycle Conditions
Bicycle facilities within the Plan Area, as well as bicycle stores/rentals, are shown in Figure 5.1.2 on pp. 96. Relatively high volumes of bicycles were observed throughout the Plan Area, particularly tourists who rent bicycles from multiple shops within the Plan Area.

Along Jefferson Street, westbound bicycles must share the roadway with cars, while eastbound bicycles must ride illegally on either the sidewalk or in the roadway against traffic. On Beach Street, bicycles in both directions must share the lane with cars, which is especially challenging in the eastbound direction due to the streetcar tracks and cobblestone treatment, requiring eastbound bicycles to ride in the middle of the roadway. The only street in the Plan Area that has a dedicated bicycle facility is North Point Street, which recently had bike lanes installed in both directions.

Despite the high volume of bicycles and bike rental locations, bicycle parking facilities are generally not provided within the Plan Area. Many bicycles were observed locked to poles within the sidewalk, reducing sidewalk width and exacerbating overcrowded conditions.

PURPOSELY LEFT BLANK SPACE
Figure E.5.2: Bicycle Facilities

Source: San Francisco Planning Department, 2011.
Transit Conditions
Transit service to the area is provided by the San Francisco Municipal Railway and Golden Gate Transit, as shown in Figure E.5.3 on pp. 98.

In the Plan Area, the F Market and Wharves streetcar proceeds westbound on the Embarcadero and Jefferson Street, terminates on Jones Street, and returns eastbound on Beach Street and the Embarcadero, with stops approximately every two blocks. The 8X travels on Bay and North Point streets between Kearny and Powell streets, and terminates at Kearny/North Point. The 19 Polk circulates along Polk Street and terminates at Beach/Polk. The 30 Stockton travels through the Plan Area along Columbus Avenue and North Point Street. The 39 Coit travels along Powell Street and terminates at North Point/Stockton. The 47 Van Ness circulates on North Point Street between Van Ness Avenue and Powell Street, and terminates at Powell/Beach. The 49 Van Ness Mission travels along Van Ness Avenue and terminates at North Point/Van Ness. The Powell/Hyde Cable Car terminates at Hyde/Beach, while the Powell/Mason Cable Car terminates at Taylor/Bay.

The F streetcar regularly experiences overcrowded conditions during peak periods, as do both cable car lines, primarily due to their popularity with tourists. The other Muni routes within the Plan Area generally do not experience overcrowding, because the Plan Area either encompasses their terminal or their off-peak loading segments.

Golden Gate Transit runs the majority of its weekday commuter bus service between Marin County and the Financial District through the Plan Area. In the weekday AM period, buses operate eastbound/southbound toward the Financial District via Van Ness Avenue, North Point Street, Polk Street, Beach Street, The Embarcadero and Battery Street. After dropping off passengers, the buses lay over during the midday at a bus yard at 8th and Harrison streets. In the weekday PM period, buses leave the yard, pick up passengers in the Financial District, and then operate northbound/westbound via Sansome Street, The Embarcadero, North Point Street and Van Ness Avenue. Golden Gate Transit buses do not operate in the Plan Area outside of the weekday AM and PM peak periods, and do not operate in the Plan Area on weekends.
Figure E.5.3: Transit Routes

Source: San Francisco Planning Department, 2011.
Loading Conditions
Designated loading areas in Fisherman’s Wharf include both general passenger loading and tour bus passenger loading zones (white curb zones), as well as freight loading spaces for trucks (yellow curbs).

Passenger Loading Conditions
Many types of passenger conveyance operate in Fisherman’s Wharf, including taxis, pedicabs, and horse drawn carriages. However, tour buses (including themed tour buses such as Duck tours) are the predominant form of for-hire passenger transportation within Fisherman’s Wharf.

There are nineteen designated tour bus loading zones in Fisherman’s Wharf, as shown in Figure E.5.4a on pp. 100. Hours of operation for these loading zones vary by location, but generally are in effect during the daytime and have time limits of ten to twenty minutes. Some freight loading spaces (described below) convert into passenger loading zones during peak passenger loading periods (generally after 11:00 AM).

There are also five non-tour bus passenger loading zones on Jefferson Street: four are on the south side, generally midblock on each block between Mason and Hyde streets, and one on the north side at the nearside corner of Hyde Street.

Metered tour bus parking zones were recently installed on North Point and Jones streets, which currently cost nine dollars per hour and have a time limit of four hours. Few tour buses were observed utilizing the metered spaces, instead using the free zones with time limits of ten to twenty minutes.

Tour buses are generally permitted to circulate on any street within the Plan Area, although adjacent streets in the Russian Hill and North Beach neighborhoods have restrictions prohibiting tour buses with eight or more passengers.

Occasionally buses illegally double park, blocking traffic, at The Embarcadero between Stockton and Powell Streets.

PURPOSELY LEFT BLANK SPACE
Figure E.5.4a: Tour Bus Loading Zones

Freight Loading Conditions

While some buildings have off-street loading docks, the majority of freight loading in the Plan Area is accommodated by on-street metered loading spaces. As shown in Figure E.5.4b on pp. 102, freight spaces tend to be concentrated in clusters, primarily along Leavenworth, Beach and North Point streets. Commercial meter prices are three dollars ($3.00) per hour with a time limit of 30 minutes.

Freight loading activity was observed to occur primarily during the weekday AM period, consistent with general loading activity citywide. Businesses in Fisherman’s Wharf strive to complete all of their loading needs by 11:00 AM, before heavy pedestrian and traffic volumes make loading access difficult.58

Days and hours of operation of commercial loading zones with the Plan Area have been established with a variety of operating schedules, in order to provide sufficient on-street loading space when needed while converting to general metered parking at times when loading demand is reduced.

All loading zones begin operation at 7:00 AM, but end operation at different times. Most operate only to 11:00 AM or 1:00 PM, while others continue until 7:00 PM. Most spaces are in operation Monday through Friday, while others operate seven days per week.

On-street loading spaces are provided at several locations on Jefferson Street. Even during loading zone hours of operation, private vehicles were observed to regularly park or stand within these zones. This frequently results in trucks double-parking within the roadway. SFMTA has reported that double-parked trucks along Jefferson Street are a frequent complaint.59

58 Rachel Moody, Planning Department, “Jefferson Street Loading Field Operations.” April 11, 2011. Memorandum is included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

59 Jerry Robbins, SFMTA. Personal communication regarding the Fisherman’s Wharf Public Realm Plan. March 17, 2011.
Figure E.5.4b: Freight Loading Zones

Source: San Francisco Planning Department, 2011.
Emergency Vehicle Access Conditions
The nearest fire station is Station #28 located at 1814 Stockton Street at Greenwich Street, with access to the Plan Area provided by Stockton Street. The nearest police station is Central Station at 786 Vallejo Street at Powell Street, with access to the Plan Area provided by Powell Street. The nearest hospital with emergency services is Saint Francis Hospital at 900 Hyde Street at Pine Street, with access to the hospital from the Plan Area provided by Pine Street.

The existing roadway network enables emergency vehicle response to all buildings in the Plan Area. Peak period traffic congestion on The Embarcadero (as described in Section 5.1.6) generally does not cause delay for emergency vehicles, which primarily arrive from and depart to the south of the Plan Area.

Traffic Conditions
Roadways within the Plan Area
Vehicular access within Fisherman’s Wharf is primarily accommodated on the east-west streets, which provide primary access to parking facilities and also connect to major roadways and freeways beyond the Plan Area. Streets within the Plan Area are summarized below.

The Embarcadero is a two-way northwest-southeast roadway with two travel lanes in each direction, with a center median with transit-only lanes for the F-Market & Wharves streetcar. There are striped Class II bicycle lanes in both directions south of North Point Street. The Embarcadero provides primary access to Fisherman’s Wharf from the downtown San Francisco, the Bay Bridge and freeways to the south.

Jefferson Street is a one-way westbound roadway, continuing west from the Embarcadero (at the intersection with Powell Street) to Hyde Street. In addition to two westbound traffic lanes, there is a transit-only lane for the westbound streetcar on its north side, and metered on-street parking on both sides of the street. The eastern four intersections (at Powell, Mason Taylor and Jones streets) are signalized, whereas the western two intersections (at Leavenworth and Hyde streets) are all-way STOP-controlled.

Beach Street is a two-way east-west roadway that extends from The Embarcadero to Polk Street. Beach Street provides one travel lane in the westbound direction and one travel lane plus a transit-only streetcar lane in the eastbound direction, and on-street parking on the north side of the street. The majority of off-street parking facilities in Fisherman’s Wharf are accessed from Beach Street. Beach Street is the primary eastbound vehicular route, forming a couplet with the westbound Jefferson Street.

North Point Street is a two-way east-west roadway with one travel lane in each direction between The Embarcadero and Van Ness Avenue. On-street parking is permitted on both sides of the street. There are striped Class II bicycle lanes in both directions. Similar to Beach Street, North Point Street provides access to off-street parking facilities, although the supply accessed from North Point Street is not as large as the supply accessed from Beach Street.

Bay Street runs between The Embarcadero and Fillmore Street and is a two-way east-west roadway with two travel lanes in each direction. On-street parking is permitted on both sides of
the street, except weekdays from 4-7 PM, when parking is prohibited on the north side of the street to create a third westbound travel lane. Bay Street functions primarily as an arterial street for through-traffic.

North-south streets within the Plan Area include **Kearny, Grant, Stockton, Powell, Mason, Taylor, Jones, Leavenworth, Hyde, Larkin and Polk streets**. Generally, these streets serve local circulation with one lane in each direction (except Hyde Street which is one-way southbound between Jefferson and Beach streets) and parking is permitted on both sides of the street. These streets connect to points south (except Grant and Taylor streets, which are disconnected south of Bay Street).

Traffic Operations

Figure E.5.6a on pp. 105 presents primary inbound traffic patterns in the Plan Area, while *Figure E.5.6b* on pp. 106 presents primary outbound traffic patterns. *Figure E.5.6c* on pp. 109 shows existing weekend peak hour traffic volumes, while *Figure E.5.6d* on pp. 110 shows existing weekday peak hour traffic volumes. The peak hour of traffic during the weekday is between 4:30 and 5:30 PM, while the peak hour of traffic during the weekend is generally between 4:00 and 5:00 PM. Traffic volumes were collected between August 17 and August 21, 2010, during sunny weather.

During non-peak periods, and also during peak weekday (commute) periods, traffic within the Plan Area is generally light and was observed to operate satisfactorily. Bay Street is the only street within the Plan Area that carries a substantial volume of commute traffic, as it provides access between the Financial District and the Golden Gate Bridge. North Point Street carries traffic accessing neighborhood retail and residential land uses, but generally is not a commuter traffic route.

During peak weekend periods (the primary visitor and tourist periods), congestion was observed, primarily during the late afternoon. Multiple observations on different weekends confirmed that this congestion is recurring, primarily on weekend days with pleasant weather. In the westbound direction of the Embarcadero, vehicle demand exceeds capacity at the intersection with Beach/Grant streets, resulting in a queue that spills back to the Kearny/North Point intersection (and occasionally further). In the eastbound direction of the Embarcadero, vehicle demand exceeds capacity at the intersection with Bay Street, resulting in a queue that spills back to the intersection with Beach/Grant streets (and occasionally further onto eastbound Beach and North Point streets).

PURPOSELY LEFT BLANK SPACE
Figure E.5.6a: Inbound Traffic Patterns

Source: San Francisco Planning Department, 2011.
Figure E.5.6b: Outbound Traffic Patterns

Source: San Francisco Planning Department, 2011.
On westbound North Point Street, congestion forms during peak weekend conditions at the westbound approach of the STOP-controlled intersection at Van Ness Avenue, which can create a queue stretching one or more blocks on North Point Street. While traffic volumes are moderate, delay may be more attributable to drivers searching for on-street parking. There is a parking lot within the median of Van Ness Avenue north of North Point Street that is visible from the intersection. Upon coming to a stop, many drivers were observed to look for a parking space within the lot, and only after concluding that there were none available, turned left. It appeared that this added dwell time at the STOP sign was the primary cause of delay at this intersection.

Beyond the congestion points described above, traffic operations within the Plan Area are generally satisfactory even during peak demand periods, although sporadic and temporary traffic delays are common. On Jefferson Street, traffic volumes are moderate and are accommodated within the two lanes of traffic, although high pedestrian volumes and frequent double-parking was observed to cause sporadic localized congestion, primarily at Jefferson/Taylor and Jefferson/Jones. Traffic flow elsewhere in the Plan Area on Beach and North Point Streets, as well as Bay Street, was observed to operate acceptably. Traffic along north-south streets also operates acceptably, except for sporadic congestion at Jefferson Street intersections, due to high pedestrian volumes and frequent double-parking.

Intersection Levels of Service
The operating characteristics of intersections are described by the concept of Level of Service (LOS). LOS is a qualitative description of a facility’s performance based on the average delay per vehicle, which is a function of traffic volumes, lane geometries, and (at signalized intersections) traffic signal timing. Intersection levels of service range from LOS A, which indicates free flow or excellent conditions with short delays, to LOS F, which indicates congested or overloaded conditions with extremely long delays. LOS A through D are considered acceptable, while LOS E and F conditions are unacceptable.

Eleven study intersections were selected in the Plan Area and are listed in Table E.5.1 on pp. 106. These intersections represent the “bottleneck” intersections of the Plan Area, based on their combinations of east-west and north-south traffic volumes. These intersections are also likely to experience changes in traffic volumes as a result of the FWPRP.

Traffic volumes were collected and LOS analyzed both for the existing peak weekday period (4:00 – 6:00 PM) and peak weekend period (2:00 – 5:00 PM). Table E.5.1 on pp. 106 lists the study intersections and existing peak hour LOS.60

PURPOSELY LEFT BLANK SPACE

60 Detailed traffic analysis files are available as part of Case File 2010.0256 at the Planning Department, located at: 1650 Mission Street, Suite 400, San Francisco, as part of, are included project file and
Table E.5.1
Existing Peak-hour intersection Level of Service

<table>
<thead>
<tr>
<th>Study Intersection</th>
<th>Weekend Peak Hour (seconds of delay (v/c ratio), LOS)</th>
<th>Weekday Peak Hour (seconds of delay, LOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Embarcadero/North Point/Kearny</td>
<td>> 80.0 (0.89), F</td>
<td>31.6, C</td>
</tr>
<tr>
<td>2. Embarcadero/Grant/Beach</td>
<td>> 80.0 (0.85), F</td>
<td>35.6, D</td>
</tr>
<tr>
<td>3. North Point/Powell</td>
<td>12.9, B</td>
<td>15.2, B</td>
</tr>
<tr>
<td>4. Beach/Powell</td>
<td>18.2, B</td>
<td>14.2, B</td>
</tr>
<tr>
<td>5. Embarcadero/Jefferson/Powell</td>
<td>32.8, C</td>
<td>26.5, C</td>
</tr>
<tr>
<td>6. North Point/Taylor</td>
<td>14.4, B</td>
<td>21.6, C</td>
</tr>
<tr>
<td>7. Beach/Taylor</td>
<td>15.9, B</td>
<td>13.6, B</td>
</tr>
<tr>
<td>9. North Point/Hyde</td>
<td>12.1, B</td>
<td>15.4, B</td>
</tr>
<tr>
<td>10. Beach/Hyde</td>
<td>25.9, B</td>
<td>16.6, B</td>
</tr>
<tr>
<td>11. Jefferson/Hyde (unsignalized)</td>
<td>9.7 (WB), A</td>
<td>8.6 (WB), A</td>
</tr>
</tbody>
</table>

LOS presented in average seconds of delay per vehicle. For signalized intersections, delay presented is the average of all vehicles at the intersection. For unsignalized Jefferson/Hyde intersection, delay presented is the worst approach of the intersection, followed by the approach direction (e.g., WB = westbound). Volume to capacity (v/c) for intersections operating at LOS F is presented. Unacceptable LOS and corresponding volume to capacity ratio is noted in **bold**. Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

Source: San Francisco Planning Department, 2011.

As shown in Table E.5.6, and discussed previously, two intersections along the Embarcadero currently operate at unacceptable LOS during the weekend peak period, while other intersections in the Plan Area generally operate acceptably. During the weekday peak period, traffic volumes are lower than during the weekend, and all study intersections operate acceptably.
Figure E.5.6c: Weekend Peak Hour Traffic Volumes

Source: San Francisco Planning Department, 2011.
Figure E.5.6d: Weekday Peak Hour Traffic Volumes

Source: San Francisco Planning Department, 2011.
Parking Conditions
Parking facilities within the Plan Area include both on-street and off-street spaces, although the majority of parking within the area is provided in centralized off-street parking garages.

On-street Parking
Within the Plan Area, there are 97 block-faces that permit general on-street parking, totaling approximately 1,040 on-street spaces. This excludes block-faces that are predominantly tour bus or freight loading zones, or where on-street parking is prohibited. The number of block-faces on each street includes:

- Eight on Jefferson Street, for approximately 80 spaces;
- Ten on Beach Street, for approximately 120 spaces;
- 18 on North Point Street, for approximately 215 parking spaces;
- 21 on Bay Street, for approximately 250 spaces (during the PM peak period, a third westbound lane is created west of Powell Street, which removes 8 block faces, for a total remaining supply of approximately 155 spaces);
- One on Grant Street, for approximately 10 parking spaces;
- Two on Stockton Street, for approximately 20 parking spaces;
- Three on Powell Street, for approximately 25 parking spaces;
- Five on Mason Street, for approximately 40 parking spaces;
- Five on Taylor Street, for approximately 40 parking spaces;
- Five on Jones Street, for approximately 40 parking spaces;
- Four on Leavenworth Street, for approximately 30 parking spaces;
- Four on Hyde Street, for approximately 30 parking spaces;
- Three on Larkin Street, one of which is 90° parking, for approximately 30 parking spaces;
- Four on Polk Street, for approximately 30 parking spaces; and
- Seven on Van Ness Avenue, two of which are 90° or angled parking, for approximately 80 parking spaces.

Of the 1,040 on-street spaces, there are approximately 600 metered on-street parking spaces within the Plan Area. These metered spaces have been included in the SFPark pilot program. This initiative adjusts the price, hours of operation, and time limits of on-street parking spaces, based on demand. Adjustments will occur as frequently as once a month. Regular adjustments to parking meter prices have not yet begun, but are anticipated to begin in Spring or Summer 2011.

Meter prices were observed to currently range from three to six dollars per hour, with lower prices from 7:00 PM to 11:00 PM. Higher priced spaces were located along and close to Jefferson Street, with lower prices along Beach and North Point streets and farther from Jefferson Street.

In the southwest corner of the Plan Area, generally the area south of Columbus Avenue and North Point Street, Residential Parking Permit (RPP) zone “A” has been established. Parking is limited to one to two hours, but residents can obtain a permit to park their vehicle for extended periods.
On-street parking occupancy generally varies throughout the Plan Area, depending on day of week and location. On Jefferson Street, parking occupancy was observed to be very high during the weekend peak period, with frequent double-parking. During the weekday peak period, parking occupancy is generally still high, although lower west of Leavenworth Street. It should be noted that on-street parking availability is expected to improve as parking prices are raised as part of the SFpark initiative.

On Beach and North Point streets, parking occupancy is lower than on Jefferson Street, with medium-to-high occupancy during the weekend peak period, and medium-to-low occupancy during the weekday peak period. On the north-south streets, parking occupancy is higher in the north and lower in the south.

Off-street Parking

Figure E.5.7 on pp. 113 shows the location and size of off-street parking facilities within the Plan Area, which includes approximately 6,500 off-street spaces. Most spaces are within centralized public parking facilities, although parking is also available within hotel, retail and residential parking facilities. Off-street parking was observed to range in price from six to eight dollars per hour, with all-day prices of $15 to $30.

The largest parking facility in the Plan Area is the Pier 39 garage, which has approximately 980 parking spaces. The entrance to the facility is from Beach Street, where a three-lane queuing area is provided to access three entrance gates (one of the entrance gates reverses into an exit gate during peak egress periods). Exit from the garage is onto eastbound The Embarcadero via three exit gates.

Some parking facilities are signed primarily as visitor parking, while other facilities serve both visitor parking as well as local retail, residential or hotel parking. In addition to the Pier 39 garage, major off-street parking facilities signed primarily for visitor parking include:

- **Anchorage Parking Garage**, 500 Beach Street at Taylor Street, 575 spaces;
- **Beach and Hyde Parking Garage**, 655 Beach Street at Columbus Avenue, 120 spaces;
- **Fisherman’s Wharf Parking Lot**, 100 Jefferson Street at Taylor Street, 250 spaces;
- **Ghirardelli Square South Parking Garage**, 925 North Point Street at Larkin Street, 150 spaces;
- **Ghirardelli Square North Parking Garage**, 975 Beach Street at Polk Street, 280 spaces;
- **Longshoreman’s Union Hall Parking Lot**, 400 North Point Street at Taylor Street, 210 spaces;
- **The Wharf Parking Garage**, 350 Beach Street at Mason Street, 240 spaces; and
- **Wharf Parking Inc Lot**, 450 Beach Street at Jones Street, 210 spaces.

Overall Parking

The Plan Area includes approximately 1,040 on-street parking spaces, and approximately 6,500 off-street parking spaces. This results in a total parking supply of approximately 7,540 parking spaces within the Plan Area.

61 Parking facility capacity obtained from SFMTA “Publicly Accessible Parking Spaces” data set, compiled December 2009.
Figure E.5.7: Off-street Parking Facilities

Source: San Francisco Planning Department, San Francisco Municipal Transportation Agency, 2011.
PROPOSED AREA PLAN POLICIES RELATED TO TRANSPORTATION

The Fisherman’s Wharf Public Realm Plan’s policies are intended to be used as guidelines to help decide which ultimate actions would improve the condition of the streets, buildings and open spaces in Fisherman’s Wharf. The following policies proposed in the Fisherman’s Wharf Public Realm Plan are relevant to the topic of Transportation and Circulation:

1. Multi-Modal

 Policy 1.1 Emphasize pedestrian improvements on important commercial and transit-streets in the Plan Area, including Jefferson Street, Beach Street, North Point, Hyde Street and Larkin Street.

 Policy 1.2 Connect existing and new open spaces in the Plan Area with a network of living streets 62 that include streetscape improvements and pocket parks.

 Policy 1.3 Create a network of pedestrian-focused green alleyways with raised crosswalks 64 and/or other plaza treatments at street entrances in the Plan Area.

 Policy 1.4 Expand the existing network of bicycle facilities in the Plan Area, consistent with the Bicycle Plan, 65 to North Point Street and Embarcadero.

 Policy 1.5 Implement street improvements that support the City’s transit network in the Plan Area including along North Point, Beach and Jefferson Streets.

 Policy 1.6 Minimize the impact of through traffic in the Plan Area to neighborhood residents particularly on Jefferson Street.

2. Community-Focused

 Policy 2.1 Create new community spaces by re-using excess portions of right-of-way 66 that is currently underutilized.

 Policy 2.2 Utilize traffic calming elements, 67 such as traffic circles 68 or median islands, 69 at neighborhood entrances or where street character changes to signal to drivers to drive with care.

 Policy 2.3 Protect residential areas, restrict and discourage traffic speed and volume and create safe and inviting spaces for community use.

 Policy 2.4 Encourage socially-engaging design on sidewalks adjacent to active uses, including seating opportunities, landscaping, and display of goods.

62 Living streets are designed to prioritize the entire right-of-way for pedestrian and public space use while retaining local vehicular circulation.

63 Alleyways with substantial sidewalk landscaping.

64 The level of the crosswalk or intersection is raised to the sidewalk grade.

65 See Case No. 2007.0347E: San Francisco Bicycle Plan Project Final EIR available at http://www.sfgov.org/site/planning_index.asp?id=80504

66 Treat Street between 15th and 16th Streets is an example of underutilized excess right-of-way.

67 Traffic calming is a practice of designing streets to encourage vehicles to proceed slowly through neighborhoods, by the use of visual or actual roadway narrowing, horizontal or vertical shifts in the roadway, or other features such as landscaping, median islands, and traffic circles.

68 Traffic circles are generally circular raised areas in the center of a standard intersection that provide space for landscaping, and slow traffic by visually shortening the roadway and forcing vehicles to slowdown to go around them.

69 Median islands are areas between traffic lanes used for control of traffic movements. They are differentiated from medians by being generally not linear or continuous throughout the block.
3. Safe and Enjoyable

Policy 3.1 Shorten crossing distances at wide intersections and introduce pedestrian count-down signals to improve pedestrian safety.
Policy 3.2 Utilize pedestrian-scale street lighting to improve safety for pedestrians on routes that connects to transit and other important destinations.

4. Memorable

Policy 4.1 Transform Jefferson Street into a Civic Boulevard\(^{70}\) with pocket open spaces, linking major open space nodes such as Aquatic Park and the waterfront.
Policy 4.2 Create a special design plan for a new gateway plaza where Jefferson Street terminates in Aquatic Park, recognizing the historic context of Fisherman’s Wharf and its contemporary importance as an area attraction.
Policy 4.3 Initiate a community planning process to redesign, revitalize and connect Conrad Square Park to the adjacent businesses along Columbus by a strong plaza-like design that prioritizes the needs of pedestrians.

5. Parking Management

Policy 5.1 Develop a set of coherent parking policies that result in a more efficient use of the existing parking facilities and reduce the uncertainty of visitors searching for parking.
Policy 5.2 Develop and establish a Parking Management Plan to increase the level of coordination amongst operators to address parking pricing and space availability.
Policy 5.3 Develop parking wayfinding signage program for parking that targets the most important vehicular approaches to Fisherman’s Wharf and directs motorists to off-street parking facilities.
Policy 5.4 Develop pricing system based on parking demand to optimize the use of existing parking facilities, for both on-street and off-street parking.

The Plan-proposed policies are intended to guide streetscape improvements for the residents and visitors of the Plan Area. Adoption of Plan-proposed policies would have no direct impacts on the physical environment. Streetscape and open space improvement projects were developed to carry out Plan-proposed policies. Implementation of these projects would result in physical changes in the Plan Area; thus, physical impacts associated with policy implementation would be similar to the impacts associated with streetscape and open space improvement projects’ implementation analyzed in this section and throughout this document. As a result of Plan-proposed policies, new streetscape improvement projects could be identified for the Plan Area in the future; however, as with the proposed project, all future projects would be subject, on a project-by-project basis, to independent CEQA review as well as policies in the San Francisco General Plan, governing area plans, design guidelines, and other applicable land use plans that are intended to reduce impacts related to transportation impacts.

TRANSPORTATION ANALYSIS OF PROPOSED IMPROVEMENTS

Neighborhood Gateway Treatments

Proposed gateway treatments would not impact the transportation network. Treatments would be installed on sidewalks and medians in locations where they would not block pedestrian,

\(^{70}\) Civic Boulevards are streets with specific design treatments that relate them to the overall City pattern.
bicycle, transit, loading, emergency vehicle access, or traffic. The impact to all modes of transportation would be less than significant.

MINOR ZONING ADJUSTMENTS
The FWPRP includes minor zoning adjustments to parcels located within the Plan Area. The adjustments would be for an additional 5 feet of building height to be applied, but only to the ground floor story of a building. The increased height could not be used to increase the intensity of development, (i.e., construct an additional level of development). Also, new zoning restrictions would prohibit adult entertainment establishments within the Plan Area.

The Minor Zoning Adjustments would not result in additional person, transit, or vehicle trips, or create additional parking demand. The prohibition of adult entertainment establishments would also not create any additional trips. The impact to all modes of transportation would be less than significant.

SI-1: Jefferson Street Redesign, Parking Signage Program, Traffic Circulation Plan, and Passenger and Freight Loading Modifications

PEDESTRIAN
SI-1 would not create any new pedestrian trips, nor would it overcrowd sidewalks or create hazardous conditions for pedestrians. On the contrary, SI-1 would reduce crowding on sidewalks, corners and crosswalks, because pedestrians would be permitted to walk along the entirety of Jefferson Street (except for the streetcar lane), rather than just the sidewalks under existing conditions. The speed and volume of traffic on Jefferson Street would be reduced, improving safety for pedestrians along the roadway and at intersections.

While the street would be designed to give pedestrians access to the entire street, the design would include ADA-compliant detectable surfaces to warn visually-impaired pedestrians when they are leaving the Pedestrian Safety Zone and entering either the Pedestrian Priority Zone (where pedestrians may encounter private vehicles or bicycles) or crossing the streetcar lane. 72,73

Parking signage foundations would only be installed on sidewalks where they would not significantly constrict the sidewalk, create a hazardous condition for pedestrians or create significant overcrowding of sidewalks.

The impact to pedestrians would be less than significant.

71 The Jefferson Street Redesign, Parking Signage Program, Traffic Circulation Plan, and Passenger and Freight Loading Modifications would complement each other and function together to create a complete circulation system. Therefore, for the remainder of this transportation analysis, these elements shall be analyzed together, and shall collectively be referred to as “SI-1”.

72 The Americans with Disabilities (ADA) act requires that streetscape infrastructure be able to accommodate persons with disabilities.

73 The Pedestrian Safety Zone is similar to a typical sidewalk, where pedestrians can walk, stand or sit without encountering a vehicle. The definition is used to differentiate between the Pedestrian Priority Zone, where pedestrians have priority but would encounter vehicles.
BICYCLE

SI-1 would not create any new bicycle trips, nor would it create hazardous conditions or interfere with access for bicycles. On the contrary, SI-1 would improve bicycle access by providing an eastbound bicycle lane on Jefferson Street, where no eastbound facility currently exists. A bicycle facility on Jefferson Street was included in the San Francisco Bike Plan as a long-term improvement. SI-1 would implement the bicycle facility consistent with the Bike Plan.74

Bicycles in both directions would also benefit from reduced or eliminated traffic volumes (depending on location and time of day), elimination of tour buses, elimination of trucks during peak periods, and elimination of parallel parking maneuvers. These aspects of SI-1 would enhance safety for bicycles.

While Jefferson Street would remain one-way westbound for private vehicles, the contra-flow bike lane would convert the street into two-way operation. Private vehicles proceeding westbound wishing to turn left would be required to yield to oncoming eastbound bicycles, similar to as if the bicycles were private vehicles. While requiring left-turning vehicles yield to oncoming traffic (including bicycle traffic) is a fundamental component of the California Vehicle Code, signs would be posted on Jefferson Street to remind drivers to yield to oncoming bicycles. The eastbound bike lane would also be colored differently than the westbound travel lane, which would further reinforce to westbound drivers that they must yield to bicycles. See Figure 3 pp. 24.

For cars to access the on-street loading pockets on the south side of Jefferson Street, they would have to drive across the eastbound bike lane. This would not compromise bicycle safety because drivers would have a clear view of oncoming bicycles and would only execute the parking maneuver when safe. Furthermore, the loading pockets would be long enough that drivers would be able to pull forward into the zone, rather than having to execute a reverse maneuver to parallel park. Elimination of parallel parking maneuvers on Jefferson Street would enhance bicycle safety.

Bicycles riding either direction on Jefferson Street would be required to yield to pedestrians within the roadway, but this would not compromise bicycle access. Due to the construction of a curb between the streetcar lane and the Pedestrian Priority Zone, bicyclists would have to walk their bikes across the streetcar tracks, but this also would not compromise bicycle access. The redesign of Jefferson Street will provide clear demarcation of the streetcar tracks and a cobblestone surface so that bicycles would avoid riding on them.

New bicycle lanes on Hyde Street between Jefferson and Beach streets would improve bicycle access and safety on this block, in both directions, and would connect to the bicycle facilities on Jefferson Street.

74 The San Francisco Bike Plan Environmental Impact Report (EIR) assessed bicycle facilities on Jefferson Street as part of “Long-Term Improvement L-2: Bay Train Improvements in the vicinity of Fisherman’s Wharf.” The Bike Plan EIR only provided program-level environmental clearance because a specific design had not been identified at that time. However, this Mitigated Negative Declaration provides project-level clearance of the proposed facility.
On-street bicycle parking racks would be installed throughout the Plan Area, which would allow bicyclists to park their bikes in a way that does not block the sidewalk.

The impact to bicycles would be less than significant.

TRANSPORTATION
SI-1 would not create any new transit trips, and would therefore not cause or contribute to overcrowded conditions on any transit route.

Streetcar Operations on Jefferson Street
The westbound streetcar tracks on Jefferson Street would remain in an exclusive transit lane and would operate similar to existing conditions, except the transit lane would be upgraded from the existing semi-exclusive lane (where vehicles can enter the transit lane to turn right or access parking) into a fully-exclusive lane (where vehicles can not enter the transit lane at any location).

A curb would be constructed on the south side of the existing transit lane, between the streetcar lane and the Pedestrian Priority Zone, to prevent vehicles from entering the transit lane. There are currently two locations where vehicles can legally enter the streetcar lane that would both be eliminated. First, the existing curb cut and entrance from Jefferson Street into the Fisherman’s Wharf parking lot (north of Jefferson Street and west of Powell Street) would be closed; vehicles would access the parking lot from the Little Embarcadero and Taylor Street. Second, at the intersection of Jefferson and Taylor streets, private vehicles would no longer enter the transit lane to turn right onto Taylor Street, but would instead turn right from the single westbound vehicle travel lane (the traffic signal would be modified so that westbound streetcars and westbound traffic would be controlled by separate signal phases, similar to the existing traffic signal at Powell/Jefferson).

Under existing conditions, private vehicles (and occasionally trucks) have been frequently observed to use the transit lane to pick-up and drop-off passengers or freight, causing delay to streetcars. Construction of the curb between the Pedestrian Priority Zone (i.e. the vehicle lane) and the streetcar lane would prevent vehicles from using the streetcar lane for loading and reduce delay for streetcars.

Under existing conditions, pedestrians are legally only able to cross the streetcar tracks at intersections, although pedestrians routinely “jaywalk” across the tracks, especially when pedestrian volumes are high and sidewalks are congested. With implementation of SI-1, pedestrians would be legally able to cross the tracks at any point along Jefferson Street, which could cause delay for the streetcar or require streetcars to proceed at reduced speeds. However, pedestrians (including visually-impaired pedestrians) would be aware of the streetcar lane, and would be discouraged from walking along within it, by retaining the existing cobblestone treatment and physically separating the lane with a curb. Streetcar operators would also be able to sound the bell to warn pedestrians of the approach of a streetcar, similar to existing conditions. Street furniture, trees and poles within the Pedestrian Safety Zones would be placed in a location that maintains adequate sight distance of crossing pedestrians for the streetcar operator. Generally, it is anticipated that pedestrians would not meander within the streetcar lane, and streetcars would travel at similar travel speeds as they do today.
The cobblestones would also discourage bicycles from riding in the transit lane, and the curb between the travel lane and the streetcar lane would prevent bicycles from riding across the streetcar lane (bicyclists would have to walk their bikes across the streetcar lane).

On Beach Street, where the streetcar operates in the eastbound direction in a semi-exclusive lane, there would be no modifications to the streetcar lane or related infrastructure. SI-1 would not affect streetcar operations or cause delay to the streetcar on Beach Street, because SI-1 would only affect westbound, not eastbound, vehicular circulation.

In summary, the redesign of Jefferson Street would enable pedestrians to cross the streetcar tracks at any location, which could cause delay for the streetcar and reduce operating speeds. However, the upgraded transit lane would remove all private vehicles from the streetcar lane, reducing delay for the streetcar. Overall, the travel time for the streetcar on Jefferson Street would be similar to existing conditions.

Transit Operations on North Point Street

SI-1 would divert westbound vehicles onto Beach and North Point streets, which are streets that carry Muni service. Added westbound traffic on Beach Street would not affect transit on this street, because transit (both Muni, and Golden Gate Transit only during the weekday AM peak commute period) runs only in the eastbound direction. Therefore, SI-1 would not affect transit service on Beach Street.

However, transit service is provided along the entirety of North Point Street, as shown in Figure E.5.3 on pp. 98. Muni operates three routes on this street, the 8X/8BX Bayshore Express (westbound only from Kearny to Powell streets), 30 Stockton (both directions, Columbus Avenue to Van Ness Avenue) and 47 Van Ness (both directions, Powell Street to Van Ness Avenue). Golden Gate Transit operates the majority of its weekday commute buses (from the Financial District to the Golden Gate Bridge) westbound on North Point Street during the PM commute period, although no service is provided on outside of the PM commute period or on weekends.

SI-1 would divert traffic onto westbound North Point Street between The Embarcadero and Hyde Street. West of Hyde Street, traffic volumes would be similar to existing conditions.

To determine if the increase in westbound traffic volumes would cause a significant delay to transit, the added delay was calculated at each intersection and summed along the travel segment through the Plan Area. Delay was also calculated for buses re-entering the travel lane after making a stop; buses would experience higher levels of re-entry delay due to higher traffic volumes on North Point Street. The amount of added delay would be considered significant if: for routes with a headway of less than or equal to 6 minutes, the increase in round-trip travel time is greater than or equal to half of a headway; or, for routes with a headway of greater than 6 minutes, the increase in round-trip travel time is equal to six minutes or more.

75 The 19 Polk and 47 Van Ness both operate in the westbound direction for one block on Beach Street, as part of their turnback loop. Transit delay is not presented for these routes because this single block could not experience sufficient delay that would result in an impact.
As shown in Tables E.5.2 and E.5.3 on pp. 120, during the weekend and weekday peak periods (respectively), the amount of delay would generally be very minor and would not exceed half of the headway of any route, nor exceed six minutes. The impact to transit operations would, therefore, be less than significant.

While the amount of added delay is not enough to be considered a significant impact, transit is sensitive to any amount of delay in order to maintain a schedule, especially at the beginning of a transit route. Therefore, Improvement Measure I-TR-1 has been developed, which would reduce delay to transit on North Point Street during the peak weekend demand period. No improvement measure has been developed for the weekday peak period, because the signal timing modification (described below) is already in effect during the weekday peak period, and because transit delay during the weekday would be minimal.

Improvement Measure I-TR-1: North Point Street Traffic Signal Timing
Traffic signal cycle lengths for intersections along North Point Street would be increased from 60 to 90 seconds, with the extra 30 seconds given to the east-west movements.76 Table E.5.2 on pp. 120 presents the transit delay after implementation of Improvement Measure I-TR-1.

As shown in Table E.5.2 on pp. 120, with implementation of the proposed project and Improvement Measure TR-1, transit delay would be reduced. Improvement Measure I-TR-1 would result in a modest increase in delay for north-south vehicular and pedestrian movements across North Point Street, but it would not result in secondary transportation impacts. It should be noted that bicycles traveling on North Point Street would also benefit from the increase in green time. However, Improvement Measure I-TR-1 should only be implemented by SFMTA after implementation of SI-1, if SFMTA determines that unacceptable transit delay has occurred.

With or without implementation of Improvement Measure I-TR-1, transit delay on North Point Street would be less than significant.

PURPOSELY LEFT BLANK SPACE

76 Traffic signals along North Point Street currently operate on a 90 second cycle, but only on weekdays from 6:00 AM—9:30 AM and 4:00 PM—7:30 PM. The traffic signals operate on a 60 second cycle at all other times, including all day on weekends. Improvement Measure I-TR-1 would modify the signal timing to operate on a 90 second cycle from 6:00 AM—7:00 PM, seven days of the week.
Table E.5.2
Transit Travel Delay on North Point Street
Weekend Peak Hour

<table>
<thead>
<tr>
<th>Route</th>
<th>Number of blocks on Westbound North Point Street (east of Hyde Street)</th>
<th>Peak Period Headway (minutes)</th>
<th>Existing Plus Project Conditions Added Delay (minutes : seconds)</th>
<th>Cumulative Plus Project Conditions Added Delay (minutes : seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8X/8BX Bayshore</td>
<td>3</td>
<td>8</td>
<td>0:05 (-0:01)</td>
<td>0:06 (-0:01)</td>
</tr>
<tr>
<td>30 Stockton</td>
<td>2</td>
<td>4</td>
<td>0:12 (0:03)</td>
<td>0:13 (0:03)</td>
</tr>
<tr>
<td>47 Van Ness</td>
<td>4</td>
<td>8</td>
<td>0:25 (0:07)</td>
<td>0:27 (0:11)</td>
</tr>
</tbody>
</table>

Total delay calculated as increase in westbound delay at study intersections under the North Point Street diversion scenario, as discussed under Traffic in section E.5. Detailed transit delay calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

Values in parentheses indicate delay with implementation of Improvement I-TR-1

Golden Gate Transit bus service not shown because GGT buses do not operate on North Point Street on weekends.

Source: SFMTA, San Francisco Planning Department, March 2011.
Table E.5.3
Transit Travel Delay on North Point Street
Weekday Peak Hour

<table>
<thead>
<tr>
<th>Route</th>
<th>Number of blocks on Westbound North Point Street (east of Hyde Street)</th>
<th>Peak Period Headway (minutes)</th>
<th>Existing Plus Project Conditions Added Delay (minutes : seconds)</th>
<th>Cumulative Plus Project Conditions Added Delay (minutes : seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8X/8BX Bayshore</td>
<td>3</td>
<td>8</td>
<td>0:03</td>
<td>0:03</td>
</tr>
<tr>
<td>30 Stockton</td>
<td>2</td>
<td>4</td>
<td>0:06</td>
<td>0:08</td>
</tr>
<tr>
<td>47 Van Ness</td>
<td>4</td>
<td>8</td>
<td>0:13</td>
<td>0:16</td>
</tr>
<tr>
<td>Golden Gate Transit</td>
<td>8</td>
<td>10(^1)</td>
<td>0:10</td>
<td>0:13</td>
</tr>
</tbody>
</table>

Total delay calculated as increase in westbound delay at study intersections under the North Point Street diversion scenario, as discussed under Traffic in section E.5. Detailed transit delay calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

1. Golden Gate Transit operates 67 buses over 14 different routes, resulting in an average headway between vehicles of approximately one minute. However each route runs on an independent schedule, with headways between 10 and 30 minutes.

Source: SFMTA, Golden Gate Transit, San Francisco Planning Department, March 2011.

SPACE INTENTIONALLY LEFT BLANK
Construction Impacts to Streetcar Operations
The redesign of Jefferson Street would likely require the interruption of streetcar service on Jefferson Street because the proposed project includes shifting tracks north on Jefferson Street between Taylor and Jones streets. The track realignment is necessary in order to accommodate a wider sidewalk on the south side of Jefferson Street between these blocks, as shown in Figure A.3 on pp. 24.

The construction of the track realignment would be a temporary condition, potentially up to one year, although the timeline would depend on the intensity of construction activity. During this period, streetcars would not be able to access Jefferson Street, but streetcars could avoid the construction zone while maintaining service on the remainder of the route by utilizing existing turnback tracks adjacent to the Pier 39 parking garage. Temporary bus shuttles could serve the portions of Jefferson and Beach streets that would have service interrupted. SFMTA would provide notification to passengers regarding the service disruptions.

Due to the temporary nature of this service change, the impact to transit resulting from construction would be less than significant.

LOADING
Passenger Loading
SI-1 would include restrictions on tour bus operations on Jefferson Street. Tour buses (vehicles with eight or more passengers) would not be permitted on any segment of Jefferson Street from Powell to Hyde streets at any time. Tour buses would also not be permitted on the one-block segments of north-south streets that require circulation via Jefferson Street (i.e. Mason, Jones, Leavenworth and Hyde streets between Beach and Jefferson streets). Tour buses would still be permitted to travel on other east-west streets (i.e. Beach Street and The Little Embarcadero) as well as other north-south streets that do not require circulation via Jefferson Street (i.e. Powell and Taylor streets). Existing tour bus circulation and tour bus loading zones would not be modified east of Powell Street or west of Hyde Street.

Due to the tour bus circulation restrictions described above, several tour bus loading zones would be eliminated. These loading zones would be converted into general parking spaces and sidewalk bulb-outs. This would result in the elimination of four tour bus loading zones (as shown in Figure E.5.4a on pp. 100, zones #2, 3, 5 and 12), totaling approximately 540 linear feet of curb.

To compensate for this reduction in tour bus loading zones, SI-1 would include the creation of new tour bus loading zones within the Plan Area. The block bounded by Beach, Mason, North Point and Taylor streets (which encompasses the Longshoremen’s Hall) currently has both metered parking spaces and tour bus loading zones along its perimeter. SI-1 would convert all of the existing metered parking spaces around this block into additional all-day tour bus loading zones, resulting in approximately 325 linear feet of new white curb (requiring the removal of approximately 17 on-street parking spaces). Driveway access to the Longshoremen’s Hall, and the westbound Muni bus stop on North Point Street, would not be affected. Also, the block of Taylor Street between Jefferson and Beach streets currently has both metered parking spaces and one tour bus loading zone on both its east and west sides (totaling 145 linear feet). SI-1 would
convert most of the existing metered parking spaces on this block into additional tour bus loading zones, resulting in approximately 235 liner feet of additional white curb (requiring the removal of approximately ten of the eighteen on-street parking spaces). Combined, this results in the creation of 470 linear feet of passenger loading zones.

As described above, 540 feet of passenger loading space would be removed, and 470 feet created, resulting in a net reduction of 70 feet. This reduction could be absorbed within underutilized tour bus parking zones within the Plan Area. As shown in Figure E.5.4a on pp. 100, there are several metered tour bus parking zones within the Plan Area clustered around the intersection of North Point and Jones streets. According to the SFMTA, these metered loading zones were recently implemented, but the current price of nine dollars per hour has resulted in light utilization, compared to the free loading zones that experience higher occupancy. The total number of underutilized metered loading zones near this intersection is eight tour bus spaces, or about 600 linear feet.

Although SI-1 would result in a net reduction of 70 feet of passenger loading zone, the reduction could be absorbed by the existing underutilized passenger loading zones within the Plan Area. The relocation of the tour bus loading facilities may require tour bus passengers destined to Fisherman’s Wharf to walk further. However, this inconvenience would not be considered a significant impact to passenger loading operations. Furthermore, the restriction of tour buses on Jefferson Street may result in a higher volume of tour buses on Beach Street or the Little Embarcadero, but the volume of diverted tour buses would be low, approximately 20 per hour. This volume of diverted tour buses would not be high enough to result in secondary transportation impacts.

Freight Loading

Before 11:00 AM, trucks would be permitted access to Jefferson Street, and the proposed on-street loading pockets along Jefferson Street would be reserved for freight unloading. From 11:00 AM—7:00 PM daily, trucks (vehicles with six or more wheels) would be prohibited on Jefferson Street between Powell and Leavenworth streets. At that time, trucks would also be prohibited on streets that require circulation via that segment of Jefferson Street (Mason and Jones streets, between Jefferson and Beach streets).

At all times, truck access would be permitted on the last block of Jefferson Street between Leavenworth and Hyde streets (with access via northbound Leavenworth Street). Truck access would also be permitted at all times on Powell and Taylor streets, and The Little Embarcadero.

During this time, the proposed loading pockets on Jefferson Street would convert from freight loading into passenger loading pockets. Additionally, hours of operation of 19 existing metered freight loading spaces (on Jefferson Street, and on Mason and Leavenworth streets between

77 A second cluster of tour bus parking zones is located adjacent to the North Side Pump Station sewage treatment plant. While these zones are also underutilized, they likely would not be a desirable location for passenger loading activities.

78 SFMTA plans to lower the price to five dollars per hour.

79 Based on field observations on Saturday, August 21, 2010, from 2pm to 3pm.
Jefferson and Beach streets) would be modified to not be in effect after 11:00 AM, at which point they would convert into general parking (on streets other than Jefferson Street) or passenger loading. Specifically, the following on-street loading spaces would have their hours of operation shortened to end at 11:00 AM, depicted in Figure E.5.4b on pp. 102:

- 8 spaces on Leavenworth Street between Jefferson and Beach streets;
- 4 spaces on Mason Street between Jefferson and Beach streets;
- 2 spaces on Jefferson Street between Taylor and Jones streets; and
- 5 spaces on Jefferson Street between Leavenworth and Hyde streets.

Currently, these yellow metered spaces are generally in operation from 7:00 AM—1:00 PM Monday through Friday, while some are in effect until 7:00 PM and some are in effect on Saturday and/or Sunday. SI-1 would shorten the hours of operation of these meters to end at 11:00 AM, seven days a week.

Based on field observations, as well as survey responses of merchants in the Plan Area, most loading activities at these spaces occur during the morning, and the majority of trucks have departed the Plan Area by 11:00 AM. Therefore, the minor reduction in hours of these 19 metered loading spaces would not affect loading conditions. Nearby metered freight loading spaces (see Figure E.5.4b on pp. 102) along Beach Street and elsewhere within the Plan Area would retain their existing hours of operation and would be able to absorb additional loading activities after 11:00 AM.

Overall Loading

SI-1 would prohibit tour buses from circulating on Jefferson Street, and would prohibit trucks from circulating on the eastern four blocks of Jefferson Street between the hours of 11:00 AM and 7:00 PM. SI-1 would also result in the net reduction of 70 linear feet of white passenger loading curb, and reduced hours of operation at 19 yellow freight loading spaces. These reductions in loading zones could be absorbed within the remaining tour bus and freight loading areas within the Plan Area.

These circulation restrictions would not be considered a significant impact because they would not result in a loading demand during the peak hour of the loading activities that could not be accommodated within the Plan Area nor would they create potentially hazardous conditions or significant delays affecting all modes of transportation.

The impact to loading would be **less than significant**.

EMERGENCY VEHICLE

SI-1 would not result in inadequate emergency vehicle access. Emergency access to and from Jefferson Street would remain similar to existing conditions. Any road closure to private vehicles would not apply to emergency vehicles. While retractable bollards would be installed to enforce

80 Rachel Moody, Planning Department, “Jefferson Street Loading Field Operations.” April 11, 2011. Memorandum is included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.
roadway closures, emergency vehicles would be able to access Jefferson Street by utilizing the streetcar lane, which would not be blocked by bollards. The curb between the streetcar lane and the Pedestrian Priority Zone would be constructed in a manner that would enable emergency vehicles to drive across it, and the design of the curb (as well as all streetscape improvements) would be reviewed by the San Francisco Fire Department to ensure adequate emergency vehicle access. The impact on emergency vehicles would be less than significant.

TRAFFIC
Traffic Diversion Scenarios
SI-1 would redirect westbound traffic off of Jefferson Street and onto North Point and Beach streets. Two elements of SI-1 would redirect traffic: the parking signage, as well as the roadway closure(s). To determine if this redirection of traffic would cause impacts to traffic, a traffic model (using the Synchro traffic software platform) was developed.

As described in the Project Description on pp. 12, two traffic circulation variants were developed. For each variant, two different traffic diversion scenarios were evaluated: one where traffic diverts only onto Beach Street, and one where traffic diverts only onto North Point Street. This results in a conservative traffic analysis because SI-1 would cause vehicles to divert onto both streets, rather than concentrating on one street. In other words, the traffic analysis presented in this section is worse than expected traffic operations, because this analysis assumes all traffic would divert onto one street, while SI-1 would most likely cause traffic to divert onto two streets (Beach and North Point streets).

Traffic Diversions Resulting from Parking Signage
To determine the number of vehicles that would divert off of The Embarcadero as a result of the parking signage program, a recent parking behavior study by the Institute for Transportation & Development Policy was reviewed. The study examined parking behavior in European cities, and found that in popular tourist areas similar to Fisherman’s Wharf, roughly 50 percent of the traffic on a street was searching for a parking space.

SI-1 would remove all on-street parking on Jefferson Street, as well as construct parking signage directing vehicles to access parking from Beach and North Point streets. Signage would also be constructed alerting drivers that parking options on Jefferson Street would be limited. Therefore, a large amount of traffic would be expected to divert off of Jefferson Street and onto North Point and Beach streets.

However, Fisherman’s Wharf already does have some parking signage directing vehicles to those streets (although the signage also directs vehicles to continue along Jefferson Street). For this reason, it was assumed that only 40 percent of traffic on Jefferson Street would be diverted as a result of the parking program, rather than the 50 percent that was reported in the Institute for Transportation & Development Policy report.

Traffic Diversions from Roadway Closures

After 40 percent of traffic is diverted off of Jefferson Street as a result of the removal of on-street parking on Jefferson Street and the parking signage, the remaining 60 percent of traffic was assumed to remain on Jefferson Street until arriving at a roadway closure (Taylor Street for Variant #1 and Powell Street for Variant #2). At this point, all of the traffic on Jefferson Street was assumed to turn left (south), and then right (west) onto either Beach or North Point streets, depending on the diversion scenario, as described above.82

To summarize the traffic diversion assumptions:

- The Beach Street diversion scenario assumes that 40 percent of traffic on westbound The Embarcadero would turn left onto Beach Street at the intersection of The Embarcadero/Beach/Grant, as a result of the removal of parking on Jefferson Street and the parking signage. The remaining 60 percent of traffic would continue straight onto Jefferson Street, and then turn divert onto Beach Street once the traffic reached the road closure on Jefferson Street; under Variant #1, that traffic would divert via southbound Taylor Street, while under Variant #2, that traffic would divert via southbound Powell Street. West of Taylor Street (under Variant #1) or Powell Street (under Variant #2), 100 percent of traffic that would have been on Jefferson Street would instead be on Beach Street. No traffic would be diverted onto North Point Street under this scenario.
- The North Point Street diversion scenario assumes that 40 percent of traffic on westbound The Embarcadero would turn left onto North Point Street at the intersection of The Embarcadero/North Point/Kearny, as a result of the removal of parking on Jefferson Street and the parking signage. The remaining 60 percent of traffic would continue straight onto Jefferson Street, and then divert onto North Point Street once the traffic reached the road closure on Jefferson Street; under Variant #1, that traffic would divert via southbound Taylor Street, while under Variant #2, that traffic would divert via southbound Powell Street. West of Taylor Street (under Variant #1) or Powell Street (under Variant #2), 100 percent of traffic that would have bee on Jefferson Street would instead be on North Point Street. No traffic would be diverted onto Beach Street under this scenario.

As previously noted, these scenarios present overly conservative traffic analysis, because in reality traffic would divert onto both streets rather than concentrating on only one. Additionally, at intersections with actuated transit signal phases, it was conservatively assumed that a transit vehicle would arrive on every signal cycle, and thus trigger the transit signal phase every cycle.

Weekend Peak Period Traffic Analysis Results

Tables E.5.4 and E.5.5 on pp. 127 and 128 present the peak weekend Level of Service results from the Beach Street and North Point Street diversion scenarios, respectively. The tables present the analysis for both Variant 1 and Variant 2.

82 While the analysis assumes that all vehicles, upon reaching a road closure at either Powell or Taylor street, would turn left (south), it should be noted that vehicles would also be able to turn right (north) onto the Little Embarcadero. It is likely that some vehicles would turn right onto the Little Embarcadero to access parking facilities. However, by assuming that all vehicles would turn left, the traffic volumes are more concentrated, resulting in a more conservative traffic analysis.
Where LOS deteriorates to LOS D, improvement measures are proposed to improve traffic operations. Where LOS deteriorates to E of F, mitigation measures are proposed that would mitigate traffic operations to acceptable LOS. LOS resulting from the improvement or mitigation measure is presented in parentheses.

PURPOSELY LEFT BLANK SPACE
<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing No Project Conditions Delay (v/c), LOS</th>
<th>Variant #1 Closure at Taylor Delay (v/c), LOS</th>
<th>Variant #2: Closures at Powell & Taylor Delay (v/c), LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Embarcadero/N. Point/Kearny</td>
<td>> 80.0 (0.89), F</td>
<td>>80 (0.89), F</td>
<td>>80 (0.89), F</td>
</tr>
<tr>
<td>2. Embarcadero/Grant/Beach</td>
<td>> 80.0 (0.85), F</td>
<td>>80 (0.86), F (56.3, E)</td>
<td>>80 (0.86), F (56.3, E)</td>
</tr>
<tr>
<td>3. North Point/Powell</td>
<td>12.9, B</td>
<td>12.9, B</td>
<td>12.9, B</td>
</tr>
<tr>
<td>4. Beach/Powell</td>
<td>18.2, B</td>
<td>16.8, B^</td>
<td>48.5, D (30.3, C)</td>
</tr>
<tr>
<td>5. Embarcadero/Jefferson/Powell</td>
<td>32.8, C</td>
<td>33.6, C</td>
<td>41.2, D (33.6, C)</td>
</tr>
<tr>
<td>7. Beach/Taylor</td>
<td>15.9, B</td>
<td>>80 (1.02), F (30.5, C)</td>
<td>21.6, C</td>
</tr>
<tr>
<td>8. Jefferson/Taylor</td>
<td>20.2, C</td>
<td>>80 (1.13), F (42.2, D)</td>
<td>21.4, C</td>
</tr>
<tr>
<td>10. Beach/Hyde</td>
<td>25.9, B</td>
<td>>80 (0.79), F (35.0, C)</td>
<td>>80 (0.79), F (35.0, C)</td>
</tr>
<tr>
<td>11. Jefferson/Hyde</td>
<td>9.7 (WB), A</td>
<td>7.9 (WB), A^</td>
<td>7.9 (WB), A</td>
</tr>
</tbody>
</table>

1. See Mitigation Measure TR-2. 2. See Improvement Measure I-TR-3. 3. See Mitigation Measure TR-5.
4. See Mitigation Measure TR-6. 5. See Mitigation Measure TR-7.
A. Minor reduction in delay due to increased traffic volumes on lower-delay westbound movement, which reduces the intersection average delay.
B. Minor reduction in delay due to reduced traffic volumes on higher-delay westbound movement.

LOS presented in average seconds of delay per vehicle. For signalized intersections, delay presented is the average of all vehicles at the intersection. For unsignalized intersections, delay presented is the worst approach of the intersection, followed by the approach direction (e.g., WB = westbound). Volume to capacity (v/c) for intersections operating at LOS F is presented. Project impacts (where LOS deteriorates to unacceptable level as a result of SI-1) shown in **bold**.

Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

Source: San Francisco Planning Department, 2011.
Table E.5.5

Level of Service Results for SI-1: Jefferson Street Redesign

Existing Plus Project Conditions, Weekend Peak Hour

North Point Street Diversion Scenario

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing No Project Conditions</th>
<th>Variant #1 Closure at Taylor Delay (v/c), LOS</th>
<th>Variant #2: Closures at Powell & Taylor Delay (v/c), LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Embarcadero/N. Point/Kearny</td>
<td>> 80.0 (0.89), F</td>
<td>>80 (0.99), F (39.3, D)</td>
<td>>80 (0.99), F (39.3, D)</td>
</tr>
<tr>
<td>2. Embarcadero/Grant/Beach</td>
<td>> 80.0 (0.85), F</td>
<td>55.4, E^A</td>
<td>55.4, E^A</td>
</tr>
<tr>
<td>3. North Point/Powell</td>
<td>12.9, B</td>
<td>13.8, B</td>
<td>19.0, B</td>
</tr>
<tr>
<td>4. Beach/Powell</td>
<td>18.2, B</td>
<td>18.2, B</td>
<td>39.9, D (26.5, C)</td>
</tr>
<tr>
<td>5. Embarcadero/Jefferson/Powell</td>
<td>32.8, C</td>
<td>33.6, C</td>
<td>41.2, D (31.5, C)</td>
</tr>
<tr>
<td>7. Beach/Taylor</td>
<td>15.9, B</td>
<td>19.0, B</td>
<td>15.7, B^B</td>
</tr>
<tr>
<td>8. Jefferson/Taylor</td>
<td>20.2, C</td>
<td>>80 (1.13), F (42.2, D)</td>
<td>21.4, C^C</td>
</tr>
<tr>
<td>9. North Point/Hyde</td>
<td>12.1, B</td>
<td>34.5, C</td>
<td>34.5, C</td>
</tr>
<tr>
<td>10. Beach/Hyde</td>
<td>25.9, B</td>
<td>30.2, C</td>
<td>30.2, C</td>
</tr>
<tr>
<td>11. Jefferson/Hyde</td>
<td>9.7 (WB), A</td>
<td>7.9 (WB), A^C</td>
<td>7.9 (WB), A^C</td>
</tr>
</tbody>
</table>

1. See Mitigation Measure TR-1 2. See Improvement Measure I-TR-3 3. See Improvement Measure I-TR-4
4. See Mitigation Measure TR-6.

A. Improvement in LOS due to reduced traffic volumes on higher-delay westbound movement.
B. Minor reduction in delay due to increased traffic volumes on lower-delay southbound movement.
C. Minor reduction in delay due to reduced traffic volumes on higher-delay westbound movement.

LOS presented in average seconds of delay per vehicle. For signalized intersections, delay presented is the average of all vehicles at the intersection. For unsignalized intersections, delay presented is the worst approach of the intersection, followed by the approach direction (e.g., WB = westbound). Volume to capacity (v/c) for intersections operating at LOS F is presented. Project impacts (where LOS deteriorates to unacceptable level as a result of SI-1) shown in **bold**.

Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

Source: San Francisco Planning Department, 2011.

As shown in **Tables E.5.4 and E.5.5** on pp. 127 and pp. 128, concentrated traffic diversions onto Beach or North Point streets would create traffic impacts at several intersections. Intersections where LOS deteriorates to LOS E or F are considered significant impacts, and mitigation
measures have been developed to mitigate these impacts to less-than-significant levels. Intersections where LOS deteriorates to LOS D are considered less-than-significant impacts and no mitigations would be required, however, improvement measures have been developed to improve traffic operations.

Summary of Traffic Impacts – Existing plus Project Conditions

Impacts would vary across the two scenarios. Potential impacts resulting from both scenarios would include impacts at the following intersections:

- **Impact TR-1 (Less than Significant with Mitigation Measure):** Embarcadero/North Point/Kearny (North Point Street diversion scenario only, for both Variant #1 and Variant #2). Mitigation Measure TR-1 would reduce this impact to a *less-than-significant level*.
- **Impact TR-2 (Less than Significant with Mitigation Measure):** Embarcadero/Grant/Beach (Beach Street diversion scenario only, for both Variant #1 and Variant #2). Mitigation Measure TR-2 would reduce this impact to a *less-than-significant level*.
- **Impact TR-3 (Less than Significant):** Beach/Powell (both Beach Street and North Point Street diversion scenario, Variant #2 only). With or without implementation of Improvement Measure I-TR-2 the impact would be *less-than-significant impact*.
- **Impact TR-4 (Less than Significant):** North Point/Taylor (North Point Street diversion scenario only, Variant #1 only). With or without implementation of Improvement Measure I-TR-4 the impact would be *less-than-significant impact*.
- **Impact TR-5 (Less than Significant with Mitigation Measure):** Beach/Taylor (Beach Street diversion scenario only, for Variant #1 only). Mitigation Measure TR-5 would reduce this impact to a *less-than-significant level*.
- **Impact TR-6 (Less than Significant with Mitigation Measure):** Jefferson/Taylor (both Beach Street and North Point Street diversion scenarios, for Variant #1 only). Mitigation Measure TR-6 would reduce this impact to a *less-than-significant level*.
- **Impact TR-7 (Less than Significant with Mitigation Measure):** Beach/Hyde (Beach Street diversion scenario only, for both Variant #1 and Variant #2). Mitigation Measure TR-7 would reduce this impact to a *less-than-significant level*.

As previously discussed, the traffic diversion scenarios developed represent overly-conservative assumptions regarding traffic diversions. Specifically, the analysis assumes that all traffic would divert onto either Beach or North Point Street. In reality, SI-1 would cause traffic to distribute onto both streets, and traffic would not be as concentrated as the analysis has assumed. Many, if not all, of the significant traffic impacts identified above would likely not occur, in which case the mitigation measures identified below would not be necessary. Therefore, if SI-1 were to be implemented, SFMTA would periodically evaluate traffic LOS at the study intersections as part of its ongoing monitoring of traffic conditions citywide. If SFMTA were to determine that LOS impacts have in fact occurred as a result of implementation of SI-1, SFMTA would implement the
mitigation measures identified below, at the locations where impacts occur. SFMTA would not be required to implement the improvement measures, but could do so if warranted.

Existing Weekend Condition Traffic Mitigation Measures and Improvement Measures

Impact-TR-1: Embarcadero/Kearny/North Point
This intersection already operates at unacceptable LOS F during the weekend peak period, with a v/c ratio of 0.85. Under the North Point Street diversion scenario (for either Variant #1 or Variant #2), the diversion in traffic volumes (away from straight northwestbound on The Embarcadero, and on to the left turn movement from northwestbound The Embarcadero onto westbound North Point Street) would overwhelm the capacity of the left turn signal phase. This would exacerbate LOS F conditions at this intersection, resulting in a v/c ratio of 0.99, as shown in Table E.5.5 on pp. 128. This would be considered a significant impact.

Mitigation Measure TR-1: Embarcadero/Kearny/North Point
To mitigate the impact, the intersection geometry and signal timing would need to be reconfigured. Two lightly-utilized (less than 20 vehicles per hour) left turn movements would need to be prohibited:

- From northwestbound The Embarcadero to southbound Kearny Street. Traffic executing this movement would be accommodated by making a left turn one block earlier at Bay Street.
- From eastbound North Point Street onto northwestbound The Embarcadero. Traffic executing this movement would be accommodated by making a left turn one block earlier at Grant Street. Muni buses would be exempted from this restriction.

By prohibiting these two left turn movements, the signal timing plan could be modified from its current four-phase operation to a three-phase operation (streetcars would continue to be served by a separate, actuated phase). The three signal phases would be:

1. Through movements of the Embarcadero: northwestbound straight movement and southeastbound straight movement (with concurrent pedestrian crossing along southwest crosswalk);
2. Embarcadero left-turn movement and North Point right turn overlap: Northwestbound left turn movement and eastbound right turn movement (with concurrent pedestrian crossing along northwest crosswalk); and
3. Kearny Street movement: northbound approach (with concurrent pedestrian crossing along southeast crosswalk).

83 SFMTA could implement either the mitigation measure identified, or could implement a different mitigation measure that would achieve the objective of reducing the traffic impact to a less-than-significant level.

84 Tour buses destined to Pier 39 which approach from the west typically execute this left turn that is proposed for elimination. These tour buses, like all vehicles destined to Pier 39 from the west, would have to use Grant Street instead. To accommodate tour buses executing the eastbound left turn from North Point onto Grant streets, it may be necessary to remove up to two on-street parking spaces on the west side of Grant Street at the intersection with North Point Street.
As shown in Table E.5.5 on pp. 128, this mitigation would improve traffic operations to LOS D under the North Point Street diversion scenario (for either Variant #1 or #2). The impact would be mitigated to a less-than-significant level.

Impact TR-2: Embarcadero/Grant/Beach

This intersection already operates at LOS F during the weekend peak period, with a v/c ratio of 0.85. Under the Beach Street diversion scenario (for either Variant #1 or Variant #2), the diversion in traffic volumes (away from straight northwestbound on The Embarcadero, and on to the left turn from northwestbound The Embarcadero onto westbound Beach Street) would be beyond capacity of the single left turn lane. This would slightly exacerbate LOS F conditions at this intersection with a v/c of 0.86, as shown in Table E.5.4 on pp. 127. This would be considered a significant impact.

Currently, the two lanes of the northwestbound approach are a shared through-right lane and a shared through-left lane. This lane geometry operates with a “split” signal phase, where northwestbound vehicles on the Embarcadero can either turn left, turn right, or proceed straight during the same signal phase.

Mitigation Measure TR-2: Embarcadero/Grant/Beach

To mitigate the impact, the northwestbound approach and the signal timing would need to be reconfigured. The left lane of the northwestbound approach would be modified from a shared left-through lane into a left-only lane. By restriping the lane as such, the signal phasing could be changed from a split phase into separate signal phases for the northwestbound straight and left turn movements. The resulting three signal phases would be:

1. Embarcadero northwestbound left-turn movement onto Beach Street, and eastbound Beach Street (and concurrent pedestrian crossing along south crosswalk);
2. Through movements of the Embarcadero: northwestbound through movement and southeastbound through movement. Eastbound Beach Street would continue operating during this phase, (and concurrent pedestrian crossing along south crosswalk);
3. Grant Street movement: northbound approach (and concurrent pedestrian crossing along east crosswalk).

This phasing plan would allow more green time to be provided to the northwestbound left turn movement.

As shown in Table E.5.4 on pp. 127, this mitigation would improve traffic operations to LOS E under the Beach Street diversion scenario (for either Variant #1 or #2). While LOS E is still considered unacceptable, it would represent an improvement over existing conditions.

Additionally, LOS was examined for the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS. SI-1 would shift traffic volumes
onto the northwestbound left-turn, which would become a critical movement at this intersection. With implementation of mitigation TR-2, that movement would operate acceptably at LOS D. Therefore, SI-1 would not have a considerable contribution to the unacceptable LOS at this intersection.

The impact would be mitigated to a less-than-significant level.

Impact TR-3: Beach/Powell
This intersection operates at LOS B during the existing weekend peak period. Under Variant #2, a significant amount of traffic would be added to the southbound approach (either turning southbound right under the Beach Street diversion scenario, or proceeding southbound through under the North Point Street diversion scenario). This increase in traffic volumes would degrade the intersection to LOS D, as shown in Tables E.5.4 and E.5.5 on pp. 127 and on pp. 128.

Improvement Measure I-TR-3: Beach/Powell
To improve operations, the signal timing could be modified. By shifting approximately 10 seconds of green time away from the east-west movement and giving it to the north-south movement, intersection operations would be improved to LOS C conditions as shown in Tables E.5.4 and E.5.5, while still maintaining a 75-second cycle and still meeting required crosswalk clearance intervals.

This would reduce green time for the eastbound streetcar movement, but this signal already has transit-priority features which can detect an approaching streetcar and hold the green phase for it. Therefore the added delay to the eastbound streetcar would not be significant.

With or without implementation of Improvement Measure I-TR-3, traffic impacts would remain less than significant.

Impact TR-4: North Point/Taylor
This intersection operates at LOS B during the existing weekend peak period. Under Variant #1, a significant amount of traffic would be added to the southbound right approach under the North Point scenario, as shown in Table E.5.5 on pp. 128. This increase in southbound right traffic volumes would degrade the intersection to LOS D.

Improvement Measure I-TR-4: North Point/Taylor
To improve operations, a southbound right-turn pocket could be established by removing approximately three on-street parking spaces. This would improve the intersection to LOS B conditions, as shown in Table E.5.5 on pp. 128.

It should be noted that this turn pocket would preclude implementation of a proposed sidewalk bulb-out on the west side of Taylor Street at North Point Street, proposed as part of SI-8 (see pp. 19). The proposed bulb-out in SI-8 would not be implemented until at least one year after implementation of SI-1. This would allow for an examination of traffic patterns by SFMTA, and a

86 If an intersection would remain at unacceptable LOS after implementation of a project, the Planning Department typically examines the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS. Critical movements are the movements at an intersection that experience the most congestion.

87 Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.
determination of whether the sidewalk bulb-out should be constructed, or if a right-turn pocket should be constructed instead.

With or without implementation of Improvement Measure I-TR-4, traffic impacts would remain less than significant.

Impact TR-5: Beach/Taylor
This intersection operates at LOS B during the existing weekend peak period. Under Variant #1, a significant amount of traffic would be added to the southbound right turn movement under the Beach Street scenario. This would degrade the intersection to LOS F as shown in Table E.5.4 on pp. 127, which would be considered a significant impact.

Mitigation Measure TR-5: Beach/Taylor
To mitigate the impact, a southbound right-turn pocket could be established by removing approximately three on-street parking spaces. This would improve the intersection to LOS C conditions, as shown in Table E.5.4 on pp. 127. The impact would be mitigated to a less-than-significant level.

It should be noted that this turn pocket would preclude implementation of a proposed sidewalk bulb-out on the west side of Taylor Street at Beach Street, proposed as part of SI-8 (see pp. 19). The proposed bulb-out in SI-8 would not be implemented until at least one year after implementation of SI-1. This would allow for an examination of traffic patterns by SFMTA, and a determination of whether the sidewalk bulb-out should be constructed, or if a right-turn pocket would be required to mitigate an impact.

Impact TR-6: Jefferson/Taylor
This intersection currently operates at LOS C during the weekend peak period. Under Variant #1 (under either the Beach Street or North Point Street diversion scenarios), all of the westbound traffic would be required to turn due to the road closure. It was assumed that all the traffic would turn left (south). This substantial increase in left-turning traffic would conflict with heavy pedestrian volumes in the south crosswalk. As shown in Tables E.5.4 and E.5.5 on pp. 127 and on pp. 128, the conflict would reduce the left-turn capacity and degrade the intersection to LOS F, which would be considered a significant impact.

Mitigation Measure TR-6: Jefferson/Taylor
To mitigate the impact, the intersection signal phasing would need to be reconfigured. Currently, the signal is a standard two-phase configuration, with one phase for north-south traffic (with concurrent north-south pedestrian movements) and one phase for westbound traffic (with concurrent east-west pedestrian movements).

The mitigation would separate the westbound vehicle movement from the east-west pedestrian movements, by providing a third pedestrian “scramble” phase. This would remove pedestrians

88 Assuming that all traffic turns left (rather than assuming that some traffic would turn right) results in an overly conservative traffic analysis.
from conflicting with the westbound left (or westbound right) turn movement. This signal phasing could be accommodated within the existing 75-second signal cycle.

As shown in Tables E.5.4 and E.5.5 on pp. 127 and on pp. 128, this mitigation would improve operations to LOS D. The impact would be mitigated to a less-than-significant level.

Impact TR-7: Beach/Hyde

This intersection operates at LOS B during the existing weekend peak period. Under the Beach Street diversion scenario (under either Variant #1 or Variant #2), a significant amount of traffic would be added to the westbound approach, as shown in Tables E.5.4 on pp. 127. This increase in traffic volumes would degrade the intersection to LOS F.

Mitigation Measure TR-7: Beach/Hyde

To improve operations, the signal timing could be modified. By shifting approximately 15 seconds of green time away from the north-south movement and giving it to the east-west movements, intersection operations would be improved to LOS C conditions (as shown in Table E.5.4), while still maintaining a 60-second cycle and still meeting required crosswalk clearance intervals. The impact would be mitigated to a less-than-significant level.

This mitigation would reduce green time for the northbound and southbound movements, but this would not affect the cable car movements because cable cars are controlled by separate, actuated signal phases served upon detection. Therefore, there would be no added delay to cable car movements.

Weekend Cumulative Traffic Conditions

Traffic volumes are not expected to significantly grow within the Plan Area under Cumulative (year 2030 conditions), because development opportunities within the area are limited. Furthermore, while the FWPRP would include a five-foot increase in height limits, this increase would not be large enough to construct an additional level of development.

Nonetheless, a cumulative analysis scenario was developed, which assumes a 15 percent growth in traffic, corresponding to an average annual increase in traffic of 0.7 percent. This 15 percent growth was applied uniformly to all approaches of all intersections in the Plan Area. The resulting LOS for the Beach Street diversion scenario is presented in Table E.5.6 on pp. 1135, while the North Point Street diversion scenario is presented in Table E.5.7 on pp. 136. Detailed LOS calculations and volume graphics are presented in the appendix.

89 The growth rate of 15 percent was extracted from the Exploratorium Relocation Project Transportation Study, at Piers 15-17, south of the Plan Area. The transportation study for that project developed cumulative traffic volumes by employing the SF-CHAMP travel demand model, maintained by the San Francisco County Transportation Authority. The northernmost study intersection from that study, Bay/Embarcadero, showed a 15 percent growth rate in through traffic on the Embarcadero during the weekday PM peak period. This growth is largely due to increased commute traffic between the Financial District and Marin County. The Exploratorium Relocation Project Transportation Study did not develop weekend cumulative traffic volumes, but instead applied the 15 percent growth rate from weekday conditions on to the existing weekend traffic volumes. Therefore, applying a 15 percent growth rate to all intersections in the Fisherman’s Wharf Plan Area would represent an overly conservative assessment of future traffic conditions.
SPACE PURPOSILY LEFT BLANK
Table E.5.6

Level of Service Results for SI-1: Jefferson Street Redesign
Cumulative (Year 2030) Plus Project Conditions, Weekend Peak Hour
Beach Street Diversion Scenario

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Cumulative No Project Conditions</th>
<th>Variant #1: Closure at Taylor</th>
<th>Variant #2: Closures at Powell & Taylor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Embarcadero/N. Point/Kearny</td>
<td>> 80.0 (1.04), F</td>
<td>> 80.0 (1.04), F</td>
<td>> 80.0 (1.04), F</td>
</tr>
<tr>
<td>2. Embarcadero/Grant/Beach</td>
<td>> 80.0 (0.98), F</td>
<td>> 80.0 (0.99), F (67.5, E)</td>
<td>> 80.0 (0.99), F (67.5, E)</td>
</tr>
<tr>
<td>3. North Point/Powell</td>
<td>14.0, B</td>
<td>14.0, B</td>
<td>14.0, B</td>
</tr>
<tr>
<td>4. Beach/Powell</td>
<td>20.6, C</td>
<td>18.9, B^</td>
<td>72.2, E (52.8, D)</td>
</tr>
<tr>
<td>5. Embarcadero/Jefferson/Powell</td>
<td>38.6, D</td>
<td>39.9, D</td>
<td>53.5, D (34.4, C)</td>
</tr>
<tr>
<td>6. North Point/Taylor</td>
<td>16.9, B</td>
<td>16.9, B</td>
<td>16.9, B</td>
</tr>
<tr>
<td>7. Beach/Taylor</td>
<td>17.8, B</td>
<td>> 80.0 (1.18), F (51.8, D)</td>
<td>32.9, C</td>
</tr>
<tr>
<td>8. Jefferson/Taylor</td>
<td>23.9, C</td>
<td>> 80.0 (1.30), F (48.5, D)</td>
<td>23.4, C</td>
</tr>
<tr>
<td>10. Beach/Hyde</td>
<td>36.2, D</td>
<td>> 80.0 (0.92), F (32.7, C)</td>
<td>> 80.0 (0.92), F (32.7, C)</td>
</tr>
<tr>
<td>11. Jefferson/Hyde</td>
<td>10.5 (WB), B</td>
<td>8.0 (WB), A^</td>
<td>8.0 (WB), A^</td>
</tr>
</tbody>
</table>

1. See Mitigation Measure TR-9.
2. See Mitigation Measure TR-10.
5. See Mitigation Measure TR-14.
6. See Mitigation Measure TR-16

A. Minor reduction in delay due to increased traffic volumes on lower-delay westbound movement, which reduces the intersection average delay.
B. Minor reduction in delay due to reduced traffic volumes on higher-delay westbound movement.
C. Improvement in LOS due to reduced traffic volumes on higher-delay westbound movement.

LOS presented in average seconds of delay per vehicle. For signalized intersections, delay presented is the average of all vehicles at the intersection. For unsignalized intersections, delay presented is the worst approach of the intersection, followed by the approach direction (e.g., WB = westbound). Volume to capacity (v/c) for intersections operating at LOS F is presented. Project impacts (where LOS deteriorates to unacceptable level as a result of SI-1) shown in bold. Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

Source: San Francisco Planning Department, 2011.
Table E.5.7
Level of Service Results for SI-1: Jefferson Street Redesign
Cumulative (Year 2030) Plus Project Conditions, Weekend Peak Hour
North Point Street Diversion Scenario

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Cumulative No Project Conditions</th>
<th>Variant #1: Closure at Taylor Delay (v/c), LOS</th>
<th>Variant #2: Closures at Powell & Taylor Delay (v/c), LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Embarcadero/N. Point/Kearny</td>
<td>> 80.0 (1.04), F</td>
<td>> 80.0 (1.14), F (61.0, E)</td>
<td>> 80.0 (1.14), F (61.0, E)</td>
</tr>
<tr>
<td>2. Embarcadero/Grant/Beach</td>
<td>> 80.0 (0.98), F</td>
<td>> 80.0 (0.88), F</td>
<td>> 80.0 (0.88), F</td>
</tr>
<tr>
<td>3. North Point/Powell</td>
<td>14.0, B</td>
<td>15.5, B</td>
<td>29.1, C</td>
</tr>
<tr>
<td>4. Beach/Powell</td>
<td>20.6, C</td>
<td>20.6, C</td>
<td>69.9, E (24.0, C)</td>
</tr>
<tr>
<td>5. Embarcadero/Jefferson/Powell</td>
<td>38.6, D</td>
<td>39.9, D</td>
<td>53.5, D (34.4, C)</td>
</tr>
<tr>
<td>6. North Point/Taylor</td>
<td>16.9, B</td>
<td>72.3, E (20.0, C)</td>
<td>28.8, C</td>
</tr>
<tr>
<td>7. Beach/Taylor</td>
<td>17.8, B</td>
<td>37.7, D (22.5, C)</td>
<td>17.5, B</td>
</tr>
<tr>
<td>8. Jefferson/Taylor</td>
<td>23.9, C</td>
<td>> 80.0 (1.30), F (48.5, D)</td>
<td>23.4, C</td>
</tr>
<tr>
<td>9. North Point/Hyde</td>
<td>13.2, B</td>
<td>> 80.0 (0.80), F (29.6, C)</td>
<td>> 80.0 (0.80), F (29.6, C)</td>
</tr>
<tr>
<td>10. Beach/Hyde</td>
<td>36.2, D</td>
<td>43.2, D</td>
<td>43.2, D</td>
</tr>
<tr>
<td>11. Jefferson/Hyde</td>
<td>10.5 (WB), B</td>
<td>8.0 (WB), A</td>
<td>8.0 (WB), A</td>
</tr>
</tbody>
</table>

1. See Mitigation Measure TR-8.
2. See Mitigation Measure TR-10.
4. See Mitigation Measure TR-12.
5. See Mitigation Measure TR-13.
6. See Mitigation Measure TR-14.
7. See Mitigation Measure TR-15.

A. Reduction in volume to capacity ratio due to reduced traffic volumes on higher-delay westbound movement.
B. Minor reduction in delay due to increased traffic volumes on lower-delay southbound movement.
C. Minor reduction in delay due to reduced traffic volumes on higher-delay westbound movement.
D. Minor reduction in delay due to reduced traffic volumes on higher-delay westbound movement.

LOS presented in average seconds of delay per vehicle. For signalized intersections, delay presented is the average of all vehicles at the intersection. For unsignalized intersections, delay presented is the worst approach of the intersection, followed by the approach direction (e.g., WB = westbound). Volume to capacity (v/c) for intersections operating at LOS F is presented. Project impacts (where LOS deteriorates to unacceptable level as a result of SI-1) shown in **bold**. Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

Source: San Francisco Planning Department, 2011.
As shown in Tables E.5.6 and E.5.7 on pp. 135 and pp. 136, concentrated traffic diversions onto Beach or North Point streets would create cumulative traffic impacts at several intersections. Impacts where LOS deteriorates to LOS E or F are considered significant impact, and mitigation measures have been developed. Impacts where LOS deteriorates to LOS D are considered less-than-significant impacts, and improvement measures have been developed.

Summary of Traffic Impacts: Cumulative Plus Project Conditions
Impacts would vary across the two scenarios, but the realm of possible impacts resulting from both scenarios would include impacts at the following intersections:

- **Impact TR-8 (Less than Significant with Mitigation Measure):** Embarcadero/North Point/Kearny (North Point Street diversion scenario only, for both Variant #1 and Variant #2). Mitigation Measure TR-8 would reduce this impact to a less-than-significant level.
- **Impact TR-9 (Less than Significant with Mitigation Measure):** Embarcadero/Beach/Grant (Beach Street diversion scenario only, for both Variant #1 and Variant #2). Mitigation Measure TR-9 would reduce this impact to a less-than-significant level.
- **Impact TR-10 (Less than Significant with Mitigation Measure):** Beach/Powell (both Beach Street and North Point Street diversion scenario, Variant #2 only). Mitigation Measure TR-10 would reduce this impact to a less-than-significant level.
- **Impact TR-11 (Less than Significant Impact):** Embarcadero/Jefferson/Powell (both Beach Street and North Point Street diversion scenario, Variant #2 only). With or without implementation of Improvement Measure I-TR-11 this impact would be less-than-significant impact.
- **Impact TR-12 (Less than Significant with Mitigation Measure):** North Point/Taylor (North Point Street diversion scenario only, Variant #1 only). Mitigation Measure TR-12 would reduce this impact to a less-than-significant level.
- **Impact TR-13 (Less than Significant with Mitigation Measure):** Beach/Taylor (Beach Street diversion scenario only, for Variant #1 only). Mitigation Measure TR-13 would reduce this impact to a less-than-significant level.90
- **Impact TR-14 (Less than Significant with Mitigation Measure):** Jefferson/Taylor (both Beach Street and North Point Street diversion scenarios, for Variant #1 only). Mitigation Measure TR-14 would reduce this impact to a less-than-significant level.
- **Impact TR-15 (Less than Significant with Mitigation Measure):** North Point/Hyde (North Point Street diversion scenario, both Variant #1 and Variant #2). Mitigation Measure TR-15 would reduce this impact to a less-than-significant level.
- **Impact TR-16 (Less than Significant with Mitigation Measure):** Beach/Hyde (Beach Street diversion scenario only, for both Variant #1 and Variant #2). Mitigation Measure TR-16 would reduce this impact to a less-than-significant level.

As previously discussed, the traffic diversion scenarios developed represent conservative assumptions regarding traffic diversions. Specifically, the analysis assumes that all traffic would

90 Under the North Point Street diversion scenario, this impact would be less than significant, but would be LOS D. Therefore, under the North Point Street diversion scenario, this mitigation measure would be considered an improvement measure.
divert onto either Beach or North Point streets. In reality, SI-1 would cause traffic to distribute onto both streets, and traffic would not be as concentrated as the analysis has assumed. Many, if not all, of the significant traffic impacts identified above in Tables E.5.6 and E.5.7 on pp. 135 and pp. 136 would likely not occur, in which case the mitigation measures identified below would not be necessary.

If SI-1 were to be implemented, SFMTA would periodically evaluate traffic LOS at the study intersections as part of its ongoing monitoring of traffic conditions citywide. If SFMTA were to determine that LOS impacts have in fact occurred as a result of implementation of SI-1, SFMTA would implement the mitigation measures identified below, at the locations where impacts occur.

Cumulative Traffic Mitigation Measures and Improvement Measures

Impact TR-8: Embarcadero/Kearny/North Point

This intersection would operate at LOS F under Cumulative No Project conditions with a v/c ratio of 1.04, and conditions would be exacerbated by implementation of SI-1 with a v/c ratio of 1.14, as shown in Table E.5.7 on pp. 136.

Mitigation Measure TR-8: Embarcadero/Kearny/North Point

This cumulative traffic mitigation is the same as the existing weekend condition mitigation described previously under TR-1 under Existing Weekend Conditions (pp.). The mitigation measure would entail reconfiguration of the intersection geometry and signal timing. With implementation, the intersection operations would be improved to LOS E, as shown in Table E.5.7 on pp. 135.

Additionally, LOS was examined for the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS. SI-1 would shift traffic volumes onto the northwesbound left-turn, which would become a critical movement at this intersection. With implementation of mitigation TR-8, that movement would operate acceptably at LOS D. Therefore, SI-1 would not have a considerable contribution to the unacceptable LOS at this intersection.

The impact would be mitigated to a less-than-significant level.

Impact TR-9: Embarcadero/Grant/Beach

This intersection would operate at LOS F under Cumulative No Project conditions, with a v/c ratio of 0.98. Implementation of SI-1 would exacerbate failing operations, with a resulting v/c ratio of 0.99, as shown in Table E.5.6 on pp. 135.

Mitigation Measure TR-9: Embarcadero/Grant/Beach

This cumulative traffic mitigation is similar to the existing weekend condition mitigation described previously under TR-2 under Existing Weekend Conditions (pp. 122). Similar to TR-2,

91 If an intersection would remain at unacceptable LOS after implementation of a project, the Planning Department typically examines the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS. Critical movements are the movements at an intersection that experience the most congestion.

92 Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.
this mitigation measure would entail reconfiguration of the intersection geometry and signal timing. In addition, TR-9 would extend the signal cycle length from 75 to 90 seconds. With implementation, operations would be improved to LOS E, as shown in Table E.5.6 on pp. 134, which is better than the cumulative LOS F without the project.

Additionally, LOS was examined for the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS. SI-1 would shift traffic volumes onto the northwestbound left-turn, which would become a critical movement at this intersection. With implementation of mitigation TR-9, that movement would operate acceptably at LOS D.93 Therefore, SI-1 would not have a considerable contribution to the unacceptable LOS at this intersection.

The impact would be mitigated to a \textit{less-than-significant} level.

\textit{Impact TR-10: Beach/Powell}
This intersection would operate at LOS C under Cumulative No Project conditions. Implementation of SI-1 would cause conditions to deteriorate to LOS E (under Variant #2, under either the Beach Street or North Point Street diversion scenarios) as shown in Tables E.5.6 and E.5.7 on pp. 134 and pp.135.

\textit{Mitigation Measure TR-10: Beach/Powell}
This cumulative traffic mitigation is similar to the improvement measure described previously under I-TR-3 under Existing Weekend Conditions (pp. 132). The measure would entail modifying the signal by shifting approximately 20 seconds of green time away from the east-west movement and giving it to the north-south movement. With implementation, operations would be improved to LOS D under the Beach Street diversion scenario and LOS C under the North Point diversion scenario (Tables E.5.6 and E.5.7 on pp. 134 and pp. \textit{Error! Bookmark not defined.}). The impact would be mitigated to a \textit{less-than-significant} level.

\textit{Impact TR-11: Embarcadero/Jefferson/Powell}
This intersection would operate at LOS D under Cumulative No Project conditions. Implementation of SI-1 would cause conditions to deteriorate, although it would remain at LOS D (under Variant #2, under either the Beach Street or North Point Street diversion scenarios) as shown in Tables E.5.6 and E.5.7 on pp. 135 and pp. \textit{Error! Bookmark not defined.}

\textit{Improvement Measure I-TR-11: Embarcadero/Jefferson/Powell}
This improvement measure would reconfigure the westbound approach of the intersection, from a left-only, through-only and right-only lane (as proposed by the FWPRP) to instead have a left-only, shared left-through, and right-only lane. Provision of a double left-turn movement would not compromise the safety of pedestrians in the southern crosswalk because the intersection is already programmed with separate pedestrian and vehicle signal phases. Southbound Powell Street would also need to be reconfigured, to have two receiving lanes. There is sufficient right-of-way to accommodate two receiving lanes although some restriping might be necessary.

93 Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.
Implementation of this improvement measure would improve conditions to LOS C as shown in Tables E.5.6 and E.5.7 on pp. 135 and pp. 136.

With or without implementation of Improvement Measure I-TR-11, traffic impacts would remain less than significant.

Impact TR-12: North Point/Taylor
This intersection would operate at LOS B under Cumulative No Project conditions. Implementation of SI-1 would cause conditions to deteriorate to LOS E (under Variant #1, under the North Point Street diversion scenario) as shown in Table E.5.7 on pp. 136.

Mitigation Measure TR-12: North Point/Taylor
This cumulative traffic mitigation is the same as the existing weekend condition improvement measure described previously under impact TR-5 under Existing Weekend Conditions (pp. 133). Specifically, a southbound right-turn pocket would be created by removing approximately three parking spaces. With implementation, operations would be improved to LOS C as shown in Table E.5.7 on pp. 136. The impact would be mitigated to a less-than-significant level.

It should be noted that this turn pocket would preclude implementation of a proposed sidewalk bulb-out on the west side of Taylor Street at North Point Street, proposed as part of SI-8 (see pp. 19). The proposed bulb-out in SI-8 would not be implemented until at least one year after implementation of SI-1. This would allow for an examination of traffic patterns by SFMTA, and a determination of whether the sidewalk bulb-out should be constructed, or if a right-turn pocket should be constructed instead. If the sidewalk bulb-out were implemented, but future growth in traffic volumes caused congestion that resulted in a significant impact, the bulb-out would be removed and the right-turn pocket would be implemented.

Impact TR-13: Beach/Taylor
This intersection would operate at LOS B under Cumulative No Project conditions. Implementation of SI-1 would cause conditions to deteriorate to LOS F (under Variant #1, under the Beach Street diversion scenarios) as shown in Table E.5.6 on pp. 135.

Mitigation Measure TR-13: Beach/Taylor
This cumulative traffic mitigation measure is the same as the existing weekend condition mitigation measure described previously under TR-5 under Existing Weekend Conditions (pp. 135). The measure would result in the creation of a southbound right-turn pocket by removing approximately three parking spaces. With implementation, operations would be improved to LOS D as shown in Table E.5.6 on pp. 135. The impact would be mitigated to a less-than-significant level.

It should be noted that this turn pocket would preclude implementation of a proposed sidewalk bulb-out on the west side of Taylor Street at Beach Street, proposed as part of SI-8 (see pp. 19). The proposed bulb-out in SI-8 would not be implemented until at least one year after implementation of SI-1. This would allow for an examination of traffic patterns by SFMTA, and a

94 Under the North Point Street diversion scenario, this intersection would deteriorate to LOS D conditions, and this mitigation measure would be considered an improvement measure.
determination of whether the sidewalk bulb-out should be constructed, or if a right-turn pocket should be constructed instead. If the sidewalk bulb-out were implemented, but future growth in traffic volumes caused congestion that resulted in a significant impact, the bulb-out would be removed and the right-turn pocket would be implemented.

Impact TR-14: Jefferson/Taylor
This intersection would operate at LOS C under Cumulative No Project conditions. Implementation of SI-1 would cause conditions to deteriorate to LOS F (under Variant #1, under either the Beach Street or North Point Street diversion scenarios) as shown in Tables E.5.6 and E.5.7 on pp. 136 and pp. 137.

Mitigation Measure TR-14: Jefferson/Taylor
This cumulative traffic mitigation is the same as the existing weekend condition mitigation measure described previously under impact TR-6 under Existing Weekend Conditions (pp. 133). The measure would involve the reconfiguration of the signal phasing to include a pedestrian “scramble” phase. With implementation, the intersection would operate at LOS D as shown in Tables E.5.6 and E.5.7 on pp. 136 and pp. 137. The impact would be mitigated to a *less-than-significant* level.

Impact TR-15: North Point/Hyde
Under Cumulative No Project conditions, this intersection would operate at LOS B. With implementation of SI-1, conditions would deteriorate to LOS F (under the North Point Street diversion scenario, under both Variant #1 and Variant #2) as shown in Table E.5.7 on pp. 136.

Mitigation Measure TR-15: North Point/Hyde
To mitigate the impact, the signal timing would be modified. By shifting approximately five seconds of green time away from the east-west movement and giving it to the north-south movement, intersection operations would be improved to LOS C conditions (as shown in Table E.5.7 on pp. 136), while still maintaining a 60-second cycle and still meeting required crosswalk clearance intervals. Implementation would reduce the impact to a *less-than-significant* level.

Impact TR-16: Beach/Hyde
This intersection would operate at LOS D under Cumulative No Project conditions. Implementation of SI-1 would cause conditions to deteriorate to LOS F (under both Variant #1 and Variant #2, under the Beach Street diversion scenario) as shown in Table E.5.6 on pp. 135.

Mitigation Measure TR-16: Beach/Hyde
This cumulative traffic mitigation is the same as the existing weekend condition improvement measure described previously under impact TR-7 under Existing Weekend Conditions (pp. 133). The measure would involve adjustments to the signal timing such that more green time is given to the east-west movement and less to the north-south movement. With implementation, the intersection would operate at LOS C as shown in Table E.5.6 on pp. 135. The impact would be mitigated to a *less-than-significant level*.

Weekday Traffic Conditions
Transportation analysis in San Francisco typically examines the weekday peak commute period, i.e. 4:00 PM—6:00 PM. However, weekday traffic volumes within the Plan Area are significantly lower than during the peak weekend period. All intersections currently operate acceptably during the peak weekday period, whereas several intersections currently operate unacceptably during the weekend peak period.

In addition, the analysis presented in this section has demonstrated that significant traffic impacts that could not be mitigated to a less-than-significant level would not occur with implementation of SI-1, under either Existing conditions or under Cumulative conditions.

However, North Point Street serves local retail, hotel and residential uses. Unlike Jefferson or Beach streets, traffic volumes on North Point Street are not significantly reduced during the weekday compared to the weekend. Therefore, an Existing Plus Project and Cumulative analysis of weekday traffic conditions is presented, but only for North Point Street. The analysis is only presented for the North Point Street diversion scenario (i.e. the following analysis assumes that all vehicles diverted off of Jefferson Street would divert onto North Point Street, a conservative assumption).

Existing Plus Project Conditions

Table E.5.8 on pp. 142 presents the peak weekday Level of Service results for both Variant #1 and Variant #2. Where LOS deteriorates to LOS D, improvement measures are proposed. Where LOS deteriorates to LOS E of F, mitigation measures are proposed that would improve traffic operations to acceptable LOS. LOS resulting from the improvement or mitigation measure is presented in parentheses.

SPACE PURPOSELY LEFT BLANK
Table E.5.8
Level of Service Results for SI-1: Jefferson Street Redesign
Existing Plus Project Conditions, Weekday Peak Hour
North Point Street Diversion Scenario

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing No Project Conditions</th>
<th>Variant #1: Closure at Taylor</th>
<th>Variant #2: Closures at Powell & Taylor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Embarcadero/N. Point/Kearny</td>
<td>31.6, C</td>
<td>43.0, D (25.7, C)1</td>
<td>43.0, D (25.7, C)1</td>
</tr>
<tr>
<td>3. North Point/Powell</td>
<td>15.2, B</td>
<td>13.9, B</td>
<td>23.4, C</td>
</tr>
<tr>
<td>6. North Point/Taylor</td>
<td>21.6, C</td>
<td>69.1, E (19.6, B)2</td>
<td>17.6, B</td>
</tr>
<tr>
<td>9. North Point/Hyde</td>
<td>15.4, B</td>
<td>15.1, B</td>
<td>15.1, B</td>
</tr>
</tbody>
</table>

LOS presented in average seconds of delay per vehicle. For signalized intersections, delay presented is the average of all vehicles at the intersection. For unsignalized intersections, delay presented is the worst approach of the intersection, followed by the approach direction (e.g., WB = westbound). Volume to capacity (v/c) for intersections operating at LOS F is presented. Project impacts (where LOS deteriorates to unacceptable level as a result of SI-1) shown in **bold**. Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

Source: San Francisco Planning Department, 2011.

As shown in Table E.5.8 on pp. 142, SI-1 would cause one intersection to operate unacceptably under weekday Existing Plus Project conditions:

- **Impact TR-17 (Less than Significant Impact):** Embarcadero/North Point/Kearny (for both Variant #1 and Variant #2). Improvement Measure I-TR-17 would reduce this *less-than-significant impact*.

- **Impact TR-18 (Less than Significant with Mitigation Measure):** North Point/Taylor (Variant #1 only). Mitigation TR-4 would reduce this impact to a *less-than-significant* level.

Embarcadero/Kearny/North Point
This intersection would operate at LOS C under Existing Weekday No Project conditions, and would deteriorate to LOS D (under Variant #1 or Variant #2) with implementation of SI-1 as shown in Table E.5.8 on pp. 142.

Improvement Measure I-TR-17: Embarcadero/Kearny/North Point

This Improvement is the same as Mitigation TR-1 under Existing Weekend Conditions (pp. 129). The improvement measure would entail reconfiguration of the intersection geometry and signal timing. With implementation, the intersection would operate at LOS C as shown in Table E.5.8 on pp. 142.
With or without implementation of Improvement Measure I-TR-17, traffic impacts would remain *less than significant*.

Impact TR-18: North Point/Taylor
This intersection would operate at LOS C under Existing Weekday No Project conditions, and would deteriorate to LOS E (under Variant #1) with implementation of SI-1 as shown in Table E.5.8 on pp. 142.

Mitigation Measure TR-18: North Point/Taylor
Implementation of Mitigation Measure TR-18, which is the same as Mitigation Measure TR-4 under Existing Weekend Conditions (pp. 132) would reduce this impact. Specifically, a southbound right-turn pocket would be created by removing approximately three parking spaces. With implementation, the intersection would operate at LOS B as shown in Table E.5.8 on pp. 142. The impact would be mitigated to a *less-than-significant* level.
Cumulative Plus Project Conditions

Table E.5.9
Level of Service Results for SI-1: Jefferson Street Redesign
cumulative Plus Project Conditions, Weekday Peak Hour
North Point Street Diversion Scenario

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Cumulative No Project Conditions</th>
<th>Variant #1: Closure at Taylor</th>
<th>Variant #2: Closures at Powell & Taylor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Embarcadero/N. Point/Kearny</td>
<td>36.8, C</td>
<td>56.2, E (26.3, C)</td>
<td>56.2, E (26.3, C)</td>
</tr>
<tr>
<td>3. North Point/Powell</td>
<td>15.7, B</td>
<td>14.6, B</td>
<td>33.9, C</td>
</tr>
<tr>
<td>6. North Point/Taylor</td>
<td>28.2, C</td>
<td>>80 (0.59), F (23.5, C)</td>
<td>23.0, C</td>
</tr>
<tr>
<td>9. North Point/Hyde</td>
<td>16.2, B</td>
<td>14.8, B</td>
<td>15.9, B</td>
</tr>
</tbody>
</table>

1. See Mitigation TR-1. 2. See Mitigation TR-4.

LOS presented in average seconds of delay per vehicle. For signalized intersections, delay presented is the average of all vehicles at the intersection. For unsignalized intersections, delay presented is the worst approach of the intersection, followed by the approach direction (e.g., WB = westbound). Volume to capacity (v/c) for intersections operating at LOS F is presented. Project impacts (where LOS deteriorates to unacceptable level as a result of SI-1) shown in bold. Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

Source: San Francisco Planning Department, 2011.

As shown in Table E.5.9 on pp. 144, SI-1 would cause two intersections to operate unacceptably under weekday Cumulative Plus Project conditions:

- **Impact TR-19 (Less than Significant with Mitigation Measure):** Embarcadero/North Point/Kearny (for both Variant #1 and Variant #2). Mitigation TR-1 would reduce this impact to a less-than-significant level.
- **Impact TR-20 (Less than Significant with Mitigation Measure):** North Point/Taylor (Variant #1 only). Mitigation TR-4 would reduce this impact to a less-than-significant level.

Impact TR-19: Embarcadero/Kearny/North Point
This intersection would operate at LOS C under Existing Weekday No Project conditions, and would deteriorate to LOS E with implementation of SI-1 (under Variant #1 or Variant #2) as shown in Table E.5.9 on pp. 144.

Mitigation Measure TR-19: Embarcadero/Kearny/North Point
Implementation of Mitigation Measure TR-19, which is the same as Mitigation Measure TR-1 under Existing Weekend Conditions (pp. 129) would reduce this impact. The mitigation measure would entail reconfiguration of the intersection geometry and signal timing. With
implementation, the intersection would operate at LOS C as shown in Table E.5.9 on pp. 144. The impact would be mitigated to a less-than-significant level.

Impact TR-20: North Point/Taylor
This intersection would operate at LOS C under Existing Weekday No Project conditions. Implementation of SI-1 would cause conditions to deteriorate to LOS F (under Variant #1) as shown in Table E.5.9 on pp. 144.

Mitigation Measure TR-20: North Point/Taylor
Implementation of mitigation measure TR-20, which is the same as Mitigation Measure TR-4 under Existing Weekend Conditions (pp. 132) would reduce this impact. Specifically, a southbound right-turn pocket would be created by removing approximately three parking spaces. With implementation, the intersection would operate at LOS C as shown in Table E.5.9 on pp. 144. The impact would be mitigated to a less-than-significant level.

PARKING
As described in section 5.1.7, Jefferson Street currently has eight block-faces of on-street metered parking, for a total of approximately 80 parking spaces. These spaces would be removed as part of SI-1. However, SI-1 would not result in the elimination of any off-street parking spaces, nor the elimination of access to any off-street spaces.

Relative to the supply of 1,040 on-street parking spaces in the Plan Area (as described on page 111), this would result in a reduction of 8 percent of on-street parking spaces. Relative to the combined on- and off-street parking supply of 7,540 parking spaces within the Plan Area, this represents a reduction of 1 percent of overall parking.

San Francisco does not consider parking supply as part of the permanent physical environment and therefore, does not consider changes in parking conditions to be environmental impacts as defined by CEQA. However, this report presents a parking analysis to inform the public and the decision makers as to the parking conditions that could occur as a result of implementing the proposed project.

Parking conditions are not static, as parking supply and demand varies from day to day, from day to night, from month to month, etc. Hence, the availability of parking spaces (or lack thereof) is not a permanent physical condition, but changes over time as people change their modes and patterns of travel.

Parking deficits are considered to be social effects, rather than impacts on the physical environment as defined by CEQA. Under CEQA, a project’s social impacts need not be treated as significant impacts on the environment. Environmental documents should, however, address the secondary physical impacts that could be triggered by a social impact. (CEQA Guidelines § 15131(a).) The social inconvenience of parking deficits, such as having to hunt for scarce parking spaces, is not an environmental impact, but there may be secondary physical environmental impacts, such as increased traffic congestion at intersections, air quality impacts, safety impacts, or noise impacts caused by congestion. In the experience of San Francisco transportation planners, however, the absence of a ready supply of parking spaces, combined with available alternatives to auto travel (e.g., transit service, taxis, bicycles or travel by foot) and a relatively
dense pattern of urban development, induces many drivers to seek and find alternative parking facilities, shift to other modes of travel, or change their overall travel habits. Any such resulting shifts to transit service in particular, would be in keeping with the City’s “Transit First” policy. The City’s Transit First Policy, established in the City’s Charter Section 16.102 provides that “parking policies for areas well served by public transit shall be designed to encourage travel by public transportation and alternative transportation.” Fisherman’s Wharf is already well served by public transit, as well as bicycle and pedestrian facilities, all of which would be improved by the FWPRP.

The transportation analysis accounts for potential secondary effects, such as cars circling and looking for a parking space in areas of limited parking supply, by assuming that all drivers would attempt to find parking at or near the project site and then seek parking farther away if convenient parking is unavailable. Moreover, the secondary effects of drivers searching for parking is typically offset by a reduction in vehicle trips due to others who are aware of constrained parking conditions in a given area. Hence, any secondary environmental impacts which may result from a shortfall in parking in the vicinity of the proposed project would be minor, and the traffic assignments used in the transportation analysis, as well as in the associated air quality, noise and pedestrian safety analyses, reasonably addresses potential secondary effects.

SI-2. Beach Street (Between The Embarcadero and Hyde Street)

SI-2 would improve the pedestrian comfort and safety along the sidewalk and at intersections along Beach Street, from The Embarcadero to Hyde Street. The improvements would be restricted to the sidewalk on both sides of the street and parking lane on the north side of the street, and would not reduce roadway capacity or affect transit operations.

SI-2 would include standard design elements from the Better Streets Plan, including stormwater control measures, corner curb extensions, flexible use of the parking lane, pedestrian lighting, street furniture and special paving in the furniture zone. Other standard elements such as marked crosswalks, street trees, and pedestrian signals already exist at most locations along Beach Street, although SI-2 would install these elements at any locations where they are missing.

SI-2 may also include optional elements from the Better Streets Plan, including high-visibility crosswalks, parking lane planters, sidewalk planter boxes, extended bulb-outs, and raised crosswalks.

PEDESTRIAN

SI-2 would not result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility. On the

95 The Better Streets Plan describes design guidelines for pedestrian and streetscape features in the public right-of-way in San Francisco.

96 Fixtures installed along the roadway, at or above grade level, including lamp posts, pedestrian lighting, fire hydrants, street signs, benches, trash cans, bike racks, newspaper boxes, water fountains, and planters.
contrary, the improvements would be expected to enhance pedestrian access and safety due to shortened crossing distances, reduced vehicle speeds and greater driver visibility. Improvements within the parking lane would not be constructed within crosswalks or otherwise interfere with pedestrian access, and would not block driver visibility of pedestrians in crosswalks. As part of any pedestrian improvements to the parking lane, physical barriers (such as planters) would be placed between pedestrians and the travel lanes. Raised crosswalks and corner curb extensions would enhance pedestrian visibility and calm traffic. The installation of pedestrian signals, lighting, and street trees would allow an enhanced pedestrian connection and improve pedestrian safety. The impact on pedestrians would be less than significant.

BICYCLE
SI-2 would not create potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. Improvements within the parking lane would not encroach on the travel lane and would therefore not interfere with bicycle travel. Raised crosswalks would not result in potentially hazardous conditions for bicyclists, because bicycles can ride over raised crosswalks without difficulty. The impact on bicycles would be less than significant.

TRANSIT
SI-2 would not affect transit capacity or delay transit, and would not generate any new transit trips. Muni buses and streetcars operate on Beach Street, but improvements within the parking lane would not encroach on travel lanes and would therefore not interfere with transit operations. Parking lane improvements would not be implemented in bus zones, and would not be implemented in any way that would interfere with passenger boarding and alighting of transit vehicles. Raised crosswalks would not be implemented across a transit route (i.e. if the Fort Mason streetcar extension is constructed along Beach Street, raised crosswalks would not be implemented at Leavenworth or Larkin streets or Columbus Avenue). The impact on transit would be less than significant.

LOADING
SI-2 would not create any passenger loading demand, nor would it result in the removal of any on-street passenger loading spaces (white curb zones). SI-2 would not create any freight loading demand, although some parking lane improvements may remove one or more on-street loading spaces. To ensure that adequate space for loading activities is maintained, each freight loading space (yellow curb zone) that would be removed would be replaced with a new loading space, of similar size and on the same block and same side of the street, which would ensure that adequate loading facilities are maintained. All intersection improvements would be designed to accommodate a 40-foot truck or tour bus. The impact on loading would be less than significant.

EMERGENCY VEHICLE
SI-2 would not hinder emergency vehicle access. Intersection improvements would be designed to accommodate emergency vehicles. Furthermore, all improvements would be reviewed by the San Francisco Fire Department during the design phase to ensure adequate emergency vehicle access. The impact on emergency vehicles would be less than significant.

TRAFFIC
SI-2 would not cause an increase in vehicle trips or a reduction in roadway capacity. Parking lane improvements would not encroach on travel lanes and therefore would not affect roadway capacity. The impact on traffic would be less than significant.

PARKING
SI-2 would not create any parking demand. Some elements, such as extended bulb-outs, planters in the parking lane, or flexible use of the parking lane, would require the temporary or permanent elimination of one or more parking spaces. Presuming that each corner on Beach Street would have one sidewalk bulb-out that would remove one parking space, and that each block-face with a parking lane would have one improvement in the parking lane that would remove two parking spaces, this would eliminate up to approximately 30 parking spaces. These 30 spaces would be removed out of a total supply of approximately 120 parking spaces along Beach Street, resulting in a reduction of up to 25 percent of on-street parking spaces.

SI-3, North Point (Between Polk Street & the Embarcadero)

SI-3 would improve the pedestrian comfort and safety along the sidewalk and at intersections and would emphasize the predominantly residential character of the street. The segment between Columbus Avenue and Polk Street would emphasize the predominantly residential character of the street, while the segment between Columbus Avenue and The Embarcadero would reflect the more commercial character of the street. Standard intersection improvements would include bulb-outs and marked crosswalks. Standard block segment improvements would include street trees, parking lane planters, pedestrian-scale lighting and stormwater control measures. Recommended improvements97 would include pedestrian signals and raised crosswalks across minor streets, such as Larkin and Grant streets. There would be no changes to vehicle movements or capacity.

PEDESTRIAN
SI-3 would not result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access and safety due to shortened crossing distances, reduced vehicle speeds and greater driver visibility. As part of any pedestrian improvements to the parking lane, physical barriers (such as planters) would be placed between pedestrians and the travel lanes. Raised crosswalks would enhance pedestrian visibility and calm traffic. The impact to pedestrians would be less than significant.

BICYCLE
SI-3 would not create potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. North Point Street currently has bike lanes which would remain. Sidewalk bulb-outs would not constrict the space where a cyclist would ride, because bulb-outs would only occupy the parking lane, not the travel lane or the bicycle lane. Furthermore, by replacing parked cars with sidewalk bulb-outs, bicycle safety would improve because hazards such as opening doors, parking maneuvers, and blocked visibility would be reduced. Raised crosswalks

97 Recommended improvements for particular street types would not be mandatory for future site-specific streetscape projects or proposed developments in that street type, but should be considered for implementation as budgets, physical conditions, and/or neighborhood preferences permit.
would not result in potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility, because bicycles can ride over raised crosswalks without difficulty. The impact to bicycles would be \textit{less than significant}.

TRANSPORT

SI-3 would not affect transit capacity or delay transit, and would not generate any new transit trips. Bulb outs would be designed to accommodate turning bus radii requirements, and they would not inhibit the bus from accessing bus stops. Raised crosswalks would be implemented across minor streets, not across North Point Street, therefore raised crosswalks would not be implemented across a transit route. The impact to transit would be \textit{less than significant}.

LOADING

SI-3 would not create any passenger loading demand, nor would it result in the removal of any on-street passenger loading spaces (white curb zones). SI-3 would not create any freight loading demand, although some parking lane improvements may remove one or more on-street loading spaces. To ensure that adequate space for loading activities is maintained, each freight loading space (yellow curb zone) that would be removed would be replaced with a new loading space, of similar size and on the same block and same side of the street, which would ensure that adequate loading facilities are maintained. All intersection improvements would be designed to accommodate a 40’ truck or tour bus. The impact on loading would be \textit{less than significant}.

EMERGENCY VEHICLE

SI-3 would not hinder emergency vehicle access. Intersection improvements would be designed to accommodate emergency vehicles. Furthermore, all improvements would be reviewed by the San Francisco Fire Department during the design phase to ensure adequate emergency vehicle access. The impact on emergency vehicles would be \textit{less than significant}.

TRAFFIC

SI-3 would not cause an increase in vehicle trips or a reduction in roadway capacity. Sidewalk bulb-outs would only occupy the parking lane and not intrude on vehicle travel lanes. The impact on traffic would be \textit{less than significant}.

PARKING

SI-3 would not create any parking demand. Some elements, such as extended bulb-outs, planters in the parking lane, or flexible use of the parking lane, would require the temporary or permanent elimination of one or more parking spaces. Presuming that each corner on North Point Street (that is not a bus stop) would have one sidewalk bulb-out that would remove one parking space, and that each block-face with a parking lane would have one improvement in the parking lane that would remove two parking spaces, this would eliminate up to approximately 70 parking spaces. These 70 spaces would be removed out of a total supply of approximately 215 parking spaces along North Point Street, resulting in a reduction of up to 33 percent.

\textit{SI.A. Powell, Mason, Jones and Leavenworth Streets}
These streets would provide improvements to better connect the Wharf area with the neighborhoods to the south. Installation of streetscape improvements would strengthen the connection between the Wharf and the adjacent neighborhoods. Implementation of this project would also improve the pedestrian comfort and safety along the sidewalk and at intersections. Standard intersection improvements would include bulb-outs, marked crosswalks and ramps, pedestrian signals, and public space amenities at intersections (such as furnishings and wayfinding signage on bulb-outs). Standard block-segment improvements would include pedestrian-scale lighting, flexible use of the parking lane, parking lane planters, stormwater control measures and trees. Recommended improvements would include high visibility crosswalks, sidewalk planter boxes and extended bulb-outs. There are no anticipated changes to vehicle movements or capacity.

PEDESTRIAN

SI-4 would not result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access and safety due to shortened crossing distances, reduced vehicle speeds and greater driver visibility. Flexible use of the parking lane would not be implemented in a crosswalk, and would not block driver visibility of pedestrians in crosswalks. As part of any pedestrian improvements to the parking lane, physical barriers (such as planters) would be placed between pedestrians and the travel lanes. The impact to pedestrians would be *less than significant*.

BICYCLE

SI-4 would not create potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. Sidewalk bulb-outs would not constrict the space where a cyclist would ride, because bulb-outs would only occupy the parking lane, not the travel lane. Furthermore, by replacing parked cars with sidewalk bulb-outs, bicycle safety would improve because conflicts such as opening doors, parking maneuvers, and blocked visibility would be reduced. The impact to bicycles would be *less than significant*.

TRANSIT

SI-4 would not affect transit capacity or delay transit, and would not generate any new transit trips. Muni operates on Powell Street (the 39 Coit and the 8X/8BX), on Mason Street (turnback for the 47 Van Ness), and on Jones Street (turnback for the F Market and Wharves), while no transit operates on Leavenworth Street. Bulb outs would be designed to accommodate turning bus radii requirements, and they would not inhibit the bus from accessing bus stops. Flexible parking would not be implemented in bus zones, and would not be implemented in any way that would interfere with passenger boarding and alighting. The impact to transit would be *less than significant*.

LOADING

SI-4 would not create any passenger loading demand, nor would it result in the removal of any on-street passenger loading spaces (white curb zones). SI-4 would not create any freight loading demand, although some parking lane improvements may remove one or more on-street loading spaces. To ensure that adequate space for loading activities is maintained, each freight loading space (yellow curb zone) that would be removed would be replaced with a new loading space, of
similar size and on the same block and same side of the street, which would ensure that adequate loading facilities are maintained. All intersection improvements would be designed to accommodate a 40’ truck or tour bus. The impact on loading would be less than significant.

EMERGENCY VEHICLE

SI-4 would not hinder emergency vehicle access. Intersection improvements would be designed to accommodate emergency vehicles. Furthermore, all improvements would be reviewed by the San Francisco Fire Department during the design phase to ensure adequate emergency vehicle access. The impact on emergency vehicles would be less than significant.

TRAFFIC

SI-4 would not cause an increase in vehicle trips or a reduction in roadway capacity. Sidewalk bulb-outs would only occupy the parking lane and not intrude on vehicle travel lanes. Flexible use of the parking lane would be limited to the on-street parking lane only, and would not affect roadway capacity. The impact to traffic would be less than significant.

PARKING

SI-4 would not create any parking demand. Some elements, such as extended bulb-outs, planters in the parking lane, or flexible use of the parking lane, would require the temporary or permanent elimination of one or more parking spaces. Presuming that each corner on along these four streets would have one sidewalk bulb-out that would remove one parking space, and that each block-face with a parking lane would have one improvement in the parking lane that would remove two parking spaces, this would eliminate up to approximately 60 parking spaces. These 60 spaces would be removed out of a total supply of approximately 135 parking spaces along these four streets, resulting in a reduction of up to 44 percent.

Sl5. Hyde Street (Between Beach and Bay Streets)

This project would strengthen the existing character of Hyde Street, while providing improved pedestrian comfort and safety along the sidewalk and at intersections. Speeds should remain low and cars should move slowly, as Hyde has a strong residential and pedestrian character and cable cars, although it would continue to serve both local and limited through traffic. Standard improvements at intersections include bulb outs, and marked crosswalks and ramps. Standard block-segment improvements include flexible use of the parking lane and pedestrian-scale lighting. The recommended improvements include parking lane planters and high-visibility crosswalks. There are no anticipated changes to vehicle movement or capacity.

PEDESTRIAN

SI-5 would not result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access and safety due to shortened crossing distances, reduced vehicle speeds and greater driver visibility. Flexible use of the parking lane would not be implemented in a crosswalk, and would not block driver visibility of pedestrians in crosswalks. As part of any pedestrian improvements to the parking lane, physical barriers (such as planters) would be placed between pedestrians and the travel lanes. The impact to pedestrians would be less than significant.
BICYCLE
SI-5 would not create potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. Sidewalk bulb-outs would not constrict the space where a cyclist would ride, because bulb-outs would only occupy the parking lane, not the travel lane. Furthermore, by replacing parked cars with sidewalk bulb-outs, bicycle safety would improve because hazards such as opening doors, parking maneuvers, and blocked visibility would be reduced. Flexible Parking would not encroach on the bicycle lane. The impact to bicycles would be less than significant.

TRANSIT
SI-5 would not affect transit capacity or delay transit, and would not generate any new transit trips. Bulb outs would be designed considering the operating characteristics of cable cars, and flexible parking would not be implemented in any way that would interfere with passenger boarding and alighting of cable cars. The impact to transit would be less than significant.

LOADING
SI-5 would not create any passenger loading demand, nor would it result in the removal of any on-street passenger loading spaces (white curb zones). SI-5 would not create any freight loading demand, although some parking lane improvements may remove one or more on-street loading spaces. To ensure that adequate space for loading activities is maintained, each freight loading space (yellow curb zone) that would be removed would be replaced with a new loading space, of similar size and on the same block and same side of the street, which would ensure that adequate loading facilities are maintained. All intersection improvements would be designed to accommodate a 40’ truck or tour bus. The impact on loading would be less than significant.

EMERGENCY VEHICLE
SI-5 would not hinder emergency vehicle access. Intersection improvements would be designed to accommodate emergency vehicles. Furthermore, all improvements would be reviewed by the San Francisco Fire Department during the design phase to ensure adequate emergency vehicle access. The impact on emergency vehicles would be less than significant.

TRAFFIC
SI-5 would not cause an increase in vehicle trips or a reduction in roadway capacity. Sidewalk bulb-outs would only occupy the parking lane and not intrude on vehicle travel lanes. Flexible use of the parking lane would be limited to the on-street parking lane only, and would not affect roadway capacity. The impact to traffic would be less than significant.

PARKING
SI-5 would not create any parking demand. Some elements, such as extended bulb-outs, planters in the parking lane, or flexible use of the parking lane, would require the temporary or permanent elimination of one or more parking spaces Presuming that each corner on along this segment of Hyde Street would have one sidewalk bulb-out that would remove one parking space, and that each block-face with a parking lane would have one improvement in the parking lane that would remove two parking spaces, this would eliminate up to approximately 15 parking spaces. These 15 spaces would be removed out of a total supply of approximately 30 parking spaces along Hyde Street, resulting in a reduction of up to 50 percent.
SI.6. Hyde Street (Between Jefferson and Beach Streets)

This section of Hyde Street is an important link in the area’s pedestrian network and improvements would focus on strengthening its pedestrian character. Improvements to the park edge would help knit Fisherman’s Wharf together with important adjacent destinations. Standard improvements at intersections would include crosswalks, bulb-outs and curb ramps. Standard block-segment improvements would include parking lane planters, stormwater control measures, trees, pedestrian-scale lighting, and sidewalk planter boxes. Recommended improvements would include high-visibility crosswalks and extended bulb-outs. The roadway would maintain its southbound-only directionality, but the number of lanes would be reduced from two to one, and bike lanes would be striped in both directions.

PEDESTRIAN

SI-6 would not result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access and safety due to shortened crossing distances, reduced vehicle speeds and greater driver visibility. As part of any pedestrian improvements to the parking lane, physical barriers (such as planters) would be placed between pedestrians and the travel lanes. The impact to pedestrians would be *less than significant*.

BICYCLE

SI-6 would not create potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. New bicycle lanes would be implemented in both directions on this street, improving bicycle access. Sidewalk bulb-outs would not constrict the space where a cyclist would ride, because bulb-outs would only occupy the parking lane, not the travel lane or bike lane. Furthermore, by replacing parked cars with sidewalk bulb-outs, bicycle safety would improve because hazards such as opening doors, parking maneuvers, and blocked visibility would be reduced. The impact to bicycles would be *less than significant*.

TRANSIT

SI-6 would not affect transit capacity or delay transit, and would not generate any new transit trips. Transit does not operate on this block of Hyde Street. The impact to transit would be *less than significant*.

LOADING

SI-6 would not create any passenger loading demand, nor would it result in the removal of any on-street passenger loading spaces (white curb zones), although SI-1 would result in the removal of these passenger loading zones. SI-6 would not create any freight loading demand. All intersection improvements would be designed to accommodate a 40’ truck or tour bus. The impact on loading would be *less than significant*.

EMERGENCY VEHICLE
SI-6 would not hinder emergency vehicle access. Intersection improvements would be designed to accommodate emergency vehicles. Furthermore, all improvements would be reviewed by the San Francisco Fire Department during the design phase to ensure adequate emergency vehicle access. The impact on emergency vehicles would be less than significant.

TRAFFIC
SI-6 would not cause an increase in vehicle trips. The reduction in roadway capacity from two to one lanes (both on Hyde Street and on Jefferson Street) has been accounted for in the traffic analysis of SI-1; as shown in Tables 5.4.3 through 5.4.6, the LOS at Hyde/Jefferson and Hyde/Beach would either improve or continue to operate acceptably with implementation of SI-1 and SI-6. Sidewalk bulb-outs would only occupy the parking lane and would not intrude on vehicle travel lanes. The impact to traffic would be less than significant.

PARKING
SI-6 would not create any parking demand. Up to 18 parking spaces would be installed on the street, in addition to the five spaces that currently exist, for a growth in on-street parking of up to 360 percent.

SI.7. Larkin Street (Between Beach and Bay Streets)
This project would strengthen the existing character of Larkin Street, while providing improved pedestrian amenities. The goal of the improvements would be to ensure traffic moves slowly, since Larkin Street has an elevated level of pedestrian activity associated with the popular Ghirardelli Square. Standard improvements at intersections would include crosswalks and curb ramps. Standard block-segment improvements would include stormwater control measures and street trees. Recommended improvements would include high-visibility crosswalks, a raised crosswalk at Bay Street, parking-lane planters, and pedestrian-scale lighting. There would be no changes to vehicle movement or capacity.

PEDESTRIAN
SI-7 would not result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access and safety due to shortened crossing distances, reduced vehicle speeds and greater driver visibility. Flexible use of the parking lane would not be implemented in a crosswalk, and would not block driver visibility of pedestrians in crosswalks. As part of any pedestrian improvements to the parking lane, physical barriers (such as planters) would be placed between pedestrians and the travel lanes. The impact to pedestrians would be less than significant.

BICYCLE
SI-7 would not create potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. Sidewalk bulb-outs would not constrict the space where a cyclist would ride, because bulb-outs would only occupy the parking lane, not the travel lane. Furthermore, by replacing parked cars with sidewalk bulb-outs, bicycle safety would improve because hazards such as opening doors, parking maneuvers, and blocked visibility would be reduced. The impact to bicycles would be less than significant.
TRANSIT
SI-7 would not affect transit capacity or delay transit, and would not generate any new transit trips. Transit does not operate on Larkin Street, except for the block between Beach and North Point streets, which is traveled by the 19 Polk bus. Bulb outs would be designed to accommodate turning bus radii requirements, and they would not inhibit the bus from accessing bus stops. Flexible Parking would not be implemented in bus zones, and would not be implemented in any way that would interfere with passenger boarding and alighting. The impact to transit would be less than significant.

LOADING
SI-7 would not create any passenger loading demand, nor would it result in the removal of any on-street passenger loading spaces (white curb zones). SI-7 would not create any freight loading demand, although some parking lane improvements may remove one or more on-street loading spaces. To ensure that adequate space for loading activities is maintained, each freight loading space (yellow curb zone) that would be removed would be replaced with a new loading space, of similar size and on the same block and same side of the street, which would ensure that adequate loading facilities are maintained. All intersection improvements would be designed to accommodate a 40’ truck or tour bus. The impact on loading would be less than significant.

EMERGENCY VEHICLE
SI-7 would not hinder emergency vehicle access. Intersection improvements would be designed to accommodate emergency vehicles. Furthermore, all improvements would be reviewed by the San Francisco Fire Department during the design phase to ensure adequate emergency vehicle access. The impact on emergency vehicles would be less than significant.

TRAFFIC
SI-7 would not cause an increase in vehicle trips or a reduction in roadway capacity. Sidewalk bulb-outs would only occupy the parking lane and not intrude on vehicle travel lanes. Flexible use of the parking lane would be limited to the on-street parking lane only, and would not affect roadway capacity. The impact on traffic would be less than significant.

PARKING
SI-7 would not create any parking demand. Some elements, such as extended bulb-outs, planters in the parking lane, or flexible use of the parking lane, would require the temporary or permanent elimination of one or more parking spaces. Presuming that each corner on along this segment of Larkin Street would have one sidewalk bulb-out that would remove one parking space, and that each block-face with a parking lane would have one improvement in the parking lane that would remove two parking spaces, this would eliminate up to approximately 15 parking spaces. These 15 spaces would be removed out of a total supply of approximately 30 parking spaces along Larkin Street, resulting in a reduction of up to 50 percent.

SI.8 Taylor Street (Between Jefferson and Bay Streets)

This project would strengthen the existing character of Taylor Street, while providing improved pedestrian amenities. The improvements would be restricted to the sidewalk and parking lane level on the both sides of the street, and would extend from Jefferson Street to Bay Street.
Implementation of this project would also improve the pedestrian comfort and safety along the sidewalk and at intersections, as well as establish a stronger pedestrian connection between the cable car turnaround at Bay Street and Fisherman’s Wharf. Standard intersection improvements would include bulb-outs, marked crosswalks and ramps, pedestrian signals, and public space amenities at intersections (such as furnishings and wayfinding signage on bulb-outs). Standard block-segment improvements would include pedestrian-scale lighting, flexible use of the parking lane, sidewalk planter boxes, parking lane planters, stormwater control measures and street trees. Recommended improvements would include high-visibility crosswalks, and extended bulb-outs. There would be no changes to vehicle movement or capacity.

PEDESTRIAN
SI-8 would not result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access and safety due to shortened crossing distances, reduced vehicle speeds and greater driver visibility. As part of any pedestrian improvements to the parking lane, physical barriers (such as planters) would be placed between pedestrians and the travel lanes. The impact to pedestrians would be less than significant.

BICYCLE
SI-8 would not create potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. Sidewalk bulb-outs would not constrict the space where a cyclist would ride, because bulb-outs would only occupy the parking lane, not the travel lane. Furthermore, by replacing parked cars with sidewalk bulb-outs, bicycle safety would improve because hazards such as opening doors, parking maneuvers, and blocked visibility would be reduced. The impact to bicycles would be less than significant.

TRANSIT
SI-8 would not affect transit capacity or delay transit, and would not generate any new transit trips. Transit does not operate on Taylor Street within the Plan Area. The impact to transit would be less than significant.

LOADING
SI-8 would not create any passenger loading demand, nor would it result in the removal of any on-street passenger loading spaces (white curb zones). SI-8 would not create any freight loading demand, although some parking lane improvements may remove one or more on-street loading spaces. To ensure that adequate space for loading activities is maintained, each freight loading space (yellow curb zone) that would be removed would be replaced with a new loading space, of similar size and on the same block and same side of the street, which would ensure that adequate loading facilities are maintained. All intersection improvements would be designed to accommodate a 40’ truck or tour bus. The impact on loading would be less than significant.

EMERGENCY VEHICLE
SI-8 would not hinder emergency vehicle access. Intersection improvements would be designed to accommodate emergency vehicles. Furthermore, all improvements would be reviewed by the San Francisco Fire Department during the design phase to ensure adequate emergency vehicle access. The impact on emergency vehicles would be less than significant.
TRAFFIC
SI-8 would not cause an increase in vehicle trips or a reduction in roadway capacity. Sidewalk bulb-out would only occupy the parking lane and not intrude on vehicle travel lanes. Flexible use of the parking lane would be limited to the on-street parking lane only, and would not affect roadway capacity. The impact on traffic would be less than significant.

PARKING
SI-8 would not create any parking demand. Some elements, such as extended bulb-outs, planters in the parking lane, or flexible use of the parking lane, would require the temporary or permanent elimination of one or more parking spaces. Presuming that each corner on along this segment of Taylor Street would have one sidewalk bulb-out that would remove one parking space, and that each block-face with a parking lane would have one improvement in the parking lane that would remove two parking spaces, this would eliminate up to approximately 20 parking spaces. These 20 spaces would be removed out of a total supply of approximately 40 parking spaces along Taylor Street, resulting in a reduction of up to 50 percent.

SI.9 Bay Street (Between The Embarcadero and Polk Street)
This project would strengthen the existing character of Bay Street, while providing improved pedestrian amenities. The improvements would be restricted to the sidewalk on the north side of the street, and the sidewalk and parking lane on the south side of the street. Standard block-segment design would include stormwater control measures, parking-lane planters on the south side, and street trees. Standard intersection improvements would include marked crosswalks and ramps, landscaped bulb-outs on the south side, and pedestrian signals. Considerations would be made for transit infrastructure, such as placement of trees. Recommended improvements include high-visibility crosswalks, sidewalk planter boxes, and a raised crosswalk at Larkin Street on the south side of the street.

PEDESTRIAN
SI-9 would not result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access and safety due to shortened crossing distances, reduced vehicle speeds and greater driver visibility. As part of any pedestrian improvements to the parking lane, physical barriers (such as planters) would be placed between pedestrians and the travel lanes. Raised crosswalks would enhance pedestrian visibility and calm traffic. The impact to pedestrians would be less than significant.

BICYCLE
SI-9 would not create potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. Sidewalk bulb-outs would not constrict the space where a cyclist would ride, because bulb-outs would only occupy the parking lane, not the travel lane. Furthermore, by replacing parked cars with sidewalk bulb-outs, bicycle safety would improve because hazards such as opening doors, parking maneuvers, and blocked visibility would be reduced. Flexible parking would not encroach on the bicycle lane. The impact to bicycles would be less than significant.
TRANSIT
SI-9 would not affect transit capacity or delay transit, and would not generate any new transit trips. Bulb outs would be designed to accommodate turning bus radii requirements, and they would not inhibit the bus from accessing bus stops. Raised crosswalks would be implemented across minor streets, not across Bay Street, therefore raised crosswalks would not be implemented across a transit route. The impact to transit would be less than significant.

LOADING
SI-9 would not create any passenger loading demand, nor would it result in the removal of any on-street passenger loading spaces (white curb zones). SI-9 would not create any freight loading demand, although some parking lane improvements may remove one or more on-street loading spaces. To ensure that adequate space for loading activities is maintained, each freight loading space (yellow curb zone) that would be removed would be replaced with a new loading space, of similar size and on the same block and same side of the street, which would ensure that adequate loading facilities are maintained. All intersection improvements would be designed to accommodate a 40’ truck or tour bus. The impact on loading would be less than significant.

EMERGENCY VEHICLE
SI-9 would not hinder emergency vehicle access. Intersection improvements would be designed to accommodate emergency vehicles. Furthermore, all improvements would be reviewed by the San Francisco Fire Department during the design phase to ensure adequate emergency vehicle access. The impact on emergency vehicles would be less than significant.

TRAFFIC
SI-9 would not cause an increase in vehicle trips or a reduction in roadway capacity. Sidewalk bulb-outs and flexible use of the parking lane would only occupy the parking lane on the south side of the street, and not intrude on vehicle travel lanes. The weekday PM peak-period westbound tow-away lane would remain. The impact on traffic would be less than significant.

PARKING
SI-9 would not create any parking demand. Some elements, such as extended bulb-outs, planters in the parking lane, or flexible use of the parking lane, would require the temporary or permanent elimination of one or more parking spaces. Presuming that each corner on Bay Street would have one sidewalk bulb-out that would remove one parking space, and that each block-face with a parking lane would have one improvement in the parking lane that would remove two parking spaces, this would eliminate up to approximately 55 parking spaces. These 55 spaces would be removed out of a total supply of approximately 250 parking spaces along Bay Street, resulting in a reduction of up to 22 percent.

Open Space Improvements

OS.1. Joseph Conrad Square

Joseph Conrad Square would be improved to better meet the needs of residents and visitors. It would include new children’s play area and seating and landscaping. The refurbishment of the
park would also include the final block of Columbus Avenue. The improvement would convert this block of Columbus Avenue to a pedestrian plaza that is closed to through traffic between 11:00 AM and midnight. At other times, the street would operate as one-way southbound, with a mid-block chicane to calm traffic. Stormwater control measures and permeable paving would be used to convert this street from a hardscape to a landscape.

PEDESTRIAN
OS-1 would not result in the overcrowding of sidewalks, create potentially hazardous conditions or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access to open space. The impact on pedestrians would be less than significant.

BICYCLE
OS-1 would not result in potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. The impact to bicycles would be less than significant.

TRANSIT
OS-1 would not generate any new transit trips. Transit does not operate on these segments of Columbus Avenue, Beach or Leavenworth streets. The impact on transit would be less than significant.

LOADING
OS-1 would not create any loading demand or potentially hazardous conditions on these segments of Columbus Avenue, Beach or Leavenworth streets. No passenger or freight loading spaces would be removed. The impact on loading would be less than significant.

EMERGENCY VEHICLE
OS-1 would not hinder emergency vehicle access. The design of the block of Columbus Avenue would have sufficient width to enable emergency vehicles to access adjacent properties if necessary. The design would be reviewed by the San Francisco Fire to ensure adequate emergency vehicle access. Therefore, the impact to emergency vehicle access would be less than significant.

TRAFFIC
OS-1 would not create any new vehicle trips. The closure of Columbus Avenue to vehicle traffic between Beach and Leavenworth Streets would not result in substantial changes in vehicle circulation, because this short segment carries very low volumes of local traffic. Therefore, the impact to traffic would be less than significant.

PARKING
OS-1 would not create any parking demand. The closure of the street could remove up to 20 on-street parking spaces, depending on the final design.

98 This block of Columbus Avenue provides a redundant traffic purpose and there are a number of cafes, restaurants and pubs lining the western edge of the street that could help activate the new space with outdoor seating.
OS.2. Aquatic Park and Jefferson Street

This project would convert a segment of the final block of Jefferson Street between Hyde Street and where it terminates in Aquatic Park from a surface parking lot to a pedestrian plaza that acts as a gateway to Aquatic Park and Fort Mason beyond. The design would: provide uninterrupted visual and physical access to the Aquatic Park beach; create a new pedestrian plaza as a gateway between Fisherman’s Wharf and Fort Mason; create a connection between the Muni cable car turnaround and the beach; and would maintain sufficient vehicular access to the swim and boat clubs.99

PEDESTRIAN

OS-2 would not result in the overcrowding of sidewalks, create potentially hazardous conditions or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access to open space. Therefore, the impact to pedestrians would be less than significant.

BICYCLE

OS-2 would not result in potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. The impact to bicycles would be less than significant.

TRANSIT

OS-2 would not generate any new transit trips. Transit does not operate on this segment of Jefferson Street. The impact to transit would be less than significant.

LOADING

OS-2 would not create any loading demand or potentially hazardous conditions. There are no loading spaces on this segment of Jefferson Street. The impact to loading would be less than significant.

EMERGENCY VEHICLE

OS-2 would not hinder emergency vehicle access. Emergency vehicles would be able to access the open space if necessary. Therefore, the impact to emergency vehicle access would be less than significant.

TRAFFIC

OS-2 would not create any new vehicle trips. Closure of this dead-end roadway would not result in diversions of traffic. Therefore, the impact to traffic would be less than significant.

PARKING

99 The parking needs of the adjacent swim clubs should be carefully managed to ensure they have enough access to affordable parking within an easy walk, including access for disabled members. The exact amount would be determined during the detailed design phase, with input from the community.
OS-2 would not create any parking demand. The closure of the street could remove up to 40 on-street parking spaces, depending on the final design.

OS.3. Columbus Avenue, Leavenworth Street and North Point Street Intersection

This intersection improvement would reduce the scale of the intersection and would make it more attractive and safer for pedestrians. The design would close the short segment of Leavenworth Street between North Point Street and Columbus Avenue. This would result in a public plaza. As part of that closure, there would be extended bulb-outs, pedestrian-scale lighting, stormwater control measures, street trees, pedestrian signals, flexible use of the parking lane and crosswalks and ramps. Recommended improvements would include raised crosswalk across Leavenworth Street, high-visibility crosswalks across all intersections, parking lane planters and sidewalk planter boxes. There would be minor changes to vehicle movement and circulation.

PEDESTRIAN

OS-3 would not result in the overcrowding of sidewalks, create potentially hazardous conditions or otherwise interfere with pedestrian accessibility. On the contrary, the improvements would be expected to enhance pedestrian access and safety due to shortened crossing distances, reduced vehicle speeds and greater driver visibility. Due to the oblique angle of Columbus Avenue intersecting Leavenworth Street, pedestrian crossing distances across Columbus Avenue are very long. The intersection improvements would substantially shorten the Columbus Avenue crossing distance, for both intersections of Columbus Avenue (north at Leavenworth Street and south at North Point Street). Therefore, the impact to pedestrians would be *less than significant*.

BICYCLE

OS-3 would not result in potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. The existing bicycle lanes on North Point Street would remain and would not be encroached upon by sidewalk bulbs. Furthermore, by replacing parked cars with sidewalk bulb-outs, bicycle safety would improve because hazards such as opening doors, parking maneuvers, and blocked visibility would be reduced. Flexible parking would not encroach on the bicycle lane. Raised crosswalks would not result in potentially hazardous conditions for bicyclists or otherwise interfere with bicycle accessibility. The impact to bicycles would be *less than significant*.

TRANSIT

OS-3 would not create any new transit trips or affect transit capacity. Transit does not operate through this intersection, but does operate along North Point Street. Bulb outs would be designed to accommodate turning bus radii requirements, and would not inhibit the bus from accessing bus stops. The impact to transit would be *less than significant*.

LOADING

OS-3 would not create any loading demand or potentially hazardous conditions. There are no loading spaces on these segments of Columbus Avenue, North Point or Leavenworth Streets. The impact on loading would be *less than significant*.

EMERGENCY VEHICLE
OS-3 would not hinder emergency vehicle access. The reconfigured intersection would be designed to accommodate a 40’ emergency vehicle. Furthermore, all traffic calming devices would be reviewed by the San Francisco Fire Department prior to implementation to ensure adequate emergency vehicle access. The impact on emergency vehicles would be less than significant.

TRAFFIC
OS-3 would not create any new vehicle trips. Sidewalk bulb-outs would only occupy the parking lane and not intrude on vehicle travel lanes. Flexible use of the parking lane would be limited to the on-street parking lane only, and would not affect roadway capacity.

The portion of Columbus Avenue south of Leavenworth Street would be realigned to make room for the plaza, but the existing two-way directionality would remain. No traffic movements that currently are permitted would need to be prohibited. The impact on traffic would be less than significant.

PARKING
OS-3 would not generate any new demand for parking. The project would close Leavenworth Street to vehicle access between Columbus Avenue and North Point Street, which would result in the elimination of two on-street parking spaces.

CUMULATIVE DISCUSSION
This section of the report describes the transportation aspects of the Fisherman’s Wharf Public Realm Plan in its entirety.

PEDESTRIAN
The FWPRP would not generate new pedestrian trips, but it would improve pedestrian conditions in Fisherman’s Wharf. Pedestrians would benefit from expanded pedestrian space on Jefferson Street that would relieve overcrowding. Throughout the rest of the Plan Area, streetscape improvements such as sidewalk bulb-outs, high-visibility crosswalks and countdown signals would enhance pedestrian safety. The overall impact to pedestrians would be less than significant.

BICYCLE
The FWPRP would improve bicycle conditions in Fisherman’s Wharf. New bicycle facilities on Jefferson Street and Hyde Street would provide improved access. Sidewalk bulb-outs would provide additional bicycle parking while reducing vehicle speeds and reduce the prevalence of opening car doors. The overall impact to bicycles would be less than significant.

TRANSIT
The FWPRP would not generate any new transit trips. It would upgrade the existing transit-only lane on Jefferson Street into a fully-exclusive facility. Additional traffic on North Point Street would cause some delay to Muni and Golden Gate Transit buses, but this delay would be less than significant, and could be reduced with implementation of I-TR-1 (pp. 129). Bulb-outs that would be implemented on streets with transit would be designed to accommodate turning bus
radii requirements, and they would not inhibit the bus from accessing bus stops. The impact to transit would be less than significant.

LOADING
The FWPWP would not generate any new passenger or freight loading demand. While trucks would be prohibited access to Jefferson Street between Powell and Leavenworth streets after 11:00 AM, the majority of merchants in the Plan Area have finished loading activities by this time. Furthermore, trucks would still have access to loading spaces on other streets in the Plan Area after 11:00 AM. Any freight loading spaces removed as part of SI-2 through SI-11 would be replaced with a new freight loading space, on the same block face. Passenger tour buses would be prohibited on Jefferson Street, but would still be permitted on other streets in the Plan Area. The impact to loading would be less than significant.

EMERGENCY VEHICLE
The FWPWP would not hinder emergency vehicle access. All streetscape improvements and the redesign of Jefferson Street would ensure that emergency vehicles are accommodated. Furthermore, all traffic calming devices would be reviewed by the San Francisco Fire Department prior to implementation to ensure adequate emergency vehicle access. The impact to emergency vehicles would be less than significant.

TRAFFIC
The FWPWP would not generate any new vehicle trips. While the FWPWP would modify traffic circulation in the Plan Area, no traffic impacts would be created that could not be mitigated to a less-than-significant level. The impact to traffic would be less than significant with mitigation.

PARKING
The FWPWP would not generate any new parking demand, but on-street parking spaces would be removed. All on-street parking spaces would be removed on Jefferson Street, and some spaces would be removed on other streets in the Plan Area in order to construct streetscape improvements. Total anticipated on-street parking loss from the FWPWP is summarized below:

- SI-1: Jefferson Street (between Powell Street and Hyde Street)
 - 80 spaces on Jefferson Street, and two spaces on Grant Street for TR-1
- SI-2: Beach Street (between The Embarcadero and Hyde Street)
 - 30 spaces on Beach Street
- SI-3: North Point Street (between Polk Street and The Embarcadero)
 - 70 spaces on North Point Street
- SI-4: Powell, Mason, Jones, and Leavenworth streets (between Jefferson and Bay streets)
 - 60 spaces on the four streets
- SI-5: Hyde Street (between Beach and Bay streets)
 - 30 spaces on Hyde Street
- SI-6: Hyde Street (between Jefferson and Beach streets)
 - Creation of 18 spaces Hyde Street
- SI-7: Larkin Street (between Beach and Bay Streets)
 - 15 spaces on Larkin Street
- SI-8: Taylor Street (between Jefferson and Bay Streets)
o 40 spaces on Taylor Street
• SI-9: Bay Street (between The Embarcadero and Polk Street)
 o 55 spaces on Bay Street
• OS1: Joseph Conrad Square
 o 20 spaces on Columbus Avenue
• OS-2: Aquatic Park and Jefferson Street
 o 40 spaces on Jefferson Street
• OS-3: Columbus Avenue, Leavenworth Street and North Point Street Intersection
 o Two spaces on Leavenworth Street

The total of all the FWPRP would result in the loss of up to 430 on-street parking spaces. Out of the total on-street supply of 1,040 spaces, this would represent up to 41 percent of available on-street parking spaces. Relative to the total on- and off-street parking supply of 7,540 parking spaces, this would represent a reduction of 6 percent of the parking supply.

San Francisco does not consider parking supply as part of the permanent physical environment and therefore, does not consider changes in parking conditions to be environmental impacts as defined by CEQA. However, this report presents a parking analysis to inform the public and the decision makers as to the parking conditions that could occur as a result of implementing the proposed project.

Parking conditions are not static, as parking supply and demand varies from day to day, from day to night, from month to month, etc. Hence, the availability of parking spaces (or lack thereof) is not a permanent physical condition, but changes over time as people change their modes and patterns of travel.

Parking deficits are considered to be social effects, rather than impacts on the physical environment as defined by CEQA. Under CEQA, a project’s social impacts need not be treated as significant impacts on the environment. Environmental documents should, however, address the secondary physical impacts that could be triggered by a social impact. (CEQA Guidelines § 15131(a).) The social inconvenience of parking deficits, such as having to hunt for scarce parking spaces, is not an environmental impact, but there may be secondary physical environmental impacts, such as increased traffic congestion at intersections, air quality impacts, safety impacts, or noise impacts caused by congestion. In the experience of San Francisco transportation planners, however, the absence of a ready supply of parking spaces, combined with available alternatives to auto travel (e.g., transit service, taxis, bicycles or travel by foot) and a relatively dense pattern of urban development, induces many drivers to seek and find alternative parking facilities, shift to other modes of travel, or change their overall travel habits. Any such resulting shifts to transit service in particular, would be in keeping with the City’s “Transit First” policy. The City’s Transit First Policy, established in the City’s Charter Section 16.102 provides that “parking policies for areas well served by public transit shall be designed to encourage travel by public transportation and alternative transportation.” Fisherman’s Wharf is already well served by public transit, as well as bicycle and pedestrian facilities, all of which would be improved by the FWPRP.

The transportation analysis accounts for potential secondary effects, such as cars circling and looking for a parking space in areas of limited parking supply, by assuming that all drivers
would attempt to find parking at or near the project site and then seek parking farther away if convenient parking is unavailable. Moreover, the secondary effects of drivers searching for parking is typically offset by a reduction in vehicle trips due to others who are aware of constrained parking conditions in a given area. Hence, any secondary environmental impacts which may result from a shortfall in parking in the vicinity of the proposed project would be minor, and the traffic assignments used in the transportation analysis, as well as in the associated air quality, noise and pedestrian safety analyses, reasonably addresses potential secondary effects.

Cumulative Projects Outside the Plan Area

F-Line Streetcar Extension

The Fort Mason Streetcar Extension (Extension) project would extend the Muni F Market and Wharves historic streetcar line, from its current terminal on Jones Street in the Plan Area, west approximately one mile to Fort Mason in the Golden Gate National Recreational Area. The Draft Environmental Impact Statement (DEIS) for this project was released on March 18, 2011.

The westbound streetcar track would extend west along Jefferson Street for one block, splitting off the existing westbound track east of Jones Street, and then continuing on westbound Jefferson to Leavenworth Street, at which point the track would turn left (south) for one block on Leavenworth Street, and then turn right (west) onto westbound Beach Street. The westbound track would then run along Beach Street to west of Polk Street, at which point it would leave the street and proceed northwest, cross Van Ness Avenue, and enter an existing rail tunnel to Fort Mason. The eastbound tracks would proceed from Fort Mason through the rail tunnel to Beach Street, continuing east along Beach Street to connect with the existing eastbound track on Beach Street at Jones Street. On Beach Street, the Extension would operate in either shared auto/streetcar travel lanes in both directions, or in a semi-exclusive transit lane in the eastbound direction and shared auto/streetcar lane in the westbound direction. Roadway geometries at the intersections along the streetcar route would be modified to accommodate the tracks, and new traffic signals would be installed at the intersections of Jefferson/Leavenworth, Beach/Leavenworth and Beach/Polk. New streetcar boarding platforms on sidewalk bulb-outs would be constructed on eastbound Beach Street west of Hyde Street, on eastbound Beach Street west of Jones Street, and on southbound Leavenworth Street south of Jefferson Street.

The proposed Extension would conflict with the FWPWP’s proposed treatment of Jefferson Street, between Taylor and Leavenworth streets. The FWPRP’s proposed pedestrian zones along the north and/or south side of Jefferson Street would have to be narrowed in these two blocks, in order to accommodate additional streetcar right-of-way on Jefferson Street. The Extension would also preclude some of the FWPRP proposed streetscape improvements on Beach Street, specifically, the proposed sidewalk bulb-outs on the north side of the intersection of Beach/Polk, and raised crosswalks across Beach Street at the intersections with Leavenworth, Larkin and Polk streets and Columbus Avenue.

If the Extension were implemented as proposed, the FWPRP would need to be modified to accommodate the design of the Extension as described above. However this would not result in new transportation impacts.
As noted above, the Extension would change roadway geometries and intersection controls in order to accommodate the streetcar tracks. However these changes would not conflict with the circulation changes proposed in the FWPWP. Generally, the FWPWP would only affect westbound traffic (by shifting traffic off of Jefferson and onto Beach and North Point streets), and only affect traffic east of Hyde Street. While the limits of the Extension do extend one block east of Hyde Street (to Leavenworth Street), the changes to circulation resulting from the Extension would primarily be in the eastbound direction. For example, the eastbound approach of Beach/Hyde would be reduced from two lanes to one lane (and right turns may be prohibited).

There are only two instances in which the Extension would affect westbound traffic, in which case transportation affects could overlap with the FWPWP:

1. At the intersection of Jefferson/Leavenworth, the westbound approach would be modified from two lanes to one. This would cause the Level of Service to deteriorate to LOS F as a result of the Extension project (even after installation of a traffic signal at this intersection). However, the DEIS notes that the FWPWP would reduce westbound traffic volumes on Jefferson Street, which would eliminate the impact at this intersection. In other words, if the FWPWP were implemented in conjunction with the Extension, it would reduce the impact created by the Extension to a less-than-significant level.

2. At the intersection of Jefferson/Jones, the westbound approach lane geometry would be modified but would remain at two lanes. As analyzed in the DEIS, this modification would not create a traffic impact. The FWPWP would reduce westbound traffic volumes at this intersection, and would therefore not create an impact at this intersection in conjunction with the Extension.

The Extension would result in the removal of on-street parking at several locations in order to accommodate the streetcar tracks and boarding platforms. As noted in the DEIS, the Extension would result in the elimination of spaces along Beach Street, Leavenworth Street, and Jefferson Street, totaling up to 89 metered general parking spaces. 18 of those general parking spaces are located on Jefferson Street, which are also proposed for elimination under the FWPWP (the Extension would use this space for streetcar right-of-way, while the FWPWP would use this space for pedestrian amenities).

The Extension would also eliminate up to 14 tour bus loading zones along the track right-of-way. Several of these zones on Leavenworth Street are also proposed for elimination under the FWPPW, due to the proposed general restriction on tour buses along Jefferson.

The Extension would also eliminate up to 13 metered freight loading spaces along the track right-of-way, 12 of which are on Leavenworth Street. Unlike the Extension, the FWPWP would not eliminate the commercial spaces on Leavenworth Street; rather, the FWPWP would reduce the hours of operation of these spaces, to end at 11:00 AM. The DEIS concludes that this full-time loss of these loading spaces would not create a loading impact because the SFMTA could convert other general on-street metered spaces on nearby streets into commercial or passenger loading spaces.
While the Extension would conflict with the proposed design for Jefferson Street under the FWPWP, and would preclude some of the pedestrian improvements proposed for Beach Street, the Extension in conjunction with the FWPWP would not create any new transportation impacts that were not identified in this Mitigated Negative Declaration. Circulation changes proposed under the FWPWP would not conflict with the Extension, and would in fact eliminate the significant traffic impact generated by the Extension at the intersection of Jefferson/Leavenworth. The reduction of commercial and freight loading spaces with the FWPWP in conjunction with the Extension would not create any new loading impacts that were not identified in this Mitigated Negative Declaration. The impact of the FWPRP in conjunction with the Extension would be **less than significant**.

Van Ness Bus Rapid Transit
The Van Ness Bus Rapid Transit (VN BRT) project would implement improved transit facilities and enhance the streetscape on Van Ness Avenue, from Mission Street to North Point Street. Van Ness Avenue forms the western boundary of the FWPRP Plan Area.

The Draft Environmental Impact Report / Draft Environment Impact Statement for this project is expected to be released in Spring or Summer 2011. As such, a general description of the project is available, but specific information about the project’s transportation impacts is not known.

A vehicular travel lane would be removed for private vehicles in order to create a dedicated transit lane, in both directions. However, it is not expected that the project would impact transportation in the Plan Area. North of Lombard Street, Van Ness Avenue does not serve as US Highway 101 and subsequently does not carry substantial volumes of traffic. Therefore, the travel lane removals would not be expected to result in increased delay or congestion north of Lombard Street. While the westbound approach of Van Ness/North Point does experience congestion during peak weekend periods (as discussed on pp. 107), this congestion is not due to a lack of capacity on Van Ness Avenue.

While the FWPWP would affect traffic circulation in the Plan Area, the affects would be limited to the eastern portion of the Plan Area (east of Hyde Street), while the VN BRT would be located along the western boundary of the Plan Area. As discussed above, the VN BRT is not expected to create traffic impacts north of Lombard Street, and therefore is not expected to cause any shifts in traffic patterns in the area. However, if traffic patterns did shift in the Plan Area as a result of the VN BRT, it is likely that traffic would shift off of Van Ness Avenue and onto parallel north-south streets (such as Polk Street), without any changes to east-west traffic patterns. Meanwhile, the FWPRP is not expected to shift traffic patterns west of Hyde Street. However, if traffic patterns did shift west of Hyde Street as a result of the FWPRP, there would only be shifts between east-west streets, without any changes to north-south traffic patterns. Because the VN BRT would be on the western boundary of the Plan Area and could only affect north-south travel patterns, and the FWPRP would only affect east-west traffic patterns in the eastern portion of the Plan Area, the FWPRP and VN BRT project combined would not cumulatively create any transportation impacts.

The VN BRT could result in changes to on-street parking spaces. Parking is already prohibited at bus stops on Van Ness Avenue, and the VN BRT project would construct bus boarding platforms that require a shorter bus zone, potentially creating additional parking spaces. However, the VN
BRT project also includes new sidewalk corner bulb-outs, which could remove on-street parking. Overall, the net change in on-street parking resulting from the VN BRT is expected to be negligible. Cumulative implementation of the VN BRT and the FWPRP would result in similar levels of overall on-street parking reduction as if the VN BRT were not implemented.

The transportation impact of the FWPRP in conjunction with the VN BRT would be less than significant.

Tour Bus Restrictions in North Beach
The SMTA proposes to restrict tour buses on Mason, Powell, and Stockton streets between Lombard and Francisco streets and on Francisco, Green and Lombard streets between Mason and Stockton streets in the North Beach neighborhood. The request to restrict tour buses in the area comes from North Beach residents who have expressed concerns with the increased number of tour buses on these residential streets and the noise generated by open topped tour buses with loudspeakers.

Upon implementation, tour buses traveling between Fisherman’s Wharf and North Beach would be expected to use Columbus Avenue to North Point streets. SFMTA conducted an analysis to determine if the intersection of Columbus/North Point could accommodate the increased volume of tour buses, considering that tour buses are larger and less maneuverable than standard vehicles. The results of the analysis concluded that the Level of Service of the intersection would remain at LOS B, and would not cause any other transportation impacts.

The tour bus restrictions would have a negligible affect on the transportation network. In conjunction with the FWPRP, the impact on the transportation network would be less than significant.

E-Line Extension Project
The SFMTA Transit Effectiveness Project (TEP) is a system wide transportation planning and engineering initiative to improve the travel times and reliability of the Muni system. One of the projects is the proposed E Embarcadero historic streetcar terminal, to be constructed on Jones Street adjacent to the existing F Market and Wharves terminal. Details about this project are currently unknown, but could include elimination of parking on Jones Street, converting the street to one-way operation, and/or closure of the street to vehicles. As currently defined the project would conflict with the proposed streetcar extension to Fort Mason (Extension) described above. Likely, this project would not be implemented if the Extension were constructed, but if the Extension were not to be implemented, than this project would be constructed instead, because only one terminal for the E line would be necessary. However, this project would not conflict with any elements of the FWPWP. Any proposed vehicular circulation changes on Jones Street would be less likely to create a traffic impact when implemented in conjunction with the FWPWP, because the FWPWP would reduce traffic volumes on Jefferson Street.

A second project would improve transit service along North Point Street within the Plan Area. Details about this project are currently unknown, but the project could include relocation or consolidation of bus stops or constructing bus boarding platforms on sidewalk extensions. These elements would not conflict with the FWPWP or with Improvement I-TR-1 (described on pp.
which would increase the cycle length of intersections along North Point Street to give more green time to the east-west movements.

Overall, the TEP improvements are unlikely to conflict with the FWPRP. The transportation impact of the TEP in conjunction with the FWPWP would be less than significant.

The 34th America’s Cup (AC34) and Piers 27 Cruise Terminal Project
The Port of San Francisco in a joint effort with the America’s Cup Event Authority, proposes improvements to the San Francisco Northern Waterfront and Pier 80 to host the 34th AC World Series sailing races (Summer/Fall of 2012 & 2013) in San Francisco. The project also includes the construction of the cruise ship terminal building shell on Pier 27. The project is currently under environmental review by the San Francisco Planning Department.

Elements of the AC34 are not fully known at this time, but they are likely to involve temporary roadway closures and other temporary transportation modifications. Because these elements would be temporary, they would not create significant impacts on the transportation network.

The Pier 27 Cruise Terminal is located south of the Plan Area. While the terminal is likely to bring additional pedestrian, transit, bicycle and vehicular trips to the Plan Area, it would likely not conflict with the FWPRP or exacerbate any conditions resulting from the FWPRP because the FWPRP would not modify the transportation network at the Cruise Terminal site.

Overall, the AC34 and Pier 27 Cruise Terminal improvements are unlikely to conflict with the FWPRP. The transportation impact of these projects in conjunction with the FWPWP would be less than significant.
e) For a project located within an airport land use plan area, or, where such a plan has not been adopted, in an area within two miles of a public airport or public use airport, would the project expose people residing or working in the area to excessive noise levels?

f) For a project located in the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

g) Be substantially affected by existing noise levels?

The project site is not located within an airport land use Plan Area, or within the vicinity of a private airstrip. Therefore, criterion E.6e and E.6f are not applicable to the proposed project.

Impact NO-1: The proposed project would not result in the exposure of persons to or generation of noise levels in excess of established standards, nor would the proposed project result in a substantial permanent increase in ambient noise levels or otherwise be substantially affected by existing noise. (Less than Significant)

As previously stated, no buildings would be constructed as part of the proposed project. The proposed project would adopt design guidelines, policies, minor zoning adjustments to the Plan Area. It would also implement parking signage program, traffic circulation plan, passenger and freight loading management, two neighborhood gateway improvements, nine streetscape improvement projects and three open space improvement projects to the existing public right-of-way. Generally, background noise levels in the Plan Area ranges from 65 and 70 dBA (Ldn)100 with some street sections along Columbus Avenue and Bay and North Point Streets exceeding 70 dBA (Ldn).101 The Environmental Protection element of the General Plan contains Land Use Compatibility Guidelines for Community Noise. These guidelines, which are similar to, but differ somewhat from, state guidelines promulgated by the Governor’s Office of Planning and Research, indicate maximum acceptable noise levels for various newly developed land uses. According to the General Plan’s Land Use Compatibility chart, areas with existing noise levels below approximately 75 Ldn are considered satisfactory, for certain recreation uses.102,103 Given that the Plan Area is within the noise acceptability standards of the General Plan, the proposed

100 Sound pressure is measured in decibels (dB), with zero dB corresponding roughly to the threshold of human hearing, and 120 dB to 140 dB corresponding to the threshold of pain. Because sound pressure can vary by over one trillion times within the range of human hearing, a logarithmic loudness scale is used to keep sound intensity numbers at a convenient and manageable level. Owing to the variation in sensitivity of the human ear to various frequencies, sound is “weighted” to emphasize frequencies to which the ear is more sensitive, in a method known as A-weighting and expressed in units of A-weighted decibels (dBA).

101 Existing noise levels along these streets were estimated based on the consultation of the San Francisco Department of Public Health’s (DPH) noise map, “Noise 6 Category”.

102 San Francisco General Plan. Environmental Protection Element. Land Use Compatibility Chart for Community Noise.

103 The proposed project was compared to “Golf Courses, Riding Stables and Water Recreations” uses in the Land Use Compatibility chart.
project would not be substantially affected by existing noise levels, and this impact would be less than significant.

The proposed project would not include any mechanical equipment which could produce operational noise. Project’s operational noise would be associated with adding pedestrian movements and potential temporary pedestrian gathering along the existing sidewalks and open spaces in the public realm. Pedestrian associated noise would likely be muffled by background noise levels along Plan Area streets; thus, operational noise levels would not be expected to be noticeable.

The proposed project includes improvements to the public right-of-way in the Fisherman’s Wharf Neighborhood, operational noise associated with the proposed project would be related to temporary public gathering, pedestrian activities, public transportation, and vehicular traffic to some extent. As stated in Section E-5, Transportation and Circulation, of this report, the proposed project would not generate new vehicular traffic activities when compared to existing baseline. The Plan Area is within a developed urban area that currently supports pedestrian activities and neighborhood gatherings (street fairs, sidewalk cafes, street artists, and parks). The site-specific streetscape improvement projects and open space improvement projects could encourage an increase in pedestrian activities at the improved locations; however, this increase in use would be distributed throughout the Fisherman’s Wharf Neighborhood and not concentrated to any one particular project location. Additionally, noise generated from pedestrian gathering would be expected to conform with existing background urban noise and subject to the San Francisco Noise Ordinance.

Based on published scientific acoustic studies, the traffic volumes in a given Plan Area would need to approximately double to produce an increase in ambient noise levels noticeable to most people in the area. Implementation of the proposed streetscape improvement projects and open space improvement projects would not result in any new traffic volumes being added to the roadway network; accordingly, no change in the intersection traffic volume under proposed project conditions would be expected. Because the proposed project would not alter existing traffic volumes, it would not lead to a substantial increase in existing traffic related noise. Thus, the proposed project would not generate noise that exceed established standards or result in a substantial permanent increase in ambient noise levels, and this impact would be less than significant.

Impact NO-2: Project construction would not expose persons to excessive groundborne vibration or noise, or result in substantial periodic ambient noise in the project vicinity. (Less than Significant)

Implementation of the proposed site-specific streetscape improvement and open space improvement projects would involve street improvements that would require construction

104http://www.fhwa.dot.gov/environment/noise/regulations_and_guidance/analysis_and_abatement_guidance/polguid e01.cfm
activities such as excavation, grading, repaving of sidewalks, and the installation or reconfiguration of medians and street furniture. Construction activities would temporarily increase noise and possibly vibration in the vicinity of the construction area which could be considered an annoyance by occupants of nearby properties. Thus, during the construction phase of the proposed project’s implementation, occupants of nearby properties could be disturbed by construction noise. Although the exact duration of construction activities are unknown at this time, it is anticipated that construction activities of individual projects are expected to have six- to-twelve month duration, and occur in phases over an extended period of time, starting in 2011 through 2030.

The proposed project could potentially result in temporary exposure of persons to vibration and noise levels in excess of standards established in the San Francisco Noise Ordinance during construction. The City of San Francisco Noise Ordinance Article 29105 regulates construction-related noise. Sections 2907 and 2908 of the San Francisco Police Code regulate construction noise and include the following provisions:

- Construction equipment, other than impact tools, shall not exceed 80 decibels (dBA) at a distance of 100 feet from the source.106 Impact tools, such as jackhammers and impact wrenches are exempt provided that they are equipped with intake and exhaust muffled to the satisfaction of the Director of the DPW or Director of the Department of Building Inspection (DBI).

- Nighttime construction work (8:00 p.m. and 7:00 a.m.) that would increase ambient noise levels by 5 dBA or more is prohibited unless a permit is granted by the Director of the DPW or Director of the DBI.

Project-related construction noise and vibration levels would fluctuate depending on the construction phase, equipment type and duration of use, distance between construction activities (noise source) and the nearest noise-sensitive uses (listener), existing noise levels at those uses, and presence or absence of barriers (including subsurface barriers). There would be times when noise and vibration could interfere with indoor activities in nearby residences and other businesses near the construction site. However, the increase in noise and vibration during construction of the proposed project would be considered a less-than-significant impact, because the construction noise would be temporary, intermittent, and restricted in occurrence and level, as the contractor would be required to comply with the City of San Francisco Noise Ordinance.

105 City and County of San Francisco, Police Code – Article 29 – Regulation of Noise, last updated November 25, 2008.
Impact NO-3: The proposed project, in combination with past, present, and reasonably foreseeable future projects, would result in less-than-significant cumulative noise impacts. (Less than Significant)

The geographic context for cumulative noise impacts is the Fisherman’s Wharf Neighborhood and its vicinity. Cumulative impacts occur when impacts that are significant or less than significant from a proposed project combine with similar impacts from other past, present, or reasonably foreseeable projects in a similar geographic area. Cumulative projects are past, present and reasonably foreseeable projects that have been and/or are expected to be developed in the Plan Area are listed on page 52 above.

The construction activities associated with the proposed project would be temporary and intermittent with duration varying from six to twelve months. It is conservatively assumed that the FWPRP’s construction activities would overlap with construction activities associated with cumulative projects in the Plan Area. It is anticipated that all future projects proposed in the Plan Area would be consistent with the adopted goals, policies and objectives of the governing area Plans, as well as, policies in the San Francisco General Plan, design guidelines, planning codes and zoning maps (including development standards), and other applicable land use plans that are intended to reduce impacts related to noise and vibration. Furthermore, new construction would be required to comply with applicable regulations, including Article 29 of the San Francisco Police Code and Title 24 building code regulations.

Localized traffic noise would increase in conjunction with foreseeable residential and commercial growth in the project vicinity. Based on published scientific acoustic studies, the traffic volumes in a given Plan Area would need to approximately double to produce an increase in ambient noise levels noticeable to most people in the area.107 Because neither the proposed project nor the other cumulative projects in the vicinity are anticipated to result in a doubling of traffic volumes along the Plan Area streets, the proposed project would not contribute considerably to any cumulative traffic-related increases in ambient noise. For the reasons described above, implementation of the proposed project would result in a less than considerable contribution to cumulative noise in the Plan Area. Cumulative projects could affect such issues, but would be evaluated on a project-by-project basis during their own environmental review process. Therefore, the proposed project would not result in cumulatively considerable noise impacts, and cumulative noise impacts are considered less than significant.

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. AIR QUALITY—Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Conflict with or obstruct implementation of the applicable air quality plan?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

107 Ibid (footnote 97)
<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal, state, or regional ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Expose sensitive receptors to substantial pollutant concentrations?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Create objectionable odors affecting a substantial number of people?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Impact AQ-1: The proposed project, would not result in a conflict with or obstruct implementation of the applicable air quality plan (Less than Significant)

The Fisherman’s Wharf Plan would not conflict with, or obstruct implementation of, an applicable air quality plan. The Federal Clean Air Act (CAA), as amended, and the California Clean Air Act (CCAA) legislate ambient air quality standards and related air quality reporting systems for regional regulatory agencies to then develop mobile and stationary source control measures to meet these standards. The Bay Area Air Quality Management District (BAAQMD) is the primary responsible regulatory agency in the Bay Area for planning, implementing and enforcing the federal and state ambient air quality standards for criteria pollutants.\(^{108}\)

Specifically, BAAQMD has the responsibility to monitor ambient air pollutant levels throughout the Air Basin and to develop and implement strategies to attain the applicable federal and State standards. Criteria air pollutants include ozone, carbon monoxide (CO), nitrogen dioxide (NO\(_2\)), sulfur dioxide (SO\(_2\)), particulate matter (PM\(_{10}\) and PM\(_{2.5}\)) and lead.

The San Francisco Bay Area Air Basin encompasses the following counties: San Francisco, Alameda, Contra Costa, Marin, San Mateo, Napa and parts of Solano and Sonoma counties. The basin has a history of air quality violations for ozone, carbon monoxide and particulate matter and currently does not meet the state ambient air quality standards for ozone, PM\(_{10}\) and PM\(_{2.5}\). The BAAQMD has adopted air quality management plans over the years to address control methods and strategies for meeting air quality standards, the latest plan being the 2010 Clean Air Plan.

The 2010 Clean Air Plan is intended to: (1) update the 2005 Ozone Strategy in accordance with the requirements of the CCAA to implement “all feasible measures” to reduce ozone; (2) provide a control strategy to reduce ozone, particulate matter (PM), air toxics, and greenhouse gases in a single, integrated plan; (3) review progress in improving air quality in recent years; and (4) establish emission control measures to be adopted or implemented in the 2010-2012 timeframe. The 2010 Air Quality Plan was adopted by the BAAQMD on September 15, 2010.

\(^{108}\) State and Federal air quality standards for the Bay Area’s attainment status can be viewed on the BAAQMD website at: http://www.baaqmd.gov.
The Plan’s vision focuses on improving the Plan Area’s public realm and would not conflict with or obstruct implementation of the 2010 Clean Air Plan or any other applicable air quality plan and this impact would be less than significant.

Impact AQ-2: Proposed Open Space and Streetscape Improvements in the Fisherman’s Wharf Plan would not result in fugitive dust emissions that would violate an air quality standard or contribute significantly to an existing or projected air quality violation. (Less than Significant)

As discussed above, the BAAQMD is the primary regulatory agency in the Bay Area responsible for planning, implementing and enforcing the federal and state ambient air quality standards for criteria pollutants. As part of their role in air quality regulation, planning and permitting, the BAAQMD has developed CEQA Air Quality Guidelines to assist lead agencies in evaluating air quality impacts of projects and plans proposed in the San Francisco Bay Area Air Basin (SFBAAB). The Guidelines provide procedures for evaluating potential air quality impacts during the environmental review process consistent with CEQA requirements. The BAAQMD adopted new CEQA air quality thresholds of significance on June 2, 2010, and issued revised CEQA Air Quality Guidelines that supersede the 1999 CEQA Air Quality Guidelines.109

The proposed project would include the implementation of Plan-level policies, design guidelines, a signage program complemented by a traffic circulation plan and construction of two neighborhood gateways, three open space improvement projects and nine-site specific streetscape improvement projects within the existing public-right-of-way. The open space and streetscape improvements would emit fugitive dust emissions during construction. The BAAQMD does not recommend quantitative analysis of construction-related fugitive dust emissions. Instead, BAAQMD considers projects that implement recommended best management practices to result in less than significant fugitive dust emissions.

In response to the need for consistent control measures to reduce fugitive dust during construction, the San Francisco Board of Supervisors approved a series of amendments to the San Francisco Building and Health Codes generally referred hereto as the Construction Dust Control Ordinance (Ordinance 176-08, effective July 30, 2008), with the intent of reducing the quantity of dust generated during site preparation, demolition and construction work in order to protect the health of the general public and of onsite workers, minimize public nuisance complaints, and to avoid orders to stop work by the Department of Building Inspection (DBI).

The San Francisco Construction Dust Control Ordinance (Dust Control Ordinance) was adopted in July 2008. Under this ordinance, all site preparation work, demolition, and other construction activities in San Francisco must comply with specific dust control measures. For projects larger than one-half acre, the Dust Control Ordinance requires the project sponsor to submit a dust control plan for approval by the San Francisco Department of Public Health before a building permit can be issued by the San Francisco Department of Building Inspection.

The Dust Control Ordinance requires project sponsors and contractors responsible for construction activities to control construction dust on the site or implement other practices that result in equivalent dust control that are acceptable to the director of the San Francisco Department of Public Health. Dust suppression activities may include watering all active

construction areas enough to prevent dust from becoming airborne; more frequent watering may be necessary when wind speeds exceed 15 mph. Reclaimed water must be used if required by Article 21, "Restriction of Use of Potable Water for Soil Compaction and Dust Control Activities," of the San Francisco Public Works Code.

For project sites that are larger than one-half acre and located within 1,000 feet of sensitive receptors, the project sponsor must develop a site-specific dust control plan to be approved by the director of the San Francisco Department of Public Health. The site-specific dust control plan requires the project sponsor to:

- submit a map to the director of the San Francisco Department of Public Health, showing all sensitive receptors within 1,000 feet of the site;
- wet down areas of soil at least three times per day;
- provide an analysis of wind direction, and install upwind and downwind particulate dust monitors;
- record particulate monitoring results;
- hire an independent third party to conduct inspections and keep a record of those inspections;
- establish shutdown conditions based on wind, soil migration, and other factors;
- establish a hotline for surrounding community members who may be affected by project-related dust;
- limit the area subject to construction activities at anyone time;
- install dust curtains and windbreaks on the property lines, as necessary;
- limit the amount of soil in hauling trucks to the size of the truck bed, and secure the load with a tarpaulin;
- enforce a 15-mph speed limit for vehicles entering and exiting construction areas;
- sweep affected streets with water sweepers at the end of the day;
- install and use wheel washers to clean truck tires;
- stop construction activities when winds exceed 25 mph;
- apply soil stabilizers to inactive areas; and
- sweep off adjacent streets to reduce particulate emissions.

Project sponsors are required to designate an individual to monitor compliance with dust control requirements.
The open space and streetscape improvements proposed as part of the Fisherman’s Wharf Public Realm Plan are City projects that would be carried out by the San Francisco Department of Public Works and City contractors. Pursuant to Health Code Article 22B, Section 1247, “All departments, boards, commissions, and agencies of the City and County of San Francisco that authorize construction or improvements on land under their jurisdiction under circumstances where no building, excavation, grading, foundation, or other permit needs to be obtained under the San Francisco Building Code shall adopt rules and regulations to insure that the same dust control requirements that are set forth in this Article are followed.” The Construction Dust Ordinance contains the BAAQMD-recommended Best Management Practices. Thus, compliance with Article 22B and all adopted rules and regulations will ensure that potential dust-related air quality impacts would be reduced to less than significant.

Impact AQ-3: Proposed open space and streetscape improvements in the Fisherman’s Wharf Plan would not result in construction-related criteria air pollutants that would violate an air quality standard or contribute significantly to an existing or projected air quality violation. (Less than Significant with Mitigation)

Construction equipment and vehicle exhaust result in criteria air pollutant emissions, which incrementally add to the regional atmospheric loading of these pollutants during project construction. The BAAQMD’s CEQA Air Quality Guidelines include quantitative thresholds of significance for construction-related exhaust emissions of criteria air pollutants and ozone precursors and are designed to maintain ambient air quality standards in the SFBAAB. The thresholds for construction-related criteria air pollutant emissions are whether the proposed project would emit: reactive organic gases (ROG), nitrogen oxides (NOx) or PM\(_{2.5}\) or PM\(_{10}\) levels in excess of 54 lbs/day, or whether the proposed project would emit PM\(_{10}\) at levels in excess of 82 lbs/day.\(^{110}\) A quantitative analysis of construction emissions for the proposed open space and streetscape improvement projects was conducted to determine whether the improvement projects in the Fisherman’s Wharf Public Realm would exceed any of the BAAQMD’s construction criteria air pollutant thresholds.

The proposed project includes nine streetscape projects and three open space projects encompassing twelve streets. Detailed design specifications for each of these projects have not yet been developed. Therefore, in order to facilitate a quantitative analysis of criteria air pollutant emissions, detailed construction information was developed for the Jefferson Street, Taylor Street and Joseph Conrad Square projects. The most detailed design and construction information was available for Jefferson Street, enabling a quantitative analysis of construction emissions. Detailed construction information was developed for Taylor Street because this streetscape project was determined to be representative of the remaining seven streetscape projects. Because the size of the remaining seven streetscape projects vary, the Taylor Street project construction emissions were scaled on a per-block basis such that emissions for the remaining seven streetscape projects could be estimated based on the number of blocks proposed for improvements. Lastly, to account for the open space projects, detailed construction information was developed for the Joseph Conrad Square open space project. This project represents the largest of the open space projects; therefore emissions from the Columbus Avenue/North Point/Leavenworth Intersection and

\(^{110}\) PM\(_{2.5}\) and PM\(_{10}\) refer to particulate matter that is 2.5 microns in diameter or less and particulate matter that is 10 microns in diameter or less, respectively.
Aquatic Park open spaces are anticipated to be equal to or less than the emissions estimated for the Joseph Conrad Square project.

Detailed construction information for the Jefferson Street, Taylor Street, and Conrad Square projects were developed by the Department of Public Works and are included in the Air Quality Analysis conducted for the proposed project. To provide a worst-case analysis, construction for all projects were assumed to use a 2011 and 2012 vehicle fleet mix. Construction projects that occur in later years would be anticipated to use cleaner vehicles. The duration of construction for the Jefferson Street project is approximately nine months. Construction of the Taylor Street project and Conrad Square are estimated at approximately six months and two months, respectively. For the remaining projects, one block of streetscape improvements roughly equates to seventeen months of construction activities.

Criteria air pollutant emissions were estimated for all twelve streetscape projects and for the three proposed open space projects using the URBEMIS 2007 v.9.2.4 computer model with construction information provided by the project sponsor, as described above. The criteria air pollutant analysis incorporates emission reduction measures that would be required by the City’s Clean Construction Ordinance. Results of this analysis are presented in Table E.7.1 and compared to the BAAQMD’s daily mass emissions thresholds.

PURPOSELY LEFT BLANK SPACE

112 The analysis accounts for the use of Tier 2 diesel particulate filters and use of B20 fuel. B20 is estimated to reduce PM$_{10}$ emissions by seven percent, but increase NO$_x$ emissions by three percent. The air quality analysis, which is part of the project file, further explains how the analysis accounted for the compliance with the Clean Construction Ordinance provides appropriate references.
Table E.7.1. Fisherman’s Wharf Public Realm Plan Construction Criteria Air Pollutant Average Daily Emissions\(^{113}\) (lbs/day)

<table>
<thead>
<tr>
<th>Project Name</th>
<th>ROG</th>
<th>NO(_x)</th>
<th>PM(_{10})</th>
<th>PM(_{2.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson Street</td>
<td>1.90</td>
<td>8.53</td>
<td>0.42</td>
<td>.08</td>
</tr>
<tr>
<td>Taylor Street</td>
<td>1.78</td>
<td>8.03</td>
<td>0.54</td>
<td>.12</td>
</tr>
<tr>
<td>Polk Street</td>
<td>1.19</td>
<td>5.35</td>
<td>0.36</td>
<td>.08</td>
</tr>
<tr>
<td>Larkin Street</td>
<td>1.19</td>
<td>8.03</td>
<td>0.36</td>
<td>.08</td>
</tr>
<tr>
<td>Hyde Street</td>
<td>1.78</td>
<td>8.03</td>
<td>0.54</td>
<td>.12</td>
</tr>
<tr>
<td>Leavenworth Street</td>
<td>1.78</td>
<td>8.03</td>
<td>0.54</td>
<td>.12</td>
</tr>
<tr>
<td>Jones Street</td>
<td>1.78</td>
<td>8.03</td>
<td>0.54</td>
<td>.12</td>
</tr>
<tr>
<td>Mason Street</td>
<td>1.78</td>
<td>8.03</td>
<td>0.54</td>
<td>.12</td>
</tr>
<tr>
<td>Powell Street</td>
<td>1.78</td>
<td>8.03</td>
<td>0.54</td>
<td>.12</td>
</tr>
<tr>
<td>Beach Street</td>
<td>4.15</td>
<td>18.74</td>
<td>1.26</td>
<td>.28</td>
</tr>
<tr>
<td>North Point Street</td>
<td>5.93</td>
<td>26.77</td>
<td>1.80</td>
<td>.40</td>
</tr>
<tr>
<td>Bay Street</td>
<td>5.93</td>
<td>26.77</td>
<td>1.80</td>
<td>.40</td>
</tr>
<tr>
<td>Columbus Avenue/North Point/Leavenworth Street Intersection</td>
<td>2.9</td>
<td>8.96</td>
<td>0.35</td>
<td>.38</td>
</tr>
<tr>
<td>Aquatic Park</td>
<td>2.9</td>
<td>8.96</td>
<td>0.35</td>
<td>.38</td>
</tr>
<tr>
<td>Joseph Conrad Square</td>
<td>2.9</td>
<td>8.96</td>
<td>0.35</td>
<td>.38</td>
</tr>
<tr>
<td>BAAQMD Construction Criteria Air Pollutant Thresholds</td>
<td>54</td>
<td>54</td>
<td>0.35</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>39.67</td>
<td>169.24</td>
<td>10.29</td>
<td>3.18</td>
</tr>
</tbody>
</table>

As shown above, concurrent implementation of all the proposed streetscape improvements and open space improvement projects would exceed the BAAQMD’s thresholds of significance for NO\(_x\). Thus, the project’s construction-related exhaust emissions, if all the individual projects were to be constructed at once, would result in a significant impact. However, this impact would be reduced to less than significant with implementation of Mitigation Measure M-AQ 3: Phased Implementation of Streetscape and Open Space Improvements. Mitigation Measure AQ-3, allows the project sponsor to construct a number of streetscape and open space projects concurrently, so long as at no time would construction activities exceed the BAAQMD’s average daily NO\(_x\) thresholds for construction.

Mitigation Measure AQ-3: Phased Implementation of Streetscape and Open Space Improvements: Prior to implementation of individual streetscape and open space projects, the project sponsor shall coordinate with the Major Environmental Analysis (MEA) division of the Planning Department to ensure that at no time would concurrent project-related construction activities exceed BAAQMD’s average daily construction thresholds. Coordination shall include a review of any ongoing project-related construction activities. If multiple projects are anticipated to occur concurrently and have the potential to exceed BAAQMD’s average daily emissions for NO\(_x\), the Planning Department may require additional analysis of available strategies to reduce NO\(_x\) emissions to levels that are below the BAAQMD’s thresholds. NO\(_x\) reduction strategies may include Tier 3 or Tier 4 construction equipment or other best available NO\(_x\) control strategies. If,

\(^{113}\) Calculations based on number of street blocks.
after incorporating additional mitigation measures, concurrent construction activities may still exceed the BAAQMD’s NO\textsubscript{x} threshold, the project sponsor shall stop all impact-generating activities until a phasing plan demonstrating that overlapping project-related construction activities would not exceed BAAQMD’s average daily thresholds is adopted and implemented.

Impact AQ-4: Implementation of the Fisherman’s Wharf Public Realm Plan would not result in operational criteria air pollutant emissions that would violate an air quality standard or contribute significantly to an existing or projected air quality violation. (Less than Significant)
None of the components of the Fisherman’s Wharf Public Realm Plan would be expected to result in criteria air pollutants or ozone precursors, including the tour bus and traffic circulation plans, therefore the Fisherman’s Wharf Public Realm Plan would result in an increase in criteria air pollutants and ozone precursors, and would not result in an exceedance of the average 8-hour or 1-hour carbon monoxide (CO) standard (9 parts per million [ppm] or 20 ppm, respectively). Therefore, operational air quality impacts as a result of the Fisherman’s Wharf Public Realm Plan would be less than significant.

Impact AQ-5: Implementation of the Fisherman’s Wharf Public Realm Plan would not expose sensitive receptors to substantial pollutant concentrations. (Less than Significant)
As discussed under Impact AQ-4, the proposed project would not result in increased vehicle trips and does not include any stationary sources (e.g., backup generators, boilers, gas dispensing facilities, etc.) that would pose a health risk for nearby sensitive receptors. Therefore, impacts to sensitive receptors would be considered less than significant.

Impact AQ-6: The proposed project would not create objectionable odors that affect a substantial number of people. (Less than Significant)
The project would not result in a perceptible increase or change in odors in the Plan Area or in its vicinity, as it would not include uses prone to generation of odors. Therefore, the proposed project would result in a less than significant impact in respect to exposing persons to objectionable odors.

Impact AQ-7: The proposed project would result in cumulative air quality impacts. (Less than Significant with Mitigation)
With respect to cumulative impacts from criteria air pollutants, BAAQMD’s approach to cumulative air quality analysis is that any proposed project that would individually have a significant air quality impact would also be considered to contribute to considerably to a significant cumulative air quality impact.\(^{114}\) As discussed under Impact AQ-3, if all of the streetscape and open space improvements are constructed concurrently, the proposed project would result in average daily NO\textsubscript{x} emissions that exceed BAAQMD’s significance threshold. Implementation of Mitigation Measure M-AQ-3 would ensure that at no time would the proposed project result in an exceedance of the BAAQMD average daily NO\textsubscript{x} thresholds, therefore with implementation of mitigation measure M-AQ-3, the proposed project would result

not result in a considerable contribution to cumulative criteria air pollutant emissions and cumulative air quality impacts would be considered *less than significant*.

8. GREENHOUSE GAS EMISSIONS—

Would the project:

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with any applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Environmental Settings

Gases that trap heat in the atmosphere are referred to as greenhouse gases (GHGs) because they capture heat radiated from the sun as it is reflected back into the atmosphere, much like a greenhouse does. The accumulation of GHG’s has been implicated as the driving force for global climate change. The primary GHGs are carbon dioxide, methane, nitrous oxide, ozone, and water vapor.

While the presence of the primary GHGs in the atmosphere are naturally occurring, carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) are largely emitted from human activities, accelerating the rate at which these compounds occur within earth’s atmosphere. Emissions of carbon dioxide are largely by-products of fossil fuel combustion, whereas methane results from off-gassing associated with agricultural practices and landfills. Other GHGs include hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride, and are generated in certain industrial processes. Greenhouse gases are typically reported in “carbon dioxide-equivalent” measures (CO₂E).¹¹⁵

There is international scientific consensus that human-caused increases in GHGs have and will continue to contribute to global warming. Potential global warming impacts in California may include, but are not limited to, loss in snow pack, sea level rise, more extreme heat days per year, more high ozone days, more large forest fires, and more drought years. Secondary effects are

¹¹⁵ Because of the differential heat absorption potential of various GHGs, GHG emissions are frequently measured in “carbon dioxide-equivalents,” which present a weighted average based on each gas’s heat absorption (or “global warming”) potential.
likely to include a global rise in sea level, impacts to agriculture, changes in disease vectors, and changes in habitat and biodiversity.116

The Air Resources Board (ARB) estimated that in 2006 California produced about 484 million gross metric tons of CO\textsubscript{2}E (MMTCO\textsubscript{2}E), or about 535 million U.S. tons.117 The ARB found that transportation is the source of 38 percent of the State’s GHG emissions, followed by electricity generation (both in-state and out-of-state) at 22 percent and industrial sources at 20 percent. Commercial and residential fuel use (primarily for heating) accounted for 9 percent of GHG emissions.118 In the Bay Area, fossil fuel consumption in the transportation sector (on-road motor vehicles, off-highway mobile sources, and aircraft) and the industrial and commercial sectors are the two largest sources of GHG emissions, each accounting for approximately 36% of the Bay Area’s 95.8 MMTCO\textsubscript{2}E emitted in 2007.119 Electricity generation accounts for approximately 16% of the Bay Area’s GHG emissions followed by residential fuel usage at 7%, off-road equipment at 3% and agriculture at 1%.120

Regulatory Settings

In 2006, the California legislature passed Assembly Bill No. 32 (California Health and Safety Code Division 25.5, Sections 38500, et seq., or AB 32), also known as the Global Warming Solutions Act. AB 32 requires ARB to design and implement emission limits, regulations, and other measures, such that feasible and cost-effective statewide GHG emissions are reduced to 1990 levels by 2020 (representing a 25 percent reduction in emissions).

Pursuant to AB 32, ARB adopted a Scoping Plan in December 2008, outlining measures to meet the 2020 GHG reduction limits. In order to meet these goals, California must reduce its GHG emissions by 30 percent below projected 2020 business as usual emissions levels, or about 15 percent from today’s levels.121 The Scoping Plan estimates a reduction of 174 million metric tons of CO\textsubscript{2}E (MMTCO\textsubscript{2}E) (about 191 million U.S. tons) from the transportation, energy, agriculture, forestry, and high global warming potential sectors, see Table \textbf{E.8.1} below. ARB has identified an implementation timeline for the GHG reduction strategies in the Scoping Plan.122 Some measures

\begin{itemize}
\item California Climate Change Portal. Frequently Asked Questions About Global Climate Change. Available online at:
\item Bay Area Air Quality Management District, Source Inventory of Bay Area Greenhouse Gas Emissions: Base Year 2007, Updated: February 2010. Available online at:
\item California Air Resources Board, California’s Climate Plan: Fact Sheet. Available online at:
\item California Air Resources Board. AB 32 Scoping Plan. Available Online at:
\end{itemize}
may require new legislation to implement, some will require subsidies, some have already been developed, and some will require additional effort to evaluate and quantify. Additionally, some emissions reductions strategies may require their own environmental review under CEQA or the National Environmental Policy Act (NEPA).

Table E.8.1. GHG Reductions from the AB 32 Scoping Plan Sectors

<table>
<thead>
<tr>
<th>GHG Reduction Measures By Sector</th>
<th>GHG Reductions (MMT CO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Sector</td>
<td>62.3</td>
</tr>
<tr>
<td>Electricity and Natural Gas</td>
<td>49.7</td>
</tr>
<tr>
<td>Industry</td>
<td>1.4</td>
</tr>
<tr>
<td>Landfill Methane Control Measure (Discrete Early Action)</td>
<td>1</td>
</tr>
<tr>
<td>Forestry</td>
<td>5</td>
</tr>
<tr>
<td>High Global Warming Potential GHGs</td>
<td>20.2</td>
</tr>
<tr>
<td>Additional Reductions Needed to Achieve the GHG Cap</td>
<td>34.4</td>
</tr>
<tr>
<td>Total</td>
<td>174</td>
</tr>
</tbody>
</table>

Other Recommended Measures

<table>
<thead>
<tr>
<th>Other Recommended Measures</th>
<th>GHG Reductions (MMT CO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Operations</td>
<td>1-2</td>
</tr>
<tr>
<td>Agriculture- Methane Capture at Large Dairies</td>
<td>1</td>
</tr>
<tr>
<td>Methane Capture at Large Dairies</td>
<td>1</td>
</tr>
<tr>
<td>Additional GHG Reduction Measures</td>
<td>4.8</td>
</tr>
<tr>
<td>Water</td>
<td>4.8</td>
</tr>
<tr>
<td>Green Buildings</td>
<td>26</td>
</tr>
<tr>
<td>High Recycling/ Zero Waste</td>
<td></td>
</tr>
<tr>
<td>• Commercial Recycling</td>
<td></td>
</tr>
<tr>
<td>• Composting</td>
<td></td>
</tr>
<tr>
<td>• Anaerobic Digestion</td>
<td>9</td>
</tr>
<tr>
<td>• Extended Producer Responsibility</td>
<td></td>
</tr>
<tr>
<td>• Environmentally Preferable Purchasing</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>42.8-43.8</td>
</tr>
</tbody>
</table>

AB 32 also anticipates that local government actions will result in reduced GHG emissions. ARB has identified a GHG reduction target of 15 percent from current levels for local governments themselves and notes that successful implementation of the plan relies on local governments’ land use planning and urban growth decisions because local governments have primary authority to plan, zone, approve, and permit land development to accommodate population growth and the changing needs of their jurisdictions.

The Scoping Plan relies on the requirements of Senate Bill 375 (SB 375) to implement the carbon emission reductions anticipated from land use decisions. SB 375 was enacted to align local land use and transportation planning to further achieve the State’s GHG reduction goals. SB 375 requires regional transportation plans, developed by Metropolitan Planning Organizations (MPOs), to incorporate a “sustainable communities strategy” in their regional transportation plans (RTPs) that would achieve GHG emission reduction targets set by ARB. SB 375 also includes provisions for streamlined CEQA review for some infill projects such as transit-oriented

\[123 \text{Ibid.}\]
development. SB 375 would be implemented over the next several years and the Metropolitan Transportation Commission’s 2013 RTP would be its first plan subject to SB 375.

Senate Bill 97 (SB 97) required the Office of Planning and Research (OPR) to amend the state CEQA guidelines to address the feasible mitigation of GHG emissions or the effects of GHGs. In response, OPR amended the CEQA guidelines to provide guidance for analyzing GHG emissions. Among other changes to the CEQA Guidelines, the amendments add a new section to the CEQA Checklist (CEQA Guidelines Appendix G) to address questions regarding the project’s potential to emit GHGs.

The Bay Area Air Quality Management District (BAAQMD) is the primary agency responsible for air quality regulation in the nine county San Francisco Bay Area Air Basin (SFBAAB). As part of their role in air quality regulation, BAAQMD has prepared the CEQA air quality guidelines to assist lead agencies in evaluating air quality impacts of projects and plans proposed in the SFBAAB. The guidelines provide procedures for evaluating potential air quality impacts during the environmental review process consistent with CEQA requirements. On June 2, 2010, the BAAQMD adopted new and revised CEQA air quality thresholds of significance and issued revised guidelines that supersede the 1999 air quality guidelines. The 2010 CEQA Air Quality Guidelines provide for the first time CEQA thresholds of significance for greenhouse gas emissions. OPR’s amendments to the CEQA Guidelines as well as BAAQMD’s 2010 CEQA Air Quality Guidelines and thresholds of significance have been incorporated into this analysis accordingly.

Impact GG-I: The proposed project would generate greenhouse gas emissions, but not in levels that would result in a significant impact on the environment or conflict with any policy, plan, or regulation adopted for the purpose of reducing greenhouse gas emissions. (Less than Significant)

The most common GHGs resulting from human activity are CO₂, CH₄, and N₂O. State law defines GHGs to also include hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride. These latter GHG compounds are usually emitted in industrial processes, and therefore not applicable to the proposed project. The analysis of the proposed project’s climate change impact is an analysis of the project’s contribution to a cumulatively significant global impact through its emission of GHGs. Individual projects contribute to the cumulative effects of climate change by directly or indirectly emitting GHGs during construction and operational phases. Direct operational emissions include GHG emissions from new vehicle trips and area sources (natural gas combustion). Indirect emissions include emissions from electricity providers, energy required

to pump, treat, and convey water, and emissions associated with landfill operations. Given the analysis is in a cumulative context, this section does not include an individual, project-specific impact statement.

As discussed above, the BAAQMD has adopted CEQA thresholds of significance for projects that emit GHGs, one of which is a determination of whether the proposed project is consistent with a Qualified Greenhouse Gas Reduction Strategy, as defined in the 2010 CEQA Air Quality Guidelines. In compliance with the CEQA Air Quality Guidelines and thresholds of significance, the San Francisco Planning Department has prepared a Qualified GHG Reduction Strategy titled Strategies to Address Greenhouse Gas Emissions. This document presents a comprehensive assessment of policies, programs and ordinances that collectively represent San Francisco’s Qualified Greenhouse Gas Reduction Strategy. The BAAQMD reviewed San Francisco’s Strategies to Address Greenhouse Gas Emissions and concluded that the strategy meets the criteria for a Qualified GHG Reduction Strategy as outlined in BAAQMD’s CEQA Air Quality Guidelines (2010) and stated that San Francisco’s “aggressive GHG reduction targets and comprehensive strategies help the Bay Area move toward reaching the State’s AB 32 goals, and also serve as a model from which other communities can learn.”

San Francisco’s GHG reduction strategy identifies a number of mandatory requirements and incentives that have measurably reduced greenhouse gas emissions including, but not limited to, increasing the energy efficiency of new and existing buildings, installation of solar panels on building roofs, implementation of a green building strategy, adoption of a zero waste strategy, a construction and demolition debris recovery ordinance, a solar energy generation subsidy, incorporation of alternative fuel vehicles in the City’s transportation fleet (including buses and taxis), and a mandatory composting ordinance. The strategy also identifies 42 specific regulations for new development that would reduce a project’s GHG emissions.

San Francisco’s climate change goals as identified in the 2008 Greenhouse Gas Reduction Ordinance are as follows:

- By 2008, determine the City’s 1990 GHG emissions, the baseline level with reference to which target reductions are set;
- Reduce GHG emissions by 25 percent below 1990 levels by 2017;
- Reduce GHG emissions by 40 percent below 1990 levels by 2025; and

• Reduce GHG emissions by 80 percent below 1990 levels by 2050.

The City’s 2017 and 2025 GHG reduction goals are more aggressive than the State’s GHG reduction goals as outlined in AB 32, and consistent with the State’s long-term (2050) GHG reduction goals. San Francisco’s Strategies to Address Greenhouse Gas Emissions identifies the City’s actions to pursue cleaner energy, energy conservation, alternative transportation and solid waste policies, and concludes that San Francisco’s policies have resulted in a reduction in greenhouse gas emissions below 1990 levels, meeting statewide AB 32 GHG reduction goals. As reported, San Francisco’s 1990 GHG emissions were approximately 8.26 million metric tons (MMT) CO₂E and 2005 GHG emissions are estimated at 7.82 MMTCO₂E, representing an approximately 5.3 percent reduction in GHG emissions below 1990 levels.

Based on the BAAQMD’s 2010 CEQA Air Quality Guidelines, projects that are consistent with San Francisco’s Strategies to Address Greenhouse Gas Emissions would result in a less than significant impact with respect to GHG emissions. Furthermore, because San Francisco’s strategy is consistent with AB 32 goals, projects that are consistent with San Francisco’s strategy would also not conflict with the State’s plan for reducing GHG emissions.

The proposed project would increase the activity onsite by installing streetscape improvements in the Plan Area that would result in GHG emissions during construction phases. Construction vehicles and equipment would result in an increase in GHG emissions. Additionally, demolished street surfaces could result in an increase in landfill materials and an increase in vehicular GHG emissions associated with landfill transport. The improvements generally include: bike lanes, stormwater control measures; street trees plantings; and installation of pedestrian-scale lighting, street furniture, special paving, marked crosswalks and ramps, pedestrian signals, sidewalk planter boxes, raised crosswalks, and bulb outs. The project would also add new bike lanes and realign the streetcar tracks on Jefferson Street.

Of the elements described above, landscape maintenance and irrigation would result in an increase in water use which generates indirect emissions from the energy required to pump, treat, and convey water. The FWPRP could also result in an increase in electricity use as a result of installation of pedestrian-scale lighting.

As discussed in San Francisco’s Strategies to Address Greenhouse Gas Emissions, municipal projects are required to comply with San Francisco’s ordinances that reduce greenhouse gas emissions. Applicable requirements are shown below in Table E.8.2.
Table E.8.2. Regulations Applicable to Proposed Project

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Requirement</th>
<th>Project Compliance</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation sector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commuter Benefits Ordinance (Environment Code, Section 421)</td>
<td>All City employees are offered commuter benefits for transit and vanpool expenses. The City Hall bike room provides secure bicycle parking, showers and lockers for bicycle commuters. City employees are also eligible for telecommuting and alternative work schedules.</td>
<td>☒ Project Complies</td>
<td>All City employees are offered commuter benefits in compliance with Environment Code, Section 421; therefore, the Planning Department, Department of Public Works and Municipal Transportation Agency are in compliance with Environmental Code Section 421.</td>
</tr>
<tr>
<td>Emergency Ride Home Program</td>
<td>All City employees are automatically eligible for the emergency ride home program.</td>
<td>☒ Project Complies</td>
<td>All City employees are automatically eligible for the emergency ride home program; therefore, the Planning Department, Department of Public Works and Municipal Transportation Agency are in compliance with the Emergency Ride Home Program.</td>
</tr>
<tr>
<td>Biodiesel for Municipal Fleets (Executive Directive 06-02)</td>
<td>Requires all City Departments using diesel operated vehicles and equipment to begin using biodiesel (B20). Sets goals for all diesel equipment to be run on biodiesel by 2007 and goals for increasing biodiesel blends to B100.</td>
<td>☒ Project Complies</td>
<td>The project does not include acquisition or operation of vehicles; however, currently, more than half of SFMTA Muni’s vehicles are zero emissions, including 40% of Muni’s buses. Muni’s fleet comprises of: 86 hybrid buses; 56 forty-foot hybrid vehicles; 30 thirty-foot hybrid vehicles; 495 diesel buses; 333 electric trolley buses; 26 historic streetcars; 40 cable cars; and 151 metro streetcars. The Planning Department maintains a fleet of two vehicles, including a 2002 Hybrid Toyota Prius, and a 2000 compressed natural gas Toyota Camry. DPW reduced its fleet by 75 vehicles during FY08-09 and FY 09-10 to current total of 651 vehicles, including truck, cars, sweepers, dump trucks, green machines, and flatbed trucks. Therefore the Planning Department, Department of Public Works and Municipal Transportation Agency are in compliance with Executive Directive 06-02.</td>
</tr>
</tbody>
</table>
| Clean Construction Ordinance (Administrative Code, Section 6.25) | Effective March 2009, all contracts for large (20+ day) City projects are required to:
- Fuel diesel vehicles with B20 biodiesel, and
- Use construction equipment that meet USEPA Tier 2 standards or best available control technologies for equipment over 25 hp. | ☒ Project Complies | City departments are required to comply with Administrative Code, Section 6.25; therefore, the Planning Department, Department of Public Works and Municipal Transportation Agency are in compliance with |
| Bicycle Parking in City-Owned and Leased Buildings | Class 1 and 2 Bicycle Parking Spaces
Class 1 Requirements: | ☐ Project Not Complies | Planning Code Section 155.1 does not apply to the proposed project. Although not applicable, the project includes bike |
<table>
<thead>
<tr>
<th>Regulation</th>
<th>Requirement</th>
<th>Project Compliance</th>
<th>Discussion</th>
</tr>
</thead>
</table>
| (Planning Code, Section 155.1) | (A) Provide two spaces in buildings with 1-20 employees.
(B) Provide four spaces in buildings with 21 to 50 employees.
(C) In buildings with 51 to 300 employees, provide bicycle parking equal to at least five percent of the number of employees at that building, but no fewer than five bicycle spaces.
(D) In buildings with more than 300 employees, provide bicycle parking equal to at least three percent of the number of employees at that building, but no fewer than 16 bicycle spaces.
In addition to the Class 1 bicycle parking spaces provide Class 2 bicycle parking.
Class 2 Requirements:
(A) In buildings with one to 40 employees, at least two bicycle parking spaces shall be provided.
(B) In buildings with 41 to 50 employees, at least four bicycle parking spaces shall be provided.
(C) In buildings with 51 to 100 employees, at least six bicycle parking spaces shall be provided.
(D) In buildings with more than 100 employees, at least eight bicycle parking spaces shall be provided.
Wherever a responsible City official is required to provide eight or more Class 2 bicycle parking spaces, at least 50 percent of those parking spaces shall be covered. | ☒ Not Applicable
☐ Project Does Not Comply | lanes and bike parking. |

Waste Reduction Sector

| Resource Efficiency and Green Building Ordinance (Environment Code, Chapter 7) | The ordinance requires all demolition (& new construction) projects to prepare a Construction and Demolition Debris Management Plan designed to recycle construction and demolition materials to the maximum extent feasible, with a goal of 75% diversion. The ordinance specifies requires for all city buildings to provide adequate recycling space | ☒ Project Complies
☐ Not Applicable
☐ Project Does Not Comply | The project is required to prepare a Construction and Demolition Debris Management Plan and therefore, it will be in compliance with Environment Code, Chapter 7. |

| Resource Conservation Ordinance (Environment Code, Chapter 5) | This ordinance establishes a goal for each City department to (i) maximize purchases of recycled products and (ii) divert from disposal as much solid waste as possible so that the City can meet the state-mandated 50% diversion requirement. Each City department | ☒ Project Complies
☐ Not Applicable
☐ Project Does Not Comply | All City departments are required to maximize the purchase of recycle products; therefore, the Planning Department, Department of Public Works and Municipal Transportation Agency are in compliance with Environment Code, Chapter 5. |
<table>
<thead>
<tr>
<th>Regulation</th>
<th>Requirement</th>
<th>Project Compliance</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Recycling and Composting Ordinance (Environment Code, Chapter 19)</td>
<td>The mandatory recycling and composting ordinance requires all persons in San Francisco to separate their refuse into recyclables, compostables and trash, and place each type of refuse in a separate container designated for disposal of that type of refuse.</td>
<td>✅ Project Complies</td>
<td>Although the project does not include any development of habitable space; all City departments are required to comply with Environment Code, Chapter 19. Therefore the Planning Department, Department of Public Works and Municipal Transportation Agency are in compliance with Chapter 19 of the Environment Code.</td>
</tr>
<tr>
<td>Construction Recycled Content Ordinance (Administrative Code, Section 6.4)</td>
<td>Ordinance requires the use of recycled content material in public works projects to the maximum extent feasible and gives preference to local manufacturers and industry.</td>
<td>✅ Project Complies</td>
<td>All City departments are required to use recycled content material in public works projects. Standard SFDPW specs specify fly ash content in concrete and allow for recycled content in aggregates for paving. Therefore, the project complies with Administrative Code, Section 6.4.</td>
</tr>
</tbody>
</table>

Environment/Conservation Sector

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Requirement</th>
<th>Project Compliance</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street Tree Planting Requirements for New Construction (Planning Code Section 143)</td>
<td>Planning Code Section 143 requires new construction, significant alterations or relocation of buildings within many of San Francisco’s zoning districts to plant on 24-inch box tree for every 20 feet along the property street frontage.</td>
<td>☐ Project Does Not Comply</td>
<td>Planning Code Section 143 does not apply to the proposed project, although the project includes street tree planting and landscaping in the public realm.</td>
</tr>
<tr>
<td>Environmentally Preferable Purchasing Ordinance (Formerly Precautionary Purchasing Ordinance)</td>
<td>Requires City Departments to purchase products on the Approved Green Products List, maintained by the Department of the Environment. The items in the Approved Green Products List has been tested by San Francisco City Depts. and meet standards that are more rigorous than ecolabels in protecting our health and environment.</td>
<td>✅ Project Complies</td>
<td>All City departments purchase products on the Approved Green Product List; therefore, the Planning Department, Department of Public Works and Municipal Transportation Agency are in compliance with the Environmentally Preferable Purchasing Ordinance.</td>
</tr>
<tr>
<td>Tropical Hardwood and Virgin Redwood Ban (Environment Code, Chapter 8)</td>
<td>The ordinance prohibits City departments from procuring, or engaging in contracts that would use the ordinance-listed tropical hardwoods and virgin redwood.</td>
<td>✅ Project Complies</td>
<td>All City departments are prohibited from procuring products that are ordinance-listed tropical hardwoods and virgin redwood; therefore, the Planning Department, Department of Public Works and Municipal Transportation Agency are in compliance with Environment Code, Chapter 8.</td>
</tr>
</tbody>
</table>
In addition to complying with the City’s regulations, the GHG Reduction Ordinance requires that all City Departments prepare an annual department-specific climate action plan. A Department’s Climate Action Plan (CAP) outlines the process for each department to meet the City’s Greenhouse Gas Reduction targets and promote energy efficiency, alternative transportation, and waste reduction within their department and throughout the community. The following is a summary of the project sponsor’s (Planning, MTA and DPW) Department Climate Action Plans.

Planning Department

The Planning Department influences communitywide GHG emissions primarily through the General Plan and Planning Code requirements. The General Plan, maintained by the Planning Department, contains objectives and policies to guide the physical development in San Francisco that are applicable on a Citywide basis and is the embodiment of the community’s vision for the City of San Francisco. The General Plan contains numerous objectives and policies that are intended to reduce transportation emissions, reduce waste, increase energy efficiency and renewable energy generation and promote carbon sequestration, all of which reduce greenhouse gas emissions. The Planning Code guides the physical requirements for land uses throughout the City. The Planning Code includes many mandatory requirements that serve to reduce GHG emissions from land use projects.\(^{127}\)

Department of Public Works (DPW)\(^{128}\)

The purpose of DPW’s CAP is to document DPW’s carbon footprint and establish strategic actions to reduce DPW’s GHG emissions and contribute to making San Francisco a beautiful, livable, vibrant, and sustainable city. Similarly to the Planning Department’s CAP, DPW’s CAP provides commitment to meet LEED standards, actions to reduce waste, increase carbon sequestration, promote urban forestry and purchase green products.

DPW aims to reduce its operational greenhouse gas emissions to 20% below 1990 levels by 2022. To meet this goal, DPW will need to reduce vehicle trips\(^{129}\) and promote the use of clean fuels among the City-owned fleet. Thus far, DPW reduced its fleet by 75 vehicles during fiscal year 08-09 and fiscal year 09-10 to current total of 651 vehicles, including trucks, cars, sweepers, dump trucks, green machines, and flatbed trucks.

DPW’s urban forestry program improves hydrological conditions in the city, while sequestering carbon from the atmosphere. DPW’s manages the issuance of tree permits and maintains approximately 35,000 street trees. During fiscal year 09-09 DPW planted more than 1,400 street

\(^{127}\) San Francisco Planning Department. *Climate Action Plan*. 2009. This document is available at the Planning Department at 1650 Mission Street, Fourth Floor. San Francisco, CA 94103.

\(^{128}\) San Francisco Department of Public Works, *Climate Action Plan*, June 2010. A copy of this document is available at the Planning Department at 1650 Mission Street, Fourth Floor. San Francisco, CA 94103, as part of Case No. 2010.0256.

\(^{129}\) The gasoline and diesel burned to power vehicles on San Francisco roads is the largest source of greenhouse gasses.
trees, equating to approximately 980 metric tons of CO₂ sequestered over a 20-year sequestration period.130

The San Francisco Municipal Transportation Agency (SFMTA)131
The SFMTA aims to reduce its energy use footprint and reduce its operational greenhouse gas emissions to 20% below the 1990 baseline by 2012. The SFMTA CAP outlines steps needed to achieve this goal, including emission free vehicles, fewer vehicle miles traveled and modal shift to transit, bikes and walking.

The SFMTA is working to reduce the impacts of automobile emissions and congestion through multiple initiatives. For example, the Transit Effectiveness Project (TEP) aims to attract motorists onto transit through a faster, more reliable and more efficient transit system. Presently, the SFMTA operates the largest zero emissions bus fleet in the country and the second largest alternative fuel bus fleet in California. Fifty-one percent of the SFMTA’s 1,045 transit vehicles are zero emission (light rail, historic streetcars, electric trolley buses and cable cars). Forty percent of the SFMTA’s 842 buses are zero emissions (electric trolley buses). All of the remaining transit buses are fueled with biodiesel, including hybrid buses. Additionally, 35 paratransit vehicles are fueled with biodiesel.

In summary, while the SFMTA’s internal footprint is being successfully addressed through ever-cleaner transit vehicles, increased energy efficiency and better waste reduction, the direct measure of the SFMTA’s contribution to reducing the much larger scope of transportation sector emissions will primarily be found in increased transit ridership, increased use of plug-in passenger vehicles, improved parking management, expanded vehicle technology programs, increased provision of bicycle facilities, promotion of walking and increased transit oriented development.

San Francisco Public Utilities Commission (SFPUC)132
In addition to working to increase the sustainability of its internal operations, SFPUC plays an important role in reducing the carbon footprint of the City’s municipal operations by supporting other City departments in achieving their ghg emissions reduction goals through providing them with a suite of energy efficiency and renewable energy services.

SFPUC has improvement programs in place to address its power generation, water, and sewer systems’ efficiencies. The SFPUC provides clean, hydroelectric power to meet the electric energy needs of the City’s municipal customers. SFPUC’s hydroelectric power is generated as part of the Hetch Hetchy Reservoir System, with a generating capacity that averages approximately 198 Megawatts (MW). SFPUC provides approximately 900,000 Megawatt-hours (MWh) per year of electricity to San Francisco municipal facilities. Its current efforts to expand the City’s sources of

130 IPCC, 2006 Guidelines for National Greenhouse Gas Inventories Volume 4. \url{http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.htm}. According to the IPCC, trees sequester CO₂ at a rate of approximately 0.035 metric tons/tree/year. Trees sequester the most amount of CO₂ in the first 20 years.

131 San Francisco Municipal Transportation Agency. September 2010. This document is available online at: \url{http://www.sfmta.com/cms/rcap/documents/ClimateActionPlan12-19-08FINALweb.pdf}.

132 San Francisco Public Utilities Commission. Climate Action Plan. 2009. A copy of this document is available at the Planning Department at 1650 Mission Street, Fourth Floor. San Francisco, CA 94103, as part of Case No. 2010.0256.
clean renewable energy continue with the anticipated installation of approximately 5 Megawatts (MW) of large scale solar projects at Sunset Reservoir and Pier 96. Smaller installations within Civic Center are also anticipated, including at City Hall and Davies Symphony Hall. Additional efforts include the potential use of new energy generation technologies such as solar photovoltaic (PV) -integrated membrane, in-line turbines to capture wasted hydro energy, urban wind, wind farms, ocean energy, fuel cells, and reuse of steam heat condensate. Energy conservation and efficiency at all City departments round out the efforts as the Power Enterprise develops and implements projects to reduce the City’s overall carbon footprint.

SFPUC has also provided funding to the Department of Environment (SFE), supporting joint activities in Energy Policy, Climate, Green Building, and SFE’s work in Energy Efficiency and Renewable Energy for commercial and residential sectors.

Conclusion
The proposed project’s construction related GHG emissions would be reduced through compliance with City regulations including: the City’s Clean Construction Ordinance and Construction Recycled Content Ordinance. The Clean Construction Ordinance would require construction vehicles to use at least a 20% blend of biodiesel (B20); and use construction equipment (25 hp or more) with engines that either meet US EPA Tier 2 standards for off-road engines, or use the most “effective verified diesel emission control strategy”, also known as “best available control technology”. The use of cleaner fuel would offset some construction related GHG emissions. The Construction Recycled Content Ordinance would require that materials used for the implementation/construction of individual streetscape projects be of local recycled material. Standard SFPDW specs specify fly ash content in concrete and allow for recycled content in aggregates for paving.

The project also includes landscaping which could result in an increase in GHG emissions from landscape maintenance activities and irrigation. Increase in water use generates indirect GHG emissions from the energy required to pump, treat, and convey water. However, street trees and vegetation also serve as carbon sinks by sequestering CO2 in the atmosphere. In addition, individual streetscape projects would be designed with vegetation that is appropriate to San Francisco, reducing the amount of maintenance activities and irrigation required to sustain streetscape vegetation.

In compliance with the Better Streets Plan Policy 8.1, which states that new streetscapes should maximize opportunities for on-site stormwater retention and infiltration within streetscapes, the proposed projects would include landscaped detention or bio-retention features to provide initial treatment to stormwater runoff. Reducing stormwater runoff by onsite retention and infiltration, reduces the amount of energy needed to transport and treat stormwater.

To the extent possible, and in coordination with the SFPDU, the FWPRP would integrate Low Impact Design (LID) standards into the various Plan-proposed streetscape improvements in the

Plan Area. This would reduce the volumes and peak flows of stormwater entering the combined sewer system, resulting in a reduction in energy needed to transport and treat storm water.

The proposed projects also include pedestrian-scale lighting and many of the projects are designed to increase pedestrian safety and circulation. Although new lighting could result in additional electricity, new light fixtures would be equipped with energy efficient bulbs.

Increased pedestrian safety through proposed traffic calming measures is intended to improve the public realm to make it more attractive for people to use alternative transportation modes including walking, biking and using public transportation. Streetscape improvements presented in the FWPRP would include bicycle lanes, pocket parks, street trees and landscaping which would be consistent with San Francisco’s Greenhouse Gas Reduction Strategy.

Depending on a proposed project’s size, use, and location, a variety of controls are in place to ensure that a proposed project would not impair the State’s ability to meet statewide GHG reduction targets outlined in AB 32, nor impact the City’s ability to meet San Francisco’s local GHG reduction targets. Given that: (1) San Francisco has implemented regulations to reduce greenhouse gas emissions specific to municipal projects; (2) San Francisco’s sustainable policies have resulted in the measured success of reduced greenhouse gas emissions levels; (3) San Francisco has met and exceeded AB 32 greenhouse gas reduction goals for the year 2020; (4) current and probable future state and local greenhouse gas reduction measures will continue to reduce a project’s contribution to climate change; and (5) San Francisco’s Strategies to Address Greenhouse Gas Emissions meet BAAQMD’s requirements for a Qualified GHG Reduction Strategy, projects that are consistent with San Francisco’s regulations would not contribute significantly to global climate change. The proposed project would be required to comply with these requirements, and was determined to be consistent with San Francisco’s Strategies to Address Greenhouse Gas Emissions. As such, the proposed project would result in a less than significant impact with respect to GHG emissions.

Topics:

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. WIND AND SHADOW—Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Alter wind in a manner that substantially affects public areas?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

b) Create new shadow in a manner that substantially affects outdoor recreation facilities or other public areas?

Impact WS-1: The proposed project would result in less-than-significant impacts on wind patterns. (Less than Significant Impact)

Wind impacts are generally caused by large building masses extending substantially above their surroundings, and by buildings oriented so that a large wall catches a prevailing wind, particularly if such a wall includes little or no articulation. Except for neighborhood gateway improvements, the proposed project would not result in the construction or removal of above-grade structures that could affect street-level wind conditions.

As described on under the project description section, p.15, neighborhood gateway improvements would consist of one or more of the following design elements: archways or distinctive vertically-oriented signs, open spaces, paving patterns and features, planting design, or public art. Although, neighborhood gateways could be built as tall and solid vertical structures, such as archways and pillars; these structures would not have enough surface area to impact wind movements. Thus, the implementation of the proposed project would result in less than significant impact to wind patterns in the Fisherman’s Wharf Neighborhood.

The proposed project would create an open plaza and outdoor seating amenities located in the excess right-of-way at the intersection of North Point Street and Columbus Avenue (see OS.3, p.20). The implementation of this proposed site-specific OS project would create new public open space in the Fisherman’s Wharf Neighborhood; however, this particular location is not in an extremely windy area. Therefore, the proposed project would not expose residents to extreme windy conditions.

Impact WS-2: The proposed project in combination with other past, present or reasonably foreseeable projects would result in less-than-significant cumulative impacts on wind patterns. (Less than Significant)

Based on the information provided above, the proposed project, alone and in combination with other potential and future development in the vicinity, such as proposed residential/retail projects as well as transportation, zoning and streetscape plans would not result in a significant wind impact in the project vicinity. It is anticipated that design of these developments would limit building height to be consistent with the applicable height and bulk requirements, as defined in the Planning Code. As such, the proposed project, in combination with projects currently proposed in the vicinity, would not substantially alter the wind patterns that could affect public areas, and cumulative wind impacts would be considered less than significant.
Impact WS-3: The proposed project would result in new shadows, but not in a manner that substantially affects outdoor recreation facilities or other public areas. (Less than Significant)

Section 295 of the Planning Code was adopted in response to Proposition K (passed in November 1984) in order to protect public open spaces under the jurisdiction of the Recreation and Park Commission from shadowing by new and altered structures during the period between one hour after sunrise and one hour before sunset, year round. Section 295 restricts new shade and shadow upon public open spaces under the jurisdiction of the Recreation and Parks Department by any structure exceeding 40 feet in height unless the Planning Commission finds the shadow to be an insignificant effect. The proposed project would not be subject to Section 295. Moreover, except for neighborhood gateways, the proposed project would not result in the construction of above-ground structures that could cast shadows. As stated in Impact WS-1 above, neighborhood gateways could be built as tall and solid vertical structures, such as archways and pillars; these structures would create some shade in the neighborhood. However, due to their limited surface area, the shade resulting from the construction of these structures would be considered less than significant under CEQA.

Impact WS-3: The proposed project, in combination with other past, present or reasonably foreseeable projects would result in less-than-significant shadow impacts. (Less than Significant)

Based on the information provided above, the proposed project, alone and in combination with other potential and future development in the vicinity, such as proposed residential/retail projects as well as transportation, zoning and streetscape plans would not result in a significant shadow impact in the project vicinity.

It is anticipated that design of the above mentioned reasonably foreseeable projects would limit building height to be consistent with structures of similar height in the immediate vicinity. Also, these foreseeable projects would be subject to controls to avoid substantial net new shading of public open space. Thus, the proposed project in combination with the cumulative projects considered in this analyzes, would not be expected to contribute considerably to adverse shadow effects under cumulative conditions, and cumulative shadow impacts would be considered less than significant.

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. RECREATION—Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a)</td>
<td>Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facilities would occur or be accelerated?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Case No. 2010.0256E 199 Fisherman's Wharf Public Realm Plan
Impact RE-1: The proposed project would not result in an increase in the use of existing parks and recreational facilities, the deterioration of such facilities, or require the expansion of recreational facilities. (Less than Significant)

Public open spaces in the Plan Area include Aquatic Park, Joseph Conrad Mini-Park, Russian Hill Park and a few Piers managed by the Port of San Francisco. Implementation of the proposed project could result in the increased use of existing parks and other recreational facilities in the Plan Area due to increased accessibility of these facilities by walking, bicycling, and public transit. The increase in use of existing parks and recreational facilities would be throughout the Fisherman’s Wharf Neighborhood and not concentrated on a particular facility. Additionally, implementation of the proposed project would reuse an excess right-of-way for the creation of a passive recreation area plaza at the intersection of Columbus Avenue, North Point and Leavenworth Streets (Open Space Improvement Project OS-3), which would increase the open space/recreational space in the Fisherman’s Wharf Neighborhood. This could offset some of the additional use of existing recreational facilities in the Plan Area. Therefore, increased access and use would not result in the substantial physical deterioration of overall existing parks and recreational facilities.

The following Plan-proposed policies are relevant to the topic of Recreation:

- Policy 1.2. Spaces for People: Create more places for recreation, both active and passive, along Jefferson Street that appeal to a greater diversity of users, from children to the elderly, singles to families, and locals to international visitors.

- Policy 1.4. Better Cycling Facilities: Jefferson Street is a critical link in the bicycle network and remains one of the largest remaining gaps in the Bay Trail. Therefore, bicycle facilities should be improved and designed to accommodate the growing demand for recreational cycling needs through this corridor.

- Policy 1.5. Connections to the Water: Improve the connections to the water throughout Fisherman’s Wharf, including opportunities along Jefferson Street. The most important opportunity on Jefferson Street is the edge along the inner harbor where the historic fishing fleet moors and where the sport fishing and bay tour boats are located; this sidewalk could be widened in anticipation of the historic streetcar line being extended into Fort Mason.

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Physically degrade existing recreational resources?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Policy 4.1 Open spaces adjacent to the water should be improved to strengthen the connection to San Francisco Bay, consistent with the design guidelines specified by the Bay Conservation and Development Commission.

The adoption of Plan-proposed Policies 1.2, 1.4, 1.5, and 4.1 would have no direct impact on the physical environment. However, Plan-proposed policies are intended to guide streetscape improvements for the residents and visitors of the Plan Area. Neighborhood gateway treatments, parking signage program and streetscape and open space improvement projects were developed to carry out Plan-proposed policies. Implementation of these projects would result in physical changes in the Plan Area; thus, physical impacts associated with policy implementation would be similar to the impacts associated with streetscape and open space improvement projects’ implementation analyzed in this section and throughout this document. No potential significant impacts to recreation facilities have been identified as a result of these physical changes. As a result of Plan-proposed policies, new streetscape improvement projects could be identified for the Plan Area in the future; however, as with the proposed project, all future projects would be subject, on a project-by-project basis, to independent CEQA review as well as policies in the San Francisco General Plan, governing area plans, design guidelines, and other applicable land use plans that are intended to reduce impacts related to recreational facilities. Therefore, the impacts resulting from the implementation of Plan-proposed policies 1.2, 1.4, 1.5, and 4.1 on recreation facilities are determined to be less than significant.

Installation of open space improvement project OS-3 at the intersection of Columbus Avenue, North Point and Leavenworth Streets would create new passive recreation facilities in the form of a plaza. Although the proposed project does plan to create a recreation facility plaza on an excess right-of-way, impacts associated with this proposed project facility is analyzed in each of the specific impact sections of this Initial Study. The proposed project would not require the construction or expansion of off-site recreational facilities nor would it physically degrade existing recreational resources. The proposed project would have minimal effects on recreational resources within the Plan Area and this impact would be considered less than significant.

Impact RE-2: The proposed project, in combination with other past, present, or reasonably foreseeable projects would result in less-than-significant impacts to recreational resources. (Less than Significant)

The geographic context for cumulative recreation resources impacts is the Fisherman’s Wharf Neighborhood and its vicinity. Cumulative impacts occur when impacts that are significant or less than significant from a proposed project combine with similar impacts from other past, present, or reasonably foreseeable projects in a similar geographic area. Cumulative projects in the Plan Area are primarily zoning and streetscape plans, facility upgrades to host the 34th America’s Cup and transportation improvements.

Proposed SI-1: Jefferson Street Improvements, would add a Class II, contra-flow bike lane on Jefferson Street. By adding a Class II contra-flow bike lane on Jefferson Street, this Bay Trail
connection would be linked to the existing Bicycle Route 5 on The Embarcadero south of North Point Street. This bike route improvement would connect cyclists on the Bicycle Network to the open spaces and recreational facilities in the Plan Area which could result in an increase in recreational facilities use. However, it is assumed that the increased demand would be absorbed by existing recreational facilities in the Plan Area, thereby not requiring expansion nor degrading existing recreation facilities.

As discussed in the population growth section of this document, implementation of the proposed project could induce some growth in the Plan Area. This growth would be negligible compared to growth rates for dense urban areas like San Francisco and is expected to occur incrementally over a long period of time and it is not expected to exceed local agencies future forecast for demand of services including demand for recreation facilities.

The proposed project, in combination with the implementation of improvements for the 34th America’s Cup and Cruise Terminal projects, could temporarily increase the population numbers in the neighborhood’s public realm, as spectators might gather along improved open spaces to take a brake from watching the races. However, this population surge would only be temporary and related to the America’s Cup event, which is currently under CEQA environmental review.

In general, the implementation of the FWPRP in combination with the E and F-lines street car service extension, and the Van Ness Avenue BRT would improve connections and/or make walking, bicycling and public transit use more attractive current and potential new users of existing recreation facilities in the Plan Area. Implementation of the E-Line would facilitate the movement of people from the south side of the City to existing open spaces and recreational facilities in the Plan Area. Extension of the F-Line Street Service would facilitate the movement of people from the north side of the City to existing open spaces and recreational facilities in the Plan Area.

Although, improvements in connectivity between potential users and recreational facilities could result in an increase in facilities’ demand in the Plan Area; it is assumed that the increased demand would be absorbed by existing recreational facilities in the Plan Area, thereby not requiring expansion nor degrading existing recreation facilities. Additionally, it is anticipated that all cumulative projects would be consistent with the adopted goals, policies and objectives of the governing area Plans, as well as, policies in the San Francisco General Plan, design guidelines, planning codes and zoning maps (including development standards), and other applicable land use plans that are intended to reduce impacts related to recreation resources. Thus the proposed project would not result in cumulatively considerably impacts to recreational resources and this impact would be considered less than significant.
Impact UT-1: The proposed project would not exceed the wastewater treatment requirements of the Regional Water Quality Control Board, require or result in the construction of new, or expansion of existing, water, wastewater treatment facilities, or stormwater drainage facilities and the proposed project would be adequately served by the City’s wastewater treatment provider. (Less than Significant)

For the most part the Fisherman’s Wharf Neighborhood is serviced by San Francisco’s combined sewer system, which collects and transports both sewage and stormwater runoff. Port of San Francisco properties, in the Plan Area, operate under the City of San Francisco MS4 permit.135 The Southeast Wastewater Treatment Plant provides wastewater treatment and management for the east side of the City and dry weather flow treatment for the Plan Area. During rainstorms,

135 Since 2003, the discharge of stormwater from the separate stormwater sewer system has been covered by a statewide general permit for small municipal separate storm sewer systems (also known as MS4), issued by the San Francisco Bay Regional Water Quality Control Board. As a requirement of the permit, the SF Port and SFPUC were required to develop detailed stormwater management plans (SWMPs) outlining implementation of various control measures required under the statewide general permit.
the Northpoint Treatment Facility provides primary-level treatment of wastewater collected in the northern part of the City, including the Plan Area. No major new sewer or stormwater facilities would be needed to serve the Plan Area since site-specific streetscape improvements projects and open space improvement projects provide for implementation of design elements on existing sidewalks, crosswalks, and roadways located within the public right-of-way.

The proposed project would not substantially increase the amount of stormwater runoff, because except for small areas where street trees and urban landscape exist, the Plan Area is currently covered with impervious surfaces. Any new impervious surface increase as a result of tree removal, would be negligible due to replanting of trees and proposed increase in landscaped areas. Also the increase in landscaped areas in the Fisherman’s Wharf Neighborhood could result in a net-increase in permeable surface area which could lead to lower stormwater generation.

Project-proposed changes to curbs would affect how drainage occurs and could necessitate re-grading and re-crowning of streets in the neighborhood. These physical changes to the public right-of-way could require changes in catch basins to address new drainage patterns. Catch basins changes would affect drainage patterns by redirecting how stormwater runoff flows into the wastewater system. To avoid catch basin back up during storms, streetscape improvements would be designed to divert water runoff from catch basins that are already operating at or above capacity. Additionally, any open space improvements, such as parks and plazas, on non-City right-of-way, that disturb greater than 5000 sf of ground surface, would implement and install appropriate stormwater management systems to meet SFPUC’s Stormwater Design Guidelines.

Additional concrete and paving required for curbs, medians, and chicanes could potentially increase existing impervious surface and result in an increase in stormwater runoff. However, the FWPRP encourages the use of permeable pavements and stormwater treatment planters whenever feasible which could reduce stormwater treatment needs. Also, potential impacts of runoff could be partially or wholly offset by vegetating curb cuts and medians.

Although implementation of the proposed project would lead to physical changes, these changes would not be substantial developments that would lead to increase sewer flows to the Bay, and therefore, would not have an impact beyond baseline conditions. Project-related wastewater flows would be treated in accordance with the San Francisco Bay Regional Water Quality Control

136 Primary treatment consists of temporarily holding the sewage in a quiescent basin where heavy solids can settle to the bottom while oil, grease and lighter solids float to the surface. The settled and floating materials are removed and the remaining liquid may be discharged or subjected to secondary treatment.

137 Based on a conversation with Amnon Ben-Pazi, on April 20, 2010, re-crowning of the roadway, to accommodate new streetscape improvements, would be avoided where possible.

138 Stormwater runoff is water from rainfall that flows over the land surface that is not absorbed into the ground.

139 Treatment planters are landscaped detention or bio-retention features in a street designed to provide initial treatment of stormwater runoff.
Board (RWQCB)-issued National Pollutant Discharge Elimination System (NPDES) Permit prior to discharge into the Bay. Therefore, the proposed project would have a less than significant impact on San Francisco’s wastewater and stormwater treatment systems.

Impact UT-2: The proposed project would increase the amount of water used on the site, but would be adequately served by existing entitlements and water resources. (Less than Significant)

The proposed project would install new landscaping in the Plan Area. Additional landscaping would require the use of the installation of new irrigation. Regardless, the proposed project would not result in a population increase beyond that assumed for planning purposes by the San Francisco Public Utilities Commission’s (SFPUC) 2005 Urban Watershed Management Plan. Additionally the project would be served by the existing water supply and would not require new or expanded water supply resources or entitlements. Therefore, the project’s impact on water supply would be less than significant.

Impact UT-3: The proposed project would increase the amount of solid waste generated on the project site, but would be adequately served by the City’s landfill and would comply with federal, state and local statutes and regulations related to solid waste. (Less than Significant)

Solid waste associated with the proposed project would be solely related to construction of sitespecific streetscape improvement projects and open space improvement projects; there would be no solid waste associated with operation of the proposed project. The waste would be materials typical of roadways and sidewalks construction activities, such as broken asphalt, concrete and excavated soils.

San Francisco’s solid waste, following the sorting of recyclable materials at the Norcal transfer station near Candlestick Park, is disposed of at the Altamont Landfill in Alameda County and is required to meet federal, state and local solid waste regulations. San Francisco residents currently divert approximately 77 percent of their solid waste to recycling and composting, meeting the City’s goal of 75 percent diversion by 2010. With waste diversion and expansions that have occurred at the Altamont Landfill, there is adequate capacity to accommodate San Francisco’s solid waste. The solid waste associated with the proposed project’s demolition of existing pavement and sidewalks in the Plan Area would be required to divert 65 percent of all non-hazardous construction waste for recycling and reuse, as required by the Construction, Demolition and Debris Ordinance. Therefore, solid waste generated from the project’s demolition and operation would not substantially affect the projected life of the landfill. Proposed project’s impacts from solid waste generation or impacts on solid waste facilities would be less than significant.

140 The SFPUC’s 2005 Urban Water Management Plan is based on data presented in the Association of Bay Area Government’s (Projections 2002: Forecasts for the San Francisco Bay Area to the Year 2025, which includes all known or expected development projects in San Francisco through the year 2025.
Impact UT-4: The proposed project in combination with other past, present, or reasonably foreseeable projects would result in less-than-significant impacts to utilities and service systems. (Less than Significant)

The geographic context for cumulative utilities impacts is the Fisherman’s Wharf Neighborhood and its vicinity. Cumulative impacts occur when impacts that are significant or less than significant from a proposed project combine with similar impacts from other past, present, or reasonably foreseeable projects in a similar geographic area. Cumulative projects in the Plan Area are primarily zoning and streetscape plans, facility upgrades to host the 34th America’s Cup and transportation improvements.

The FWPRP combined with cumulative projects would incrementally increase demand on Citywide utilities and service systems. However, because none of the overlapping projects involve new development on previously undeveloped sites, they would not be expected to generate increased amounts of stormwater.

Given that the City’s existing service management plans address anticipated growth in the region, the proposed project would not be expected to have a considerable effect on utility service provision or facilities under cumulative conditions. Furthermore, it is anticipated that all future projects proposed in the Plan Area would be consistent with the adopted goals, policies and objectives of the governing Plans, as well as, policies in the San Francisco General Plan, design guidelines, planning codes and zoning maps (including development standards), and other applicable land use plans that are intended to reduce impacts related to utilities and service systems. Thus, project-related impacts to public services would not be cumulatively considerable.

<table>
<thead>
<tr>
<th>Topics: PUBLIC SERVICES— Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Result in substantial adverse physical impacts associated with the provision of, or the need for, new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any public services such as fire protection, police protection, schools, parks, or other services?</td>
</tr>
<tr>
<td>☑</td>
</tr>
</tbody>
</table>

Impact PS-1: The proposed project would result in less-than-significant impacts to public services including police and fire protection and schools and parks. (Less than Significant)

As described on p.4, under Checklist Item 3, Population and Housing, population growth as a result of the proposed project would be immaterial. The proposed project would occur in an urban area that is served by existing public services including fire and police protection, schools, and parks. Because the growth induced by the proposed project would be immaterial and no
construction of new buildings is proposed, implementation of the proposed project would not result in an increase in demand for fire protection, police service, schools or parks. Because the proposed project would not increase demand of public services, no new facilities would be required. Therefore, project impacts related to public services would be less than significant.

Impact PS-1: The proposed project in combination with other past, present or reasonably foreseeable projects would result in less-than-significant public services impacts. (Less than Significant)

The geographic context for cumulative public services resources impacts is the Fisherman’s Wharf Neighborhood and its vicinity. Cumulative impacts occur when impacts that are significant or less than significant from a proposed project combine with similar impacts from other past, present, or reasonably foreseeable projects in a similar geographic area.

Cumulative projects in the Plan Area are primarily zoning and streetscape plans, facility upgrades to host the 34th America’s Cup and transportation improvements. The FWPRP in combination with cumulative projects would incrementally increase demand for public services, but not beyond levels anticipated and planned for by public service providers.

Also, as with the proposed project, it is anticipated that all future projects proposed in the Plan Area would be consistent with the adopted goals, policies and objectives of the governing Plans, as well as, policies in the San Francisco General Plan, design guidelines, planning codes and zoning maps (including development standards), and other applicable land use plans that are intended to reduce impacts related to utilities and service systems. For the reasons discussed above, the proposed project’s impacts related to utilities and service systems, both individually and cumulatively, would be less-than-significant.

Topics:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
</table>

13. BIOLOGICAL RESOURCES—

Would the project:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?
Beach Avenue; The Mitigation Plan and generally species. within vicinity. The approved BI federally proposed project would have minimal impact on special status species, avian species, riparian, wetland, or sensitive natural communities, and would not conflict with an approved local, regional, or state habitat construction plan. (Less than Significant Impact with Mitigation)

The Plan Area is within a developed urban environment with high levels of human activity. No federally protected wetlands or riparian habitat occur on the Plan Area or in the immediate vicinity. The Plan Area does not fall within any local, regional or state habitat conservation plans. Therefore, the proposed project would have no impact on wetlands, riparian habitat, and habitat conservation plans.

Within the Plan Area are three urban open spaces (1) Russian Hill Park, on the corner of Hyde and Bay Streets; (2) Joseph Conrad Mini-Park, at the intersection of Beach Street and Columbus Avenue; and (3) The Aquatic Park area of the San Francisco Maritime National Historic Park, on Beach and Jefferson Streets between Hyde Street and Van Ness Avenue. These open spaces are generally characterized by small grassy fields and some trees. These areas are unlikely to support native, special-status plant species by definition. Wildlife species likely to occur in the Plan Area include common species such as raccoon (Procyon lotor), striped skunk (Mephitis mephitis), house sparrow (Carpodacus mexicanus), and Brewer’s blackbird (Euphagus cyanocephalus). The Plan Area, therefore, does not provide habitat for any rare or endangered plant or animal species. Therefore the proposed project would have no impact on sensitive species.

Given the conditions present along the Plan Area, specifically, its highly-developed, urban environment, the proposed project would not be expected to interfere with the movement of migratory fish or wildlife species. However, there are trees located within the Plan Area and thus

142 There are several trees within Aquatic Park and within the open spaces listed here; however, a tree survey was not performed.
there is the potential for nesting birds to be present in these trees. The implementation of Plan-proposed projects SI-1-Jefferson Streetscape Improvements between Powell and Hyde Streets and OS-3-Columbus Avenue, Leavenworth Street and North Point Street Intersection could result in the removal, relocation, and/or replacement of street trees in the public right-of-way. The exact location and number of trees affected by development resulting from the proposed project are unknown at this time. Therefore, the proposed project could affect migratory nesting birds. Nests of most birds (excludes only starlings and English sparrows) are protected under the federal Migratory Bird Treaty Act of 1918 (MBTA) and California Department of Fish and Game (DFG) Codes 3503 and 3513. The DFG regulations protect nesting birds, their nests, and eggs prior to, during, and at the conclusion of construction activities.

Implementation of the FWPRP would affect trees, thus there is a potential for the proposed project to affect migratory nesting birds, Mitigation Measure BIO-1, presented below and in Section F, Mitigation Measures and Improvement Measures, pp.230-241 would reduce the impact to migratory nesting birds to a less-than-significant level. Mitigation Measure BIO-1, would require pre-construction surveys for nesting birds by a qualified biologist. It would also require that construction activities and/or vegetation removal occur during non-breeding season. Implementation of this mitigation measure would address the need to comply with DFG regulations and avoid potential adverse impacts related to nesting birds for site-specific streetscape improvement projects and open space improvement projects where trees would be removed. Mitigation Measure BIO-1 would mitigate potential impacts to these biological resources to less-than-significant levels.

Mitigation Measure BIO-1 – Biological Resources-Nesting Birds
The project sponsor shall implement the following protective measures to ensure implementation of the Migratory Bird Treaty Act and compliance with State regulations during construction. To the extent feasible, the project sponsor and/or the construction contractor(s) shall trim/remove all vegetation/tree limbs necessary for project construction between September 1 to January 31. Should construction activities or vegetation removal commence between February 1 to August 31, pre-construction surveys for nesting birds shall be conducted 14 to 21 days prior to construction activities that would result in vegetation removal. A qualified biologist shall determine if active nests of native birds are present in the construction zone. In the event an active nest is discovered in areas to be disturbed, removal of the nesting substrate shall be postponed until the nest is vacated and juveniles have fledged (typically 3-4 weeks for most small passerines), as determined by the biologist, and there is no evidence of second nesting attempts, unless a CDFG and the USFWS for migratory birds authorize otherwise. Nor surveys are required and no impact would occur if vegetation removal, grading or other heavy construction activities would occur between September 1 to January 31, outside the nesting season.

Impact with Mitigation Measure M-BIO-1 Incorporated: Less than Significant.
BI-2: The proposed project would not conflict with the City’s local tree ordinance. (Less than Significant Impact)

The implementation of Plan-proposed site-specific SI-1-Jefferson Streetscape Improvements between Powell and Hyde Streets and OS-3-Columbus Avenue, Leavenworth Street and North Point Street Intersection could result in the removal, relocation, and/or replacement of existing trees in the public right-of-way in the Plan Area. However, except for SI-7 Hyde Street (between Jefferson and Beach Streets), implementation of all site-specific streetscape improvement projects and open space improvement projects would include tree planting; which could result in a net increase in the number of trees in the Fisherman’s Wharf Neighborhood. As described under Checklist Item 2, Aesthetics, p.55 removal of protected or significant trees143 within the DPW right-of-way and within ten feet of the right-of-way, requires a permit from the DPW.144 Also, all such trees are subject to certain maintenance and protection standards.145 In addition, the Public Works Code requires that another significant tree or street tree be planted in place of a removed tree or that an in-lieu planting fee be paid. Prior to project implementation, these requirements would be complied with. Therefore, the proposed project would not conflict with San Francisco’s tree ordinance and would have less than significant impact with respect to conflicts with local policies and ordinances adopted for the purposes of protecting biological resources.

BI-3: The proposed project in combination with other past, present or reasonably foreseeable projects would not result in impacts to biological resources. (Less than Significant Impact with)

As discussed above, the Plan Area does not contain sensitive species, riparian habitat or natural communities, wetlands, habitat, or Natural Community Conservation Plans, because none exist in the Plan Area. The project will comply with DPW’s tree removal permitting process and the Public Works Code section relate to removal of protected or significant trees. Project related to nesting birds would be less-than-significant with implementation of mitigation measure BIO-1. Therefore the proposed project does not have the potential to contribute to cumulative impacts on these resources.

Activities associated with cumulative projects in combination with the FWPRP could result in tree removal and consequently affect nesting birds in the Plan Area. Any potential effects resulting from tree removal would be mitigated by implementation of Mitigation Measure BIO-1: Nesting Birds. BIO-1 would require that biological surveys and timing of tree removal be performed in accordance with the California Department of Fish and Game (CDFG) regulations.

143 Protected trees include landmark trees, significant trees, or street trees located on private or public property within San Francisco as defined and described in the City’s Urban Forestry Ordinance in the Public Works Code.
144 As part of the review process for an application for street or significant tree removal, a DPW inspector would evaluate the trees proposed for removal. If DPW approves the tree to be removed, it will be posted for a period of up to 30 days. If objections to the removal are received, the removal will be scheduled for public hearing. If DPW denies the removal, the applicant can request the case be scheduled for a public hearing. After the hearing, a hearing officer will make a recommendation to the DPW Director, who in turn will issue a final decision. The DPW Director’s decision may be appealed to the Board of Appeals.
145 Board of Supervisors, Ordinance No. 17-06, amending Public Works Code Sections 801 et seq.
These would ensure that effects on migratory bird species would not be cumulatively considerable. Additionally, the proposed project and all cumulative projects would be regulated by permits from the DPW and would include either relocation or replacement of trees at some other location. Thus, the proposed project would not cause a significant adverse impact to trees. The proposed project by itself or in combination with cumulative projects would not contribute considerably to cumulative impacts on street trees and nesting birds. Moreover, in time, projects such as the Open space OS-1: Joseph Conrad Square would incrementally increase the number of street trees in the Plan Area, which would provide more nesting locations for birds.

For the reasons discussed above, the proposed project would not result in a significant cumulative impact on biological resources.

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. GEOLOGY AND SOILS—Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a)</td>
<td>Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i)</td>
<td>Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? (Refer to Division of Mines and Geology Special Publication 42,}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii)</td>
<td>Strong seismic ground shaking?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii)</td>
<td>Seismic-related ground failure, including liquefaction?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv)</td>
<td>Landslides?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Result in substantial soil erosion or the loss of topsoil?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>Be located on geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code, creating substantial risks to life or property?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td>Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td>Change substantially the topography or any unique geologic or physical features of the site?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Plan Area, as indicated in Section E.11 Utilities and Service Systems, is currently served by the City’s combined sewer system. Therefore, the Plan Area would not require the use of septic systems and significance criterion E.14.e would not be applicable to the Plan Area.

Impact GE-1: The proposed project would result in less-than-significant impacts related to exposure of persons or structures to seismic and geologic hazards. (Less than Significant)

The Plan Area is located in an area subject to ground shaking from earthquakes along the San Andreas and Northern Hayward faults and other faults in the San Francisco Bay Area. Because the proposed project is located in a seismically active region, there is a potential for seismic-related ground failure in the Plan Area. Portions of the Plan Area may also be subject to seismic-related liquefaction or landslides. Although the potential for seismic ground shaking and ground failure to occur within the Plan Area is unavoidable, no structures would be constructed which could expose people to new seismic-related hazards.

The proposed project would be constructed in relatively flat terrain on existing streets and or sidewalks in the public right-of-way and despite the potential for moderate to strong ground shaking, site specific streetscape improvement projects and open space improvement projects locations would not be susceptible to seismically induced landslides.

The Plan Area is located in sections mapped as artificial fill consisting of sands, silt, clay and manmade debris. Quaternary dune sands and sandstone. Construction of site-specific streetscape improvement projects and open space improvement projects would involve pavement removal, minor excavation, grading, and paving for the reconfiguration of the public right-of-way. During construction, compacted backfill would be placed as required in the California Building Standards Code (CBSC). Additionally, in accordance to requirements in the CBSC, standard engineering and geotechnical practices for the identification and remediation of expansive soils would be implemented during construction. Therefore, project-related impacts from seismic and geologic hazards would be less-than-significant.

146 The San Francisco General Plan Community Safety Element contains maps that show areas of the City subject to seismic geologic hazards.
147 Liquefaction is a phenomenon in which saturated (submerged), cohesionless soil experiences a temporary loss of strength because of the buildup of excess pore water pressure, especially during cyclic loadings such as those induced by earthquakes. Soil most susceptible to liquefaction is loose, clean, saturated, uniformly graded, fine-grained sand.
148 State of California Division of Mines and Geology, Map 4 - Seismic Hazard Study Zones- Area of Liquefaction Potential for San Francisco; San Francisco General Plan, Community Safety Element.
149 San Francisco Planning Department GIS data. Assessed January 24, 2011.
150 The California Building Standards Code contains provisions specific to building conditions and structural requirements governing seismically resistant construction in California.
Impact GE-2: The proposed project would result in less-than-significant impacts related to soil erosion or substantial changes in the project site’s topography or any unique geologic or physical features of the site. (No Impact)

Soils mapped by the Natural Resources Conservation Service (NRCS) in the study area fall under three classifications: Urban Land; Urban land-Orthents - cut and fill complex (5 to 75 percent slopes); and Urban land-Orthents - reclaimed complex (0 to 2 percent slopes). These classifications indicate that the soils present in the study area are highly disturbed. As previously stated, except for areas with street trees, the Plan Area is mostly paved. Even with the conversion of excess right-of-way into a public plaza and the installation of new landscape for several site-specific streetscape improvement projects and open space improvement projects, the Plan Area would continue to remain mostly paved. Thus, there would be no impact related to soil erosion.

There are no significant geologic or topographic feature in the Plan Area and project construction would take place mostly on paved public right-of-way. The Plan Area’s topography is mostly flat in the eastern and northern portions and slightly hilly in the western and southern portions. Apart from clearing and minimal site grading for building sidewalks and installing light polls, the proposed project would not alter the topography of the Plan Area.

Construction of site-specific streetscape improvements projects and open space improvement projects would occur primarily through relatively level areas that have been previously paved (sidewalks and paved streets), with the exception of areas with street trees located along the streets and sidewalks and medians. Therefore, project-related impacts would have less than significant impact with respect to erosion or loss of topsoil; changes to topography; or unique geologic or physical features.

Impact GE-3: The proposed project in combination with other past, present or reasonably foreseeable projects would result in less-than-significant impacts to geology and soils. (Less than Significant)

Geology impacts are generally site-specific and do not have cumulative effects in combination with other projects. The FWPRP and all cumulative projects in the Plan Area would be subject to the same design review and safety measures as the proposed project. These projects would incorporate appropriate, standard engineering practices to ensure seismic stability, and would thus not be expected to result in cumulative impacts.

151 Kleinfelder. Geotechnical Investigation of the Fort Mason Tunnel. 2005. This document was prepared as part of the Extension of F-Line Streetcar Service to Fort Mason Center Project – currently under environmental review by the National Park Service.
15. HYDROLOGY AND WATER QUALITY—Would the project:

a) Violate any water quality standards or waste discharge requirements?

b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner that would result in substantial erosion of siltation on- or off-site?

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site?

e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

f) Otherwise substantially degrade water quality?

g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other authoritative flood hazard delineation map?

h) Place within a 100-year flood hazard area structures that would impede or redirect flood flows?

i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?

j) Expose people or structures to a significant risk of loss, injury or death involving inundation by seiche, tsunami, or mudflow?

Impact HY-1: The proposed project would not violate any water quality standards or waste discharge requirements and would result in less-than-significant impacts to water quality. (Less than Significant)

The proposed project would not substantially degrade water quality or contaminate a public water supply. As previously stated, no substantial above-ground structures would be constructed with the implementation of the proposed project, and the proposed project would be...
located within the existing public right-of-way consisting mostly of paved surfaces (roadway and sidewalks).

Given the topography of the Plan Area, stormwater would generally drain in a northwesterly direction towards the San Francisco Bay. Stormwater drainage in the area is captured by San Francisco’s combined sewer system and treated at the Southeast Treatment Plant prior to discharge. As discussed in Section E.11 Utilities and Service Systems, the Plan Area’s wastewater and stormwater would continue to flow into the City’s combined stormwater and sewer system and would be treated to the standards contained in the City’s NPDES Permit for the Southeast Water Pollution Control Plant, prior to discharge into the Pacific Ocean. Treatment would be provided pursuant to the effluent discharge standards contained in the City’s NPDES permit for the plant.

Although, construction of portions of the proposed project would involve minor excavation and grading, these would only entail minor soil disturbance during the construction phase of the project implementation. During construction, there would be a potential for erosion and the transport of soil particles during site preparation, excavation, and changes to existing pavement and sidewalks. Once in surface water runoff, sediment and other pollutants could leave the construction site and ultimately be released into San Francisco Bay. Stormwater runoff from project construction would drain into the combined sewer and stormwater system and be treated at the Southeast Water Pollution Control Plant prior to discharge into San Francisco Bay. Pursuant to the San Francisco Pollution Control Code and the City’s NPDES permit, the project sponsor would be required to implement measures to reduce potential erosion impacts. During operation and construction, the proposed project would be required to comply with all local wastewater discharge and water quality requirements.

As discussed in Topic 10, Utilities and Service Systems, p.203 implementation of several proposed site specific streetscape improvement projects and open space improvement projects would add stormwater features, such as permeable pavements and stormwater treatment planters, to the Plan Area. In general, the use of permeable pavements and stormwater treatment planters could reduce stormwater treatment needs and improve water quality standards in the Plan Area. Additionally, potential impacts of runoff would be partially or wholly offset by curb cuts and medians being vegetated. Therefore, water quality standards or waste discharge requirements would not be violated. Thus, the project would have a less than significant impact on water quality resources.

152 During high precipitation months, stormwater is diverted to the North Point Treatment Facility to avoid overwhelming the Southeast Treatment Plant.
153 Stormwater treatment planters are landscaped detention or bio-retention features in a street designed to provide initial treatment of stormwater runoff.
Impact HY-2: The proposed project would not substantially deplete groundwater supplies or interfere with groundwater recharge, or otherwise substantially alter the existing drainage pattern of the site resulting in erosion or flooding on- or off-site. (Less than Significant)

The proposed project is located in the Marina Groundwater Basin. Groundwater has been encountered in the Plan Area at depths ranging from 6 to 9.5 feet below the existing ground surface. However, the groundwater level will likely fluctuate with the season, and possibly with the tide in the Bay. In general groundwater flows north, following the topography and there are no significant streams in the basin. Excavations are expected to range from two-to-ten feet below ground surface. If groundwater is encountered on-site then dewatering activities may be necessary. Any groundwater encountered during construction of the proposed project would be subject to requirements of the City’s Industrial Waste Ordinance (Ordinance No. 199.77), requiring that groundwater meet specified water quality standards before it may be discharged into the sewer system. The Bureau of Systems Planning, Environment, and Compliance of the San Francisco Public Utilities Commission must be notified of projects necessitating dewatering, and may require water analysis before discharge. These measures would ensure protection of water quality during construction of the proposed project. Therefore, groundwater resources would not be substantially degraded or depleted, and the proposed project would not substantially interfere with groundwater recharge. Thus, the proposed project would have a less-than-significant impact on groundwater.

Impact HY-3: The proposed project would not result in an increase in risks from flood, tsunami, seiche or mudflow. (Less than Significant)

Flood risk assessment and some flood protection projects are conducted by federal agencies including the Federal Emergency Management Agency (FEMA) and the U.S. Army Corps of Engineers (Corps). The flood management agencies and cities implement the National Flood Insurance Program (NFIP) under the jurisdiction of FEMA and its Flood Insurance Administration. Currently, the City of San Francisco does not participate in the NFIP and no flood maps are published for the City. However, FEMA is preparing Flood Insurance Rate Maps (FIRMs) for the City and County of San Francisco for the first time. FIRMs identify areas that are subject to inundation during a flood having a one percent chance of occurrence in a given year (also known as a "base flood" or "100-year flood"). FEMA refers to the flood plain that is at risk from a flood of this magnitude as a special flood hazard area ("SFHA").

Because FEMA has not previously published a FIRM for the City and County of San Francisco, there are no identified SFHAs within San Francisco’s geographic boundaries. FEMA has

completed the initial phases of a study of the San Francisco Bay. On September 21, 2007, FEMA issued a preliminary FIRM of San Francisco for review and comment by the City. The City has submitted comments on the preliminary FIRM to FEMA. FEMA anticipates publishing a revised preliminary FIRM in 2011, after completing the more detailed analysis that Port and City staff requested in 2007. After reviewing comments and appeals related to the revised preliminary FIRM, FEMA will finalize the FIRM and publish it for flood insurance and floodplain management purposes.

FEMA has tentatively identified SFHAs along the City’s shoreline in and along the San Francisco Bay consisting of Zone A (in areas subject to inundation by tidal surge) and Zone V (areas of coastal flooding subject to wave hazards). On June 10, 2008, legislation was introduced at the San Francisco Board of Supervisors to enact a floodplain management ordinance to govern new construction and substantial improvements in flood prone areas of San Francisco, and to authorize the City’s participation in NFIP upon passage of the ordinance. Specifically, the proposed floodplain management ordinance includes a requirement that any new construction or substantial improvement of structures in a designated flood zone must meet the flood damage minimization requirements in the ordinance. The NFIP regulations allow a local jurisdiction to issue variances to its floodplain management ordinance under certain narrow circumstances, without jeopardizing the local jurisdiction’s eligibility in the NFIP. However, the particular projects that are granted variances by the local jurisdiction may be deemed ineligible for federally-backed flood insurance by FEMA.

Once the Board of Supervisors adopts the Floodplain Management Ordinance, the Department of Public Works will publish flood maps for the City, and applicable City departments and agencies may begin implementation for new construction and substantial improvements in areas shown on the Interim Floodplain Map. According to the preliminary map, the project site is not located within a flood zone designated on the City’s interim floodplain map. Therefore, the project would result in less than significant impacts related to placement of structures within a 100-year flood zone.

According to General Plan’s Community Safety Element, the northern portions of the Plan Area are within the San Francisco 20 foot Tsunami Runup Map 6. A wave runup of 20 feet at the Golden Gate Bridge, may result in a runup of at least 12 feet (60 percent of that at the Golden Gate Bridge) in the Plan Area. Depending on the tide the northern portions of the Plan Area

158 Tsunamis are long period waves caused by seismic disturbances, volcanic eruptions, or submerged landslides.
160 Winzler & Kelley, Geotechnical Data Report, Brannan Street Wharf, San Francisco, CA, July 2009. This document is available for public review by appointment at the Planning Department, 1650 Mission Street, Suite 400, as part of Case File No. 2009.0418E,
would experience flooding during a tsunami of this magnitude. However, the proposed project would entail the construction of streetscape improvements to the public right-of-way, which would not expose a significant amount of people to the risk of loss, injury or death involving inundation by tsunami or mudflow.

A seiche is an oscillation of a water body, such as a bay, which may cause local flooding. A seiche may occur on the San Francisco Bay due to seismic or atmospheric activity. However, based on the historical record, seiches are rare and there is no significant seiche hazard at the Plan Area. There is no mudslide hazard at the Plan Area because the Plan Area is fully-developed with no erosion-prone slopes. Therefore, the project would result in less than significant impacts related to seiche, tsunami, or mudflow hazard.

Maximum

Impact HY-4: The proposed project in combination with other past, present, or reasonably foreseeable project would result in less-than-significant hydrology and water quality impacts. (Less than Significant)

The proposed project would have a less-than-significant impact on water quality standards, groundwater, drainage, or runoff, and thus would not contribute considerably to cumulative impacts in these environmental topic areas. Similarly, the project would not contribute considerably to any potential cumulative stormwater impacts. Flood and inundation hazards are site-specific; thus, the proposed project would have no cumulatively considerable impacts. Cumulative development in the project area could result in intensified uses and a cumulative increase in wastewater generation. The SFPUC, which provides wastewater treatment for the City, has accounted for such growth in its service projections. Thus, the project would not contribute to any cumulatively considerable impacts on hydrology or water quality.

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. HAZARDS AND HAZARDOUS MATERIALS—Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
The project site is not located within an airport land use Plan Area, nor is it in the vicinity of a private airstrip. Therefore, criterion E.16e and E.16f are not applicable to the proposed project.

Impact HZ-1: The proposed project would not create a significant hazard through routine transport, use, disposal, handling or emission of hazardous materials. (Less than Significant)

The proposed project would implement streetscape pedestrian improvements to existing paved roadway and sidewalks. The proposed project could involve handling or disposal of hazardous materials that might be encountered during construction. The proposed project in itself would not be expected to generate hazardous emissions or hazardous materials once constructed. Operation of the proposed project would not likely require the handling of common types of hazardous materials, such as cleaners and disinfectants. For the reasons discussed above, the proposed project would result in less-than-significant-effects related to the use of hazardous materials.

Impact HZ-2: The proposed project may create a significant hazard to the public or the environment through reasonably foreseeable conditions involving the release of hazardous materials into the environment. (Less than Significant with Mitigation)

The City has adopted the Maher Ordinance,161 which requires analyzing soil for hazardous wastes within specified areas and on sites specifically designated by the Director of Public Works when over 50 cubic yards of soil is to be disturbed. The Maher Ordinance specifically includes sites, which are bayward of the high tide line as shown on maps available from the Department

161 San Francisco Board of Supervisors, 1986. Ordinance 253-86, signed by the Mayor on June 27, 1986.
of Public Health (DPH) and referred to as Maher Sites. Portions of the Plan Area are identified in the Maher Map as “containing fill” (in San Francisco, unengineered artificial fill was used during the mid-19th century to reclaim property from the Bay) and fill material could potentially include contaminated soil.

Implementation of site specific streetscape improvement projects and open space improvement projects would require minimal groundbreaking; however, the amount of soil excavation for the implementation of these projects is unknown at this time. Hence, there remains some potential for soil excavation to occur in Maher-designated fill areas, and soil with hazardous concentrations of contaminants could be encountered. Therefore, project-related construction activities have could potentially create significant hazardous materials impacts related to excavation and transport exposure of contaminated soil during the construction phase of Plan-proposed site specific streetscape improvement projects and open space improvement projects. The project sponsor of affected site specific streetscape improvement projects and open space improvement projects would be required to adhere to existing local, state, and federal requirements regarding handling and disposal of soil and groundwater containing chemical contaminants.

Additionally, if contaminated soils are encountered during construction, Mitigation Measure HAZ-1 would reduce potentially significant impacts associated with hazardous materials to less-than-significant levels. Compliance with Mitigation Measure HAZ-1, would require the following: (1) testing of areas on the site in which soil would be disturbed; (2) a site mitigation plan, if warranted by DPH; (3) following proper handling and disposal guidelines for contaminated soil; and (4) preparation of a certification of closure report.

Mitigation Measure HZ-1: Testing for and Handling of Contaminated Soil

Step 1: Soil Testing. Prior to project implementation, a consultant shall be hired to collect soil samples (borings) from areas on the site in which soil would be disturbed and test the soil samples for total lead and petroleum hydrocarbons. The consultant shall analyze the soil borings as discrete, not composite samples. The consultant shall prepare a report on the soil testing for lead and petroleum hydrocarbons that includes the results of the soil testing and a map that shows the locations of stockpiled soils from which the consultant collected the soil samples.

A report on the soil testing for lead and a fee of $501 in the form of a check payable to the San Francisco Department of Public Health (DPH) shall be submitted to the Hazardous Waste Program, Department of Public Health, 1390 Market Street, Suite 210, San Francisco, California 94102. The fee of $501 shall cover three hours of soil testing report review and administrative handling. If additional review is necessary, DPH shall bill the project sponsor for each additional hour of review over the first three hours, at a rate of $167 per hour. These fees shall be charged pursuant to Section 31.47(c) of the San Francisco Administrative Code. DPH shall review the soil samples within 30 days of receipt.

163 Rollo and Ridley Inc., Geotechnical Investigation 1527 Filbert Street and 2559 Van Ness Avenue, San Francisco, California, February 2009. A copy of the report is available for review in Project File No. 2009.0335E at the Planning Department, 1650 Mission Street, 4th Floor.
testing program to determine whether soils on the Plan Area are contaminated with lead or petroleum hydrocarbons at or above potentially hazardous levels.

Step 2: Preparation of Site Mitigation Plan. Prior to beginning demolition and construction work, the project sponsor shall prepare a Site Mitigation Plan (SMP). The SMP shall include a discussion of the level of lead contamination of soils on the Plan Area and mitigation measures for managing contaminated soils on the site, including but not limited to: 1) the alternatives for managing contaminated soils on the site (e.g., encapsulation, partial or complete removal, treatment, recycling for reuse, or a combination); 2) the preferred alternative for managing contaminated soils on the site and a brief justification; and 3) the specific practices to be used to handle, haul, and dispose of contaminated soils on the site. The SMP shall be submitted to the Department of Public Health (DPH) for review and approval. A copy of the SMP shall be submitted to the Planning Department to become part of the case file. Additionally, the DPH may require confirmatory samples for the Plan Area.

Step 3: Handling, Hauling, and Disposal Contaminated Soils.

(a) **specific work practices:** The construction contractor shall be alert for the presence of contaminated soils during excavation and other construction activities on the site (detected through soil odor, color, and texture and results of on-site soil testing), and shall be prepared to handle, profile (i.e., characterize), and dispose of such soils appropriately (i.e., as dictated by local, state, and federal regulations, including OSHA work practices) when such soils are encountered on the site.

(b) **dust suppression:** Soils exposed during excavation for site preparation and project construction activities shall be kept moist throughout the time they are exposed, both during and after work hours.

(c) **surface water runoff control:** Where soils are stockpiled, visqueen shall be used to create an impermeable liner, both beneath and on top of the soils, with a berm to contain any potential surface water runoff from the soil stockpiles during inclement weather.

(d) **soils replacement:** If necessary, clean fill or other suitable material(s) shall be used to bring portions of the Plan Area, where lead-contaminated soils have been excavated and removed, up to construction grade.

(e) **hauling and disposal:** Contaminated soils shall be hauled off the Plan Area by waste hauling trucks appropriately certified with the State of California and adequately covered to prevent dispersion of the soils during transit, and shall be disposed of at the permitted hazardous waste disposal facility registered with the State of California.

Step 4: Preparation of Closure/Certification Report. After excavation and foundation construction activities are completed, the project sponsor shall prepare and submit a closure/certification report to DPH for review and approval. The project sponsor shall submit a copy of any closure or certification report to the Department of Toxic Substances Control (DTSC)
for review. DTSC review would ensure the Project’s compliance with existing state and federal regulations handling hazardous materials under DTSC’s jurisdictions. The closure/certification report shall include the mitigation measures in the SMP for handling and removing lead-contaminated soils from the Plan Area, whether the construction contractor modified any of these mitigation measures, and how and why the construction contractor modified those mitigation measures.

Impact with Mitigation Measure HZ-1 Incorporated: Less than Significant.

Impact HZ-3: The proposed project would not handle hazardous materials within a quarter-mile of a school. (Less than Significant Impact)

Galileo High School is within the Plan Area, located at 1150 Francisco Street, on the block bounded by Bay Street to the North; Polk Street to the East; and Van Ness Avenue to the West. Any hazardous materials on site, such as soil to be excavated during project construction, would be handled in compliance with existing regulations in Public Works Code Article 2.4. Thus, the proposed project would have less than significant impact with respect to the handling of hazardous materials within one-quarter mile of a school.

Impact HZ-4: The proposed project is not located on a State hazardous materials database. (Less than Significant Impact)

In the Plan Area, there are 15 sites which are currently listed on the Geotracker database164 either as a clean up site under the DTSC’s Hazardous Waste List or as a Leaking Underground Storage Tank site under the RWQCB’s jurisdiction and one site identified in the Cortese List. The Cortese List is a database compiled under Government Code Section 65962.5. Other hazardous materials databases include the San Francisco Regional Water Quality Control Board’s (RWQCB’s) Geotracker database, Department of Toxic Substances Control’s (DTSC’s) Site Mitigation and Brownfields Ruse Program’s EnviroStor database,165 which identifies sites that have known contamination or hazardous sites for which there may be reasons to investigate further. These databases include the following site types: Federal Superfund sites (National Priorities List); State Response, including Military Facilities and State Superfund; Voluntary Cleanup; and School sites. The proposed project would implement streetscape improvement projects and open space improvement projects at the sidewalk and roadway level in the public right-of-way in compliance with existing local, state and federal regulations.

In San Francisco County, remediation of contaminated sites is performed under the oversight of the San Francisco Department of Public Health and the RWQCB. The SFDPH implements a local program under contract with the SWRCB to provide regulatory oversight of the investigation and cleanup of soil and groundwater contamination from leaking petroleum underground storage tanks (USTs) and above ground storage tanks (ASTs). At sites where contamination is suspected

164 Ibid.
or known to have occurred, the project sponsor is required to perform a site investigation and prepare a remediation plan, if necessary. For typical development projects, actual site remediation is completed either before or during the construction phase of the project. Therefore, implementation of the proposed project would ensure that impacts would remain less than significant.

Impact HZ-5: The proposed project would not impair or interfere with an adopted emergency response or evacuation plan or expose people to a significant risk involving fires. (Less than Significant)

The proposed project would neither result in construction or demolition of substantial above or below-ground structures; nor would the proposed project alter the current exposure of people or structures to potential hazards involving fires. Accordingly, there would be less-than-significant impacts with respect to fire hazards.

California has developed an emergency response plan to coordinate emergency services provided by federal, state, and local government and private agencies. Responding to hazardous materials incidents is one part of this plan. The plan is administered by the State Office of Emergency Services, which coordinates the responses of other agencies, including Cal EPA, CHP, the Department of Fish and Game, the San Francisco Bay Regional Water Quality Control Board, and the San Francisco Fire Department (SFFD). The SFFD provides first response capabilities, if needed, for hazardous materials emergencies within the Plan Area. The proposed project calls for streetscape improvements within the City’s public right-of-way. Compliance with the Public Works Code and the Fire Code would ensure that neither project-related construction activities nor the reconfiguration of City streets would affect existing emergency response or evacuation plans. Therefore, there would be less-than-significant impacts with respect to emergency response or evacuation plans.

Impact HZ-6: The proposed project in combination with other past, present or reasonably foreseeable projects would result in less-than-significant cumulative hazards and hazardous materials impacts. (Less than Significant)

Impacts from hazardous materials are generally site-specific and typically do not result in cumulative impacts. Any hazards at nearby sites would be subject to the same safety requirements discussed for the proposed project above, which would reduce any hazard effects to less-than-significant levels.

As previously discussed, potential impacts with respect to hazards and hazardous materials would be limited to the construction phase of the proposed project but implementation of Mitigation Measure HZ-1: Testing for and Handling of Contaminated Soil, which requires a site mitigation plan, would ensure that the proposed project’s contribution to exposure of workers and the public to hazardous materials during construction would not be cumulatively considerable. Also, procedures in effect through the DPW, the Fire Department and the DPH
would ensure that any potential project impacts would be kept at less than significant levels. Therefore, the proposed project, in combination with past, present and reasonably foreseeable future projects would not result in considerable contribution to cumulative hazardous and hazardous materials impacts.

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. MINERAL AND ENERGY RESOURCES—Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Encourage activities which result in the use of large amounts of fuel, water, or energy, or use these in a wasteful manner?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Impact ME-1: The proposed project would have no impact on mineral resources. (No Impact)

All land in San Francisco, including the Plan Area, is designated Mineral Resource Zone 4 (MRZ-4) by the California Division of Mines and Geology (CDMG) under the Surface Mining and Reclamation Act of 1975 (CDMG, Open File Report 96-03 and Special Report 146 Parts I and II). This designation indicates that there is not adequate information available for assignment to any other MRZ and thus the site is not a designated area of significant mineral deposits. However, because the Plan Area is already developed, future evaluation or designation of the site would not affect or be affected by the proposed project. There are no operational mineral resource recovery sites in the Plan Area’s vicinity whose operations or accessibility would be affected by the construction or operation of the proposed project.

No known mineral deposits exist at the project site. Thus, the proposed project would not result in the loss of availability of a locally- or regionally-important mineral resource, and the proposed project would have no impact with respect to mineral resources.

Impact ME-2: The proposed project would consume additional energy, but not in large amounts or in a wasteful manner. (Less than Significant)

No new building would be constructed as part of the proposed project. Construction of the proposed project would require the use of fuels (gas, diesel, and motor oil) for a variety of construction activities; however, the proposed project would not encourage any activities that
would result in the use of large amounts of fuel, water, or energy. The proposed project is designed to encourage pedestrian activities and the use of public transportation, which would decrease the use of these resources. Additionally, because of the high cost of fuel, wasteful use of fuels during construction would not be economically sustainable for contractors.

All proposed site-specific streetscape improvement projects and open space improvement projects would include the installation of new streetlights on public right-of-way. Streetlight improvements would be similar to what is current being used in the Fisherman’s wharf Neighborhood’s public right-of-way and would not require an excessive use of electricity. Therefore, the project would not generate a demand for energy and major expansion of power facilities. Thus, project impacts to energy resources are less than significant.

Impact ME-3: The proposed project in combination with other past, present or reasonably foreseeable projects would result in less-than-significant impacts to mineral and energy resources. (Less than Significant)

As described above, no known minerals exist in the Plan Area, and therefore the proposed project would not contribute to any cumulative impact on mineral resources. The California Energy Commission is currently considering applications for the development of new power-generating facilities in San Francisco, the Bay Area, and elsewhere in the state. These facilities could supply additional energy to the power supply grid within the next few years. These efforts, together with conservation, will be part of the statewide effort to achieve energy sufficiency. The project-generated demand for electricity would be negligible in the context of overall demand within San Francisco and the State, and would not in and of itself require a major expansion of power facilities. Therefore, the energy demand associated with the proposed project would not contribute to a cumulative impact. Overall, the proposed project would result in less-than-significant cumulatively considerable impacts related to mineral and energy resources.

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
</table>

18. AGRICULTURE AND FOREST RESOURCES: In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board.

---WUuld the project

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance, as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?
<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)) or timberland (as defined by Public Resources Code Section 4526)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Result in the loss of forest land or conversion of forest land to non-forest use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or forest land to non-forest use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

Impact AF-1: The proposed project would not convert farmland, conflict with existing zoning for agricultural uses or forest land, and would not result in the loss or conversion of forest land. (No Impact)

The Plan Area is located within an urbanized area of San Francisco. The California Department of Conservation’s Farmland Mapping and Monitoring Program identifies the site as “Urban and Built-up Land” (Department of Conservation, 2002). Because the Plan Area does not contain agricultural uses and is not zoned for such uses, the proposed project would not convert any prime farmland, unique farmland, or Farmland of Statewide Importance to non-agricultural use, and it would not conflict with existing zoning for agricultural land use or a Williamson Act contract, nor would it involve any changes to the environment that could result in the conversion of farmland. No part of San Francisco falls under the State Public Resource Code definitions of forest land or timberland; therefore, the project would not conflict with zoning for, or cause rezoning of, forest land, result in the loss of forest land, or convert forest land to non-forest use. Thus, the proposed project would have no impact with respect to agricultural and forest resources.

Impact AF-2: The proposed project in combination with other past, present or reasonably foreseeable projects would not result in impacts to agricultural and forest resources. (No Impact)

As described above, the proposed project would have no impact with respect to agriculture and forestry resources; therefore, the proposed project would not contribute to any cumulatively considerable impact to agricultural and forest resources.
19. **MANDATORY FINDINGS OF SIGNIFICANCE—Would the project:**

<table>
<thead>
<tr>
<th>Topics:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Have impacts that would be individually limited, but cumulatively considerable? (“Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Have environmental effects that would cause substantial adverse effects on human beings, either directly or indirectly?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

E-18. a) The proposed project, as discussed in Topic E-13 (Biological Resources) would generally not degrade the quality of the environment or impact wildlife and fish populations or their habitat. Mitigation measures M-BIO-1, in Section F. Mitigation Measures and Improvement Measures, have been incorporated into the proposed project to address potential affect on migratory nesting birds as a result of tree replacement and/or removal. Implementation of mitigation measures M-BIO-1 would reduce any direct and indirect impact to migratory nesting birds from tree removal and/or replacement to a less-than-significant level.

E-18. b) Both long-term and short-term environmental effects associated with the proposed project would be less than significant, as discussed under each environmental topic. Each environmental topic area includes an analysis of cumulative impacts. No significant cumulative impacts from the proposed project have been identified.

CUMULATIVE CONTEXT

Cumulative impacts are discussed under each individual resource in the preceding pages. Recently approved and reasonably foreseeable project and planning efforts in the vicinity of the proposed project include The San Francisco Bicycle Plan (Case No. 2007.0347E); Van Ness Bus Rapid Transit (a Transportation Authority Project); The E-Embarcadero Historic Streetcar Line (a SFMTA Project); The F-Line Streetcar Line Extension (project under environmental review by the National Parks Service); The 34th America’s Cup (AC) and Piers 27 Cruise Terminal Project (No.
2010.0493E); The Embarcadero Promenade Design Criteria; The Northeast Embarcadero Study; and Hornblower Cruise Piers 31.5 & 33 Improvements Project (No. 2008.1032E), described in detail below.

The San Francisco Bicycle Plan (Case No. 2007.0347E) - The San Francisco Bicycle Plan project consists of the adoption of a citywide bicycle transportation plan and the implementation of near-term, long-term and other minor improvements to the City’s bicycle route network, as well as amendments to the San Francisco General Plan and the San Francisco Planning Code. The overall goal of the San Francisco Bicycle Plan is to make bicycling an integral part of daily life in the City. The 2009 San Francisco Bicycle Plan was adopted by the San Francisco Municipal Transportation Agency Board on June 26, 2009 and affirmed by the San Francisco Board of Supervisors on August 11, 2009. Implementation of the specific physical improvements proposed by the Bicycle Plan continued to be enjoined by an injunction imposed as part of litigation initiated in 2006. On August 6, 2010, San Francisco Superior Court Judge Peter J. Busch issued an order finding the City in compliance with CEQA in seeking to implement its Bicycle Plan citywide; thus, lifting the injunction.

Van Ness Bus Rapid Transit (BRT) – The BRT area would run two miles along Van Ness Avenue between Mission and Lombard. The BRT service would end five blocks before the proposed Historic Streetcar alignment. This project is currently under environmental review by the Transportation Authority with construction scheduled for 2013. Typical BRT improvements include travel lanes for exclusive transit use; wider sidewalks at bus stops; traffic signal priority for transit vehicles; full stations with passenger amenities; multi-door boardings at sidewalk-level platforms; pre-paid boarding areas; and real-time information systems.

The E-Embarcadero Historic Streetcar Line – SFMTA proposes to initiate a basic 20-hour-a-day historic streetcar service that would connect Fisherman’s Wharf and northeast waterfront to AT&T Park and Caltrain via The Embarcadero and King Street. This new connection would reduce crowding on waterfront portion of the F-Line.

The F-Line Streetcar Line Extension – The SFMTA proposes to extend the F-Line from Fisherman’s Wharf to Fort Mason Center through the Fort Mason Tunnel. This project would lengthen the historic streetcar F-line approximately .85 mile from Fisherman’s Wharf to the San Francisco Maritime National Historical Park and then to the Golden Gate National Recreation Area. Currently, the F-line serves more than 20,000 passengers daily and is one of Muni’s most popular lines, yet does not provide direct access to heavily visited Aquatic Park and Fort Mason Center areas. The intended effect of the project is to provide park visitors and transit-dependent city residents with high-quality rail transit that improves transportation access and mobility.

The 34th America’s Cup (AC) and Piers 27 Cruise Terminal Project (No. 2010.0493E) – The Port of San Francisco in a joint effort with the America’s Cup Authority, propose improvements to the San Francisco Northern Waterfront and Pier 80 to host the 34th AC World Series sailing races (Summer/Fall of 2012 & 2013) in San Francisco. The project also includes the construction of the cruise ship terminal building shell on Pier 27. The building on Pier 27 will be used during the AC event as the races’ hub of hospitality. After the AC event is over, the building shell will be
finished to house the James R. Herman Cruise Terminal. The project is currently under environmental review by the San Francisco Planning Department.

Hornblower Cruise Piers 31.5 & 33 Improvements Project (No. 2008.1032E) – Hornblower Cruise, proposes improvements to Piers 31.5 and 33 to accommodate their current tour operations to Alcatraz – aka Alcatraz Landing Cruises. The project is currently under environmental review by the Planning Department.

The Embarcadero Promenade Design Criteria: The Embarcadero Promenade is the continuous waterfront walkway along the Port’s northern waterfront on the Bay side of The Embarcadero. The Promenade extends from Third Street at the AT&T Ballpark at its south end, and with the upcoming addition of the Pier 43 Promenade project, to the entry of Pier 45 in Fisherman’s Wharf at its north end. The Promenade is a multiuse pathway for maritime functions, vehicle and pedestrian access to piers, recreation, and bicycle transportation. The Embarcadero Promenade Design Criteria is a Port proposal to guide future alterations and improvements within The Promenade, and is currently under environmental review by the San Francisco Planning Department.

The Northeast Embarcadero Study: The Northeast Embarcadero Study Planning Department was prepared by the Planning Department and it intends to guide the future development of properties along the west side of the Embarcadero, generally from Market to North Point. The study focuses on the Port’s properties between Washington and North Point streets that are currently being used as parking lots. On July 8th the Planning Commission passed a resolution to support the study. On August 18, 2010 a half dozen community groups filed a lawsuit to reverse the City of San Francisco’s endorsement of the Planning Department’s Northeast Embarcadero Study without first conducting an environmental review as required by the California Environmental Quality Act.

Academy of Arts University at the Cannery Building: In June 2011, the Academy of Arts University purchased the Cannery Building located at 2801 Leavenworth. The property is outside the University’s Master Plan project boundaries; thus, future University expansion at this location is not currently under environmental review.

E.19. c) The proposed project, as discussed in Section C (Compatibility with Existing Zoning and Plans) and Topic E.1 (Land Use and Land Use Planning) would be generally consistent with local land use and zoning requirements. Mitigation Measure **HZ-1**, in Section F. Mitigation Measures and Improvement Measures, have been incorporated into the proposed project to address potentially contaminated soils and hazardous building material. Implementation of mitigation Measure **HZ-1** would reduce any direct and indirect impact to humans from the release of hazardous materials to a less-than-significant level.
F- MITIGATION MEASURES AND IMPROVEMENT MEASURES

The following mitigation and improvement measures have been adopted by the project sponsor and are necessary to avoid potential significant effects of the proposed project.

CULTURAL AND PALEONTOLOGICAL RESOURCES

Mitigation Measure CP-1: Secretary of the Interior’s Standards for the Treatment of Historic Properties, Aquatic Park National Historic Landmark District and Cultural Landscape. In order to avoid substantial impact to Aquatic Park, the project shall be designed in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties (Standards). Prior to the design development stage of the project, personnel who meet the Secretary of the Interior’s Professional Qualifications Standards shall produce: a report that assesses the physical condition of specific segments of the historic district that are potentially affected by the project, including inventory of historic and altered features, and recommendations for project design that comply with the Secretary of the Interior’s Standards for the Treatment of Historic Properties (Standards). The FWPRP final project design shall incorporate such recommendations so as to be in accordance with the Standards. Compliance with the Standards shall be addressed during the project’s design phase by submittal of project plans and materials to the Department for review and approval by personnel who meet the Secretary of the Interior’s Professional Qualifications Standards prior to the finalization of the project design. A project-level design consistent with the Standards will take into account the materials, style, and placement of proposed new construction in accordance with the existing historic character of the historic district, including historic curbs, materials, profiles, shapes, landscaping, and spatial relationships.

(2) Port of San Francisco Embarcadero Historic District. The Embarcadero Historic District was listed on the National Register of Historic Places in 2006. It is significant within the areas of government, commerce, transportation, labor, engineering, architecture, and community planning under Criteria A (Events), B (Persons), and C (Design). It includes an approximately three-mile curving stretch of San Francisco’s northeastern waterfront from Pier 45 at Fisherman’s Wharf, south to Pier 48 at China Basin. The district includes pier structures, other waterfront structures such as the Ferry Building, Agricultural Building and the Fireboat House, as well as the waterside portion of the Embarcadero corridor including the Seawall, Herb Caen Way/Embarcadero Promenade and the Bulkhead Wharf. The Bulkhead wharf is asphalt covered between piers that parallel the Embarcadero, and in some locations of the district is the supporting platform and substructure that supports bulkhead building portions of piers. Most of the district resources were constructed between 1908 and 1938, however the construction of the seawall dates from 1896 and the construction of the Ferry Building to 1896. The full period of
significance for the district is 1878 to 1946. Contributing features of the Embarcadero Historic District that lie within the public right-of-ways are Pier 45 and the seawall.

Within the Port of San Francisco Embarcadero Historic District, the FWPRP proposes two components that could potentially affect the resource: (1) the Neighborhood Gateway Treatments and (2) the Urban Design Guidelines, specifically No. 7 (Pier 39 East Park) and No. 8 (Pier 39 West Park). Of the Neighborhood Gateway Treatments, one gateway location is proposed for Jefferson Street, just west of Powell Street and adjacent to the Embarcadero Historic District, and the other gateway location is proposed for the Little Embarcadero, just north of its intersection with Jefferson Street and within the Embarcadero Historic District. The gateways could include architectural elements such as archways or distinctive vertically-oriented signs, open spaces, paving patterns and features, planting design, or public art. The Urban Design Guidelines Nos. 7 and 8 would consider the construction of small-scale building(s) at the east and west ends of Pier 39 that would help to define and activate the path along the water’s edge. These guidelines would also encourage minor changes that would improve pedestrian circulation and seating.

Because the Neighborhood Gateway Treatment and Design Guideline projects would occur within the boundaries of the Embarcadero Historic District or immediately adjacent to the Embarcadero Historic District, the work could potentially affect the resource. Implementation of mitigation measure CPI-1 would reduce potentially significant impacts to less than significant levels.

Mitigation Measure CP-1a: Secretary of the Interior’s Standards for the Treatment of Historic Properties, Port of San Francisco Embarcadero Historic District. In order to avoid substantial impact to the Embarcadero Historic District, the Neighborhood Gateway Treatments and the Urban Design Guideline Nos. 7 and 8 components of the project shall be designed in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties (Standards). Prior to the design development stage of the two projects, personnel who meet the Secretary of the Interior’s Professional Qualifications Standards shall produce: a report that assesses the physical condition of specific segments of the historic district that are potentially affected by the projects, including inventory of historic and altered features, and recommendations for project designs that comply with the Secretary of the Interior’s Standards for the Treatment of Historic Properties (Standards). The FWPRP final project designs shall incorporate such recommendations so as to be in accordance with the Standards. Compliance with the Standards shall be addressed during the project design phases by submittal of project plans and materials to the Department for review and approval by personnel who meet the Secretary of the Interior’s Professional Qualifications Standards prior to the finalization of the project design. A project-level design consistent with the Standards will take into account the materials, style, and placement of proposed new construction in accordance with the existing historic character of the historic district, including historic curbs, materials, profiles, shapes, landscaping, and spatial relationships.

Mitigation Measure CP-2 – Archeological Monitoring:

Based on the reasonable potential that archeological resources may be present within the project site, the following measures shall be undertaken to avoid any potentially significant adverse effect from the proposed project on buried or submerged historical resources. The project sponsor shall retain the services of an archaeological consultant from the pool of qualified archaeological consultants maintained by the Planning Department archaeologist. The archaeological consultant shall undertake an archaeological monitoring program. All plans and reports prepared by the consultant as specified herein shall be submitted first and directly to the ERO for review and comment, and shall be considered draft reports subject to revision until final approval by the ERO. Archeological monitoring and/or data recovery programs required by this measure could suspend construction of the project for up to a maximum of four weeks. At the direction of the ERO, the suspension of construction can be extended beyond four weeks only if such a suspension is the only feasible means to reduce to a less than significant level potential effects on a significant archeological resource as defined in CEQA Guidelines Sect. 15064.5 (a)(c).

Archeological monitoring plan (AMP). The archeological monitoring program shall minimally include the following provisions:

- The archeological consultant, project sponsor, and ERO shall meet and consult on the scope of the AMP reasonably prior to any project-related soils disturbing activities commencing. The ERO in consultation with the project archeologist shall determine what project activities shall be archeologically monitored. In most cases, any soils disturbing activities, such as demolition, foundation removal, excavation, grading, utilities installation, foundation work, driving of piles (foundation, shoring, etc.), site remediation, etc., shall require archeological monitoring because of the potential risk these activities pose to archaeological resources and to their depositional context;
- The archeological consultant shall advise all project contractors to be on the alert for evidence of the presence of the expected resource(s), of how to identify the evidence of the expected resource(s), and of the appropriate protocol in the event of apparent discovery of an archeological resource;
- The archeological monitor(s) shall be present on the project site according to a schedule agreed upon by the archeological consultant and the ERO until the ERO has, in consultation with the archeological consultant, determined that project construction activities could have no effects on significant archeological deposits;
- The archeological monitor shall record and be authorized to collect soil samples and artifactual/ecofactual material as warranted for analysis;
- If an intact archeological deposit is encountered, all soils disturbing activities in the vicinity of the deposit shall cease. The archeological monitor shall be empowered to temporarily redirect demolition/excavation/pile driving/construction crews and heavy equipment until the deposit is evaluated. If in the case of pile driving activity (foundation, shoring, etc.), the archeological monitor has cause to believe that the pile driving activity may affect an archeological resource, the pile driving activity shall be terminated until an appropriate evaluation of the resource has been made in consultation with the ERO. The archeological consultant shall immediately notify the ERO of the encountered archeological deposit. The archeological consultant shall, after making a reasonable effort to assess the identity, integrity, and significance of the encountered archeological deposit, present the findings of this assessment to the ERO.
If the ERO in consultation with the archeological consultant determines that a significant archeological resource is present and that the resource could be adversely affected by the proposed project, at the discretion of the project sponsor either:

C) The proposed project shall be re-designed so as to avoid any adverse effect on the significant archeological resource; or

D) An archeological data recovery program shall be implemented, unless the ERO determines that the archeological resource is of greater interpretive than research significance and that interpretive use of the resource is feasible.

If an archeological data recovery program is required by the ERO, the archeological data recovery program shall be conducted in accord with an archeological data recovery plan (ADRP). The project archeological consultant, project sponsor, and ERO shall meet and consult on the scope of the ADRP. The archeological consultant shall prepare a draft ADRP that shall be submitted to the ERO for review and approval. The ADRP shall identify how the proposed data recovery program will preserve the significant information the archeological resource is expected to contain. That is, the ADRP will identify what scientific/historical research questions are applicable to the expected resource, what data classes the resource is expected to possess, and how the expected data classes would address the applicable research questions. Data recovery, in general, should be limited to the portions of the historical property that could be adversely affected by the proposed project. Destructive data recovery methods shall not be applied to portions of the archeological resources if nondestructive methods are practical.

The scope of the ADRP shall include the following elements:

- **Field Methods and Procedures.** Descriptions of proposed field strategies, procedures, and operations.
- **Cataloguing and Laboratory Analysis.** Description of selected cataloguing system and artifact analysis procedures.
- **Discard and Deaccession Policy.** Description of and rationale for field and post-field discard and deaccession policies.
- **Interpretive Program.** Consideration of an on-site/off-site public interpretive program during the course of the archeological data recovery program.
- **Security Measures.** Recommended security measures to protect the archeological resource from vandalism, looting, and non-intentionally damaging activities.
- **Final Report.** Description of proposed report format and distribution of results.
- **Curation.** Description of the procedures and recommendations for the curation of any recovered data having potential research value, identification of appropriate curation facilities, and a summary of the accession policies of the curation facilities.

Final Archeological Resources Report. The archeological consultant shall submit a Draft Final Archeological Resources Report (FARR) to the ERO that evaluates the historical significance of any discovered archeological resource and describes the archeological and historical research methods employed in the archeological testing/monitoring/data recovery program(s) undertaken. Information that may put at risk any archeological resource shall be provided in a separate removable insert within the draft final report.
Copies of the Draft FARR shall be sent to the ERO for review and approval. Once approved by the ERO copies of the FARR shall be distributed as follows: California Archaeological Site Survey Northwest Information Center (NWIC) shall receive one (1) copy and the ERO shall receive a copy of the transmittal of the FARR to the NWIC. The Major Environmental Analysis division of the Planning Department shall receive three copies of the FARR along with copies of any formal site recordation forms (CA DPR 523 series) and/or documentation for nomination to the National Register of Historic Places/California Register of Historical Resources. In instances of high public interest or interpretive value, the ERO may require a different final report content, format, and distribution than that presented above.

Mitigation Measure CP-3 - Accidental Discovery of Archeological Resource:
The following mitigation measure is required to avoid any potential adverse effect from the proposed project on accidentally discovered buried or submerged historical resources as defined in CEQA Guidelines Section 15064.5(a)(c). The project sponsor shall distribute the Planning Department archeological resource “ALERT” sheet to the project prime contractor; to any project subcontractor (including demolition, excavation, grading, foundation, pile driving, etc. firms); or utilities firm involved in soils disturbing activities within the project site. Prior to any soils disturbing activities being undertaken each contractor is responsible for ensuring that the “ALERT” sheet is circulated to all field personnel including, machine operators, field crew, pile drivers, supervisory personnel, etc. The project sponsor shall provide the Environmental Review Officer (ERO) with a signed affidavit from the responsible parties (prime contractor, subcontractor(s), and utilities firm) to the ERO confirming that all field personnel have received copies of the Alert Sheet.

Should any indication of an archeological resource be encountered during any soils disturbing activity of the project, the project Head Foreman and/or project sponsor shall immediately notify the ERO and shall immediately suspend any soils disturbing activities in the vicinity of the discovery until the ERO has determined what additional measures should be undertaken.

If the ERO determines that an archeological resource may be present within the project site, the project sponsor shall retain the services of an archaeological consultant from the pool of qualified archaeological consultants maintained by the Planning Department archaeologist. The archaeological consultant shall advise the ERO as to whether the discovery is an archeological resource, retains sufficient integrity, and is of potential scientific/historical/cultural significance. If an archeological resource is present, the archaeological consultant shall identify and evaluate the archeological resource. The archeological consultant shall make a recommendation as to what action, if any, is warranted. Based on this information, the ERO may require, if warranted, specific additional measures to be implemented by the project sponsor.

Measures might include: preservation in situ of the archeological resource; an archeological monitoring program; or an archeological testing program. If an archeological monitoring program or archeological testing program is required, it shall be consistent with the Major Environmental Analysis (MEA) division guidelines for such programs. The ERO may also require that the project sponsor immediately implement a site security program if the archeological resource is at risk from vandalism, looting, or other damaging actions.
The project archeological consultant shall submit a Final Archeological Resources Report (FARR) to the ERO that evaluates the historical significance of any discovered archeological resource and describing the archeological and historical research methods employed in the archeological monitoring/data recovery program(s) undertaken. Information that may put at risk any archeological resource shall be provided in a separate removable insert within the final report.

Copies of the Draft FARR shall be sent to the ERO for review and approval. Once approved by the ERO, copies of the FARR shall be distributed as follows: California Archaeological Site Survey Northwest Information Center (NWIC) shall receive one (1) copy and the ERO shall receive a copy of the transmittal of the FARR to the NWIC. The Major Environmental Analysis division of the Planning Department shall receive three copies of the FARR along with copies of any formal site recordation forms (CA DPR 523 series) and/or documentation for nomination to the National Register of Historic Places/California Register of Historical Resources. In instances of high public interest or interpretive value, the ERO may require a different final report content, format, and distribution than that presented above.

Mitigation Measure CP-4 – Discovery of Human Remains:
The treatment of human remains and of associated or unassociated funerary objects discovered during any soils disturbing activity shall comply with applicable State and Federal Laws, including immediate notification of the Coroner of the City and County of San Francisco and in the event of the Coroner’s determination that the human remains are Native American remains, notification of the California State Native American Heritage Commission (NAHC) who shall appoint a Most Likely Descendant (MLD) (Pub. Res. Code Sec. 5097.98). The archeological consultant, project sponsor, and MLD shall make all reasonable efforts to develop an agreement for the treatment of, with appropriate dignity, human remains and associated or unassociated funerary objects (CEQA Guidelines Sec. 15064.5(d)). The agreement should take into consideration the appropriate excavation, removal, recordation, analysis, curation, possession, and final disposition of the human remains and associated or unassociated funerary objects. The archeological consultant shall submit to the ERO for review and approval a treatment plan for Non-Native American human remains if such remains are encountered. Non-Native American human remains may have significant scientific value with respect to understanding past dietary, labor, recreational, and health-related practices and of 19th century pathologies and epidemiology.

TRANSPORTATION AND CIRCULATION

Mitigation Measure TR-1: Embarcadero/Kearny/North Point
To mitigate the impact, the intersection geometry and signal timing would need to be reconfigured. Two lightly-utilized (less than 20 vehicles per hour) left turn movements would need to be prohibited:

- From northwestbound The Embarcadero to southbound Kearny Street. Traffic executing this movement would be accommodated by making a left turn one block earlier at Bay Street.
• From eastbound North Point Street onto northwestbound The Embarcadero. Traffic executing this movement would be accommodated by making a left turn one block earlier at Grant Street. Muni buses would be exempted from this restriction.

By prohibiting these two left turn movements, the signal timing plan could be modified from its current four-phase operation to a three-phase operation (streetcars would continue to be served by a separate, actuated phase). The three signal phases would be:

1. Through movements of the Embarcadero: northwestbound straight movement and southeastbound straight movement (with concurrent pedestrian crossing along southwest crosswalk);
2. Embarcadero left-turn movement and North Point right turn overlap: Northwestbound left turn movement and eastbound right turn movement (with concurrent pedestrian crossing along northwest crosswalk); and
3. Kearny Street movement: northbound approach (with concurrent pedestrian crossing along southeast crosswalk).

This mitigation measure would improve traffic operations to LOS D under the North Point Street diversion scenario (for either Variant #1 or #2). The impact would be mitigated to a less-than-significant level.

Mitigation Measure TR-2: Embarcadero/Grant/Beach
To mitigate the impact, the northwestbound approach and the signal timing would need to be reconfigured. The left lane of the northwestbound approach would be modified from a shared left-through lane into a left-only lane. By restriping the lane as such, the signal phasing could be changed from a split phase into separate signal phases for the northwestbound straight and left turn movements. The resulting three signal phases would be:

1. Embarcadero northwestbound left-turn movement onto Beach Street, and eastbound Beach Street (and concurrent pedestrian crossing along south crosswalk);
2. Through movements of the Embarcadero: northwestbound through movement and southeastbound through movement. Eastbound Beach Street would continue operating during this phase, (and concurrent pedestrian crossing along south crosswalk);
3. Grant Street movement: northbound approach (and concurrent pedestrian crossing along east crosswalk).

This phasing plan would allow more green time to be provided to the northwestbound left turn movement.

This mitigation would improve traffic operations to LOS E under the Beach Street diversion scenario (for either Variant #1 or #2). While LOS E is still considered unacceptable, it would represent an improvement over existing conditions.

168 Tour buses destined to Pier 39 which approach from the west typically execute this left turn that is proposed for elimination. These tour buses, like all vehicles destined to Pier 39 from the west, would have to use Grant Street instead. To accommodate tour buses executing the eastbound left turn from North Point onto Grant streets, it may be necessary to remove up to two on-street parking spaces on the west side of Grant Street at the intersection with North Point Street.
Additionally, LOS was examined for the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS.169 SI-1 would shift traffic volumes onto the northwestbound left-turn, which would become a critical movement at this intersection. With implementation of mitigation TR-2, that movement would operate acceptably at LOS D.170 Therefore, SI-1 would not have a considerable contribution to the unacceptable LOS at this intersection.

The impact would be mitigated to a \textit{less-than-significant} level.

\textit{Mitigation Measure TR-5}: Beach/Taylor

To mitigate the impact, a southbound right-turn pocket could be established by removing approximately three on-street parking spaces. This would improve the intersection to LOS C conditions. The impact would be mitigated to a \textit{less-than-significant} level.

It should be noted that this turn pocket would preclude implementation of a proposed sidewalk bulb-out on the west side of Taylor Street at Beach Street, proposed as part of SI-8. The proposed bulb-out in SI-8 would not be implemented until at least one year after implementation of SI-1. This would allow for an examination of traffic patterns by SFMTA, and a determination of whether the sidewalk bulb-out should be constructed, or if a right-turn pocket would be required to mitigate an impact.

\textit{Mitigation Measure TR-6}: Jefferson/Taylor

To mitigate the impact, the intersection signal phasing would need to be reconfigured. Currently, the signal is a standard two-phase configuration, with one phase for north-south traffic (with concurrent north-south pedestrian movements) and one phase for westbound traffic (with concurrent east-west pedestrian movements).

The mitigation would separate the westbound vehicle movement from the east-west pedestrian movements, by providing a third pedestrian “scramble” phase. This would remove pedestrians from conflicting with the westbound left (or westbound right) turn movement. This signal phasing could be accommodated within the existing 75-second signal cycle.

This mitigation would improve operations to LOS D. The impact would be mitigated to a \textit{less-than-significant} level.

\textit{Mitigation Measure TR-7}: Beach/Hyde

To improve operations, the signal timing could be modified. By shifting approximately 15 seconds of green time away from the north-south movement and giving it to the east-west movements, intersection operations would be improved to LOS C conditions while still maintaining a 60-second cycle and still meeting required crosswalk clearance intervals. The impact would be mitigated to a \textit{less-than-significant} level.

169 If an intersection would remain at unacceptable LOS after implementation of a project, the Planning Department typically examines the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS. Critical movements are the movements at an intersection that experience the most congestion.

170 Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.
This mitigation would reduce green time for the northbound and southbound movements, but this would not affect the cable car movements because cable cars are controlled by separate, actuated signal phases served upon detection. Therefore, there would be no added delay to cable car movements.

Mitigation Measure TR-8: Embarcadero/Kearny/North Point
This cumulative traffic mitigation is the same as the existing weekend condition mitigation described previously under TR-1 under Existing Weekend Conditions. The mitigation measure would entail reconfiguration of the intersection geometry and signal timing. With implementation, the intersection operations would be improved to LOS E.

Additionally, LOS was examined for the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS. SI-1 would shift traffic volumes onto the northwestbound left-turn, which would become a critical movement at this intersection. With implementation of mitigation TR-8, that movement would operate acceptably at LOS D. Therefore, SI-1 would not have a considerable contribution to the unacceptable LOS at this intersection.

The impact would be mitigated to a *less-than-significant* level.

Mitigation Measure TR-9: Embarcadero/Grant/Beach
This cumulative traffic mitigation is similar to the existing weekend condition mitigation described previously under TR-2 under Existing Weekend Conditions. Similar to TR-2, this mitigation measure would entail reconfiguration of the intersection geometry and signal timing. In addition, TR-9 would extend the signal cycle length from 75 to 90 seconds. With implementation, operations would be improved to LOS E, which is better than the cumulative LOS F without the project.

Additionally, LOS was examined for the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS. SI-1 would shift traffic volumes onto the northwestbound left-turn, which would become a critical movement at this intersection. With implementation of mitigation TR-9, that movement would operate acceptably at LOS D. Therefore, SI-1 would not have a considerable contribution to the unacceptable LOS at this intersection.

The impact would be mitigated to a *less-than-significant* level

Mitigation Measure TR-10: Beach/Powell

171 If an intersection would remain at unacceptable LOS after implementation of a project, the Planning Department typically examines the critical movements to determine if the project would have a considerable contribution to the unacceptable LOS. Critical movements are the movements at an intersection that experience the most congestion.

172 Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.

173 Detailed traffic calculations are included as part of the project file and are available to the public for review at 1650 Mission Street, Suite 400, San Francisco, as part of case file 2010.0256.
This cumulative traffic mitigation is similar to the improvement measure described previously under I-TR-3 under Existing Weekend Conditions. The measure would entail modifying the signal by shifting approximately 20 seconds of green time away from the east-west movement and giving it to the north-south movement. With implementation, operations would be improved to LOS D under the Beach Street diversion scenario and LOS C under the North Point diversion scenario. The impact would be mitigated to a least-significant level.

Mitigation Measure TR-12: North Point/Taylor
This cumulative traffic mitigation is the same as the existing weekend condition improvement measure described previously under TR-5 under Existing Weekend Conditions. Specifically, a southbound right-turn pocket would be created by removing approximately three parking spaces. With implementation, operations would be improved to LOS C. The impact would be mitigated to a less-than-significant level.

It should be noted that this turn pocket would preclude implementation of a proposed sidewalk bulb-out on the west side of Taylor Street at North Point Street, proposed as part of SI-8. The proposed bulb-out in SI-8 would not be implemented until at least one year after implementation of SI-1. This would allow for an examination of traffic patterns by SFMTA, and a determination of whether the sidewalk bulb-out should be constructed, or if a right-turn pocket should be constructed instead. If the sidewalk bulb-out were implemented, but future growth in traffic volumes caused congestion that resulted in a significant impact, the bulb-out would be removed and the right-turn pocket would be implemented.

Mitigation Measure TR-13: Beach/Taylor
This cumulative traffic mitigation measure is the same as the existing weekend condition mitigation measure described previously under TR-5 under Existing Weekend Conditions. The measure would result in the creation of a southbound right-turn pocket by removing approximately three parking spaces. With implementation, operations would be improved to LOS D. The impact would be mitigated to a less-than-significant level.

It should be noted that this turn pocket would preclude implementation of a proposed sidewalk bulb-out on the west side of Taylor Street at Beach Street, proposed as part of SI-8. The proposed bulb-out in SI-8 would not be implemented until at least one year after implementation of SI-1. This would allow for an examination of traffic patterns by SFMTA, and a determination of whether the sidewalk bulb-out should be constructed, or if a right-turn pocket should be constructed instead. If the sidewalk bulb-out were implemented, but future growth in traffic volumes caused congestion that resulted in a significant impact, the bulb-out would be removed and the right-turn pocket would be implemented.

Mitigation Measure TR-14: Jefferson/Taylor
This cumulative traffic mitigation is the same as the existing weekend condition mitigation measure described previously under impact TR-6 under Existing Weekend Conditions. The measure would involve the reconfiguration of the signal phasing to include a pedestrian “scramble” phase. With implementation, the intersection would operate at LOS D. The impact would be mitigated to a less-than-significant level.

Mitigation Measure TR-15: North Point/Hyde
To mitigate the impact, the signal timing would be modified. By shifting approximately five seconds of green time away from the east-west movement and giving it to the north-south movement, intersection operations would be improved to LOS C conditions, while still maintaining a 60-second cycle and still meeting required crosswalk clearance intervals. Implementation would reduce the impact to a less-than-significant level.

Mitigation Measure TR-16: Beach/Hyde
This cumulative traffic mitigation is the same as the existing weekend condition improvement measure described previously under impact TR-7 under Existing Weekend Conditions. The measure would involve adjustments to the signal timing such that more green time is given to the east-west movement and less to the north-south movement. With implementation, the intersection would operate at LOS C. The impact would be mitigated to a less-than-significant level.

Mitigation Measure TR-18: North Point/Taylor
Implementation of Mitigation Measure TR-18, which is the same as Mitigation Measure TR-4 under Existing Weekend Conditions would reduce this impact. Specifically, a southbound right-turn pocket would be created by removing approximately three parking spaces. With implementation, the intersection would operate at LOS B. The impact would be mitigated to a less-than-significant level.

Mitigation Measure TR-19: Embarcadero/Kearny/North Point
Implementation of Mitigation Measure TR-19, which is the same as Mitigation Measure TR-1 under Existing Weekend Conditions would reduce this impact. The mitigation measure would entail reconfiguration of the intersection geometry and signal timing. With implementation, the intersection would operate at LOS C. The impact would be mitigated to a less-than-significant level.

Mitigation Measure TR-20: North Point/Taylor
Implementation of mitigation measure TR-20, which is the same as Mitigation Measure TR-4 under Existing Weekend Conditions would reduce this impact. Specifically, a southbound right-turn pocket would be created by removing approximately three parking spaces. With implementation, the intersection would operate at LOS C. The impact would be mitigated to a less-than-significant level.

AIR QUALITY

Mitigation Measure AQ-3: Phased Implementation of Streetscape and Open Space Improvements: Prior to implementation of individual streetscape and open space projects, the project sponsor shall coordinate with the Major Environmental Analysis (MEA) division of the Planning Department to ensure that at no time would concurrent project-related construction activities exceed BAAQMD’s average daily construction thresholds. Coordination shall include a review of any ongoing project-related construction activities. If multiple projects are anticipated to occur concurrently and have the potential to exceed BAAQMD’s average daily emissions for NOx, the Planning Department may require additional analysis of available strategies to reduce
NOx emissions to levels that are below the BAAQMD’s thresholds. NOx reduction strategies may include Tier 3 or Tier 4 construction equipment or other best available NOx control strategies. If, after incorporating additional mitigation measures, concurrent construction activities may still exceed the BAAQMD’s NOx threshold, the project sponsor shall stop all impact-generating activities until a phasing plan demonstrating that overlapping project-related construction activities would not exceed BAAQMD’s average daily thresholds is adopted and implemented.

BIOLOGICAL RESOURCES

Mitigation Measure BIO-1 – Biological Resources-Nesting Birds
The project sponsor shall implement the following protective measures to ensure implementation of the Migratory Bird Treaty Act and compliance with State regulations during construction. To the extent feasible, the project sponsor and/or the construction contractor(s) shall trim/remove all vegetation/tree limbs necessary for project construction between September 1 to January 31. Should construction activities or vegetation removal commence between February 1 to August 31, pre-construction surveys for nesting birds shall be conducted 14 to 21 days prior to construction activities that would result in vegetation removal. A qualified biologist shall determine if active nests of native birds are present in the construction zone. In the event an active nest is discovered in areas to be disturbed, removal of the nesting substrate shall be postponed until the nest is vacated and juveniles have fledged (typically 3-4 weeks for most small passerines), as determined by the biologist, and there is no evidence of second nesting attempts, unless a CDFG and the USFWS for migratory birds authorize otherwise. Nor surveys are required and no impact would occur if vegetation removal, grading or other heavy construction activities would occur between September 1 to January 31, outside the nesting season.

HAZARDS AND HAZARDS MATERIALS

Mitigation Measure HZ-1: Testing for and Handling of Contaminated Soil

Step 1: Soil Testing. Prior to project implementation, a consultant shall be hired to collect soil samples (borings) from areas on the site in which soil would be disturbed and test the soil samples for total lead and petroleum hydrocarbons. The consultant shall analyze the soil borings as discrete, not composite samples. The consultant shall prepare a report on the soil testing for lead and petroleum hydrocarbons that includes the results of the soil testing and a map that shows the locations of stockpiled soils from which the consultant collected the soil samples.

A report on the soil testing for lead and a fee of $501 in the form of a check payable to the San Francisco Department of Public Health (DPH) shall be submitted to the Hazardous Waste Program, Department of Public Health, 1390 Market Street, Suite 210, San Francisco, California 94102. The fee of $501 shall cover three hours of soil testing report review and administrative handling. If additional review is necessary, DPH shall bill the project sponsor for each additional hour of review over the first three hours, at a rate of $167 per hour. These fees shall be charged pursuant to Section 31.47(c) of the San Francisco Administrative Code. DPH shall review the soil testing program to determine whether soils on the Plan Area are contaminated with lead or petroleum hydrocarbons at or above potentially hazardous levels.
Step 2: Preparation of Site Mitigation Plan. Prior to beginning demolition and construction work, the project sponsor shall prepare a Site Mitigation Plan (SMP). The SMP shall include a discussion of the level of lead contamination of soils on the Plan Area and mitigation measures for managing contaminated soils on the site, including but not limited to: 1) the alternatives for managing contaminated soils on the site (e.g., encapsulation, partial or complete removal, treatment, recycling for reuse, or a combination); 2) the preferred alternative for managing contaminated soils on the site and a brief justification; and 3) the specific practices to be used to handle, haul, and dispose of contaminated soils on the site. The SMP shall be submitted to the Department of Public Health (DPH) for review and approval. A copy of the SMP shall be submitted to the Planning Department to become part of the case file. Additionally, the DPH may require confirmatory samples for the Plan Area.

Step 3: Handling, Hauling, and Disposal Contaminated Soils.

(f) specific work practices: The construction contractor shall be alert for the presence of contaminated soils during excavation and other construction activities on the site (detected through soil odor, color, and texture and results of on-site soil testing), and shall be prepared to handle, profile (i.e., characterize), and dispose of such soils appropriately (i.e., as dictated by local, state, and federal regulations, including OSHA work practices) when such soils are encountered on the site.

(g) dust suppression: Soils exposed during excavation for site preparation and project construction activities shall be kept moist throughout the time they are exposed, both during and after work hours.

(h) surface water runoff control: Where soils are stockpiled, visqueen shall be used to create an impermeable liner, both beneath and on top of the soils, with a berm to contain any potential surface water runoff from the soil stockpiles during inclement weather.

(i) soils replacement: If necessary, clean fill or other suitable material(s) shall be used to bring portions of the Plan Area, where lead-contaminated soils have been excavated and removed, up to construction grade.

(j) hauling and disposal: Contaminated soils shall be hauled off the Plan Area by waste hauling trucks appropriately certified with the State of California and adequately covered to prevent dispersion of the soils during transit, and shall be disposed of at the permitted hazardous waste disposal facility registered with the State of California.

Step 4: Preparation of Closure/Certification Report. After excavation and foundation construction activities are completed, the project sponsor shall prepare and submit a closure/certification report to DPH for review and approval. The project sponsor shall submit a copy of any closure or certification report to the Department of Toxic Substances Control (DTSC) for review. DTSC review would ensure the Project’s compliance with existing state and federal regulations handling hazardous materials under DTSC’s jurisdictions. The closure/certification report shall include the mitigation measures in the SMP for handling and removing lead-
contaminated soils from the Plan Area, whether the construction contractor modified any of these mitigation measures, and how and why the construction contractor modified those mitigation measures.

IMPROVEMENT MEASURES

TRANSPORTATION AND CIRCULATION

Improvement Measure I-TR-1: North Point Street Traffic Signal Timing
Traffic signal cycle lengths for intersections along North Point Street would be increased from 60 to 90 seconds, with the extra 30 seconds given to the east-west movements.\(^{174}\)

With implementation of the proposed project and Improvement Measure TR-1, transit delay would be reduced. Improvement Measure I-TR-1 would result in a modest increase in delay for north-south vehicular and pedestrian movements across North Point Street, but it would not result in secondary transportation impacts. It should be noted that bicycles traveling on North Point Street would also benefit from the increase in green time. However, Improvement Measure I-TR-1 should only be implemented by SFMTA after implementation of SI-1, if SFMTA determines that unacceptable transit delay has occurred.

With or without implementation of Improvement Measure I-TR-1, transit delay on North Point Street would be less than significant.

Improvement Measure I-TR-3: Beach/Powell
To improve operations, the signal timing could be modified. By shifting approximately 10 seconds of green time away from the east-west movement and giving it to the north-south movement, intersection operations would be improved to LOS C conditions while still maintaining a 75-second cycle and still meeting required crosswalk clearance intervals.

This would reduce green time for the eastbound streetcar movement, but this signal already has transit-priority features which can detect an approaching streetcar and hold the green phase for it. Therefore the added delay to the eastbound streetcar would not be significant.

With or without implementation of Improvement Measure I-TR-3, traffic impacts would remain less than significant.

Improvement Measure I-TR-4: North Point/Taylor
To improve operations, a southbound right-turn pocket could be established by removing approximately three on-street parking spaces. This would improve the intersection to LOS B conditions.

It should be noted that this turn pocket would preclude implementation of a proposed sidewalk bulb-out on the west side of Taylor Street at North Point Street, proposed as part of SI-8. The

\(^{174}\) Traffic signals along North Point Street currently operate on a 90 second cycle, but only on weekdays from 6:00 AM—9:30 AM and 4:00 PM—7:30 PM. The traffic signals operate on a 60 second cycle at all other times, including all day on weekends. Improvement Measure I-TR-1 would modify the signal timing to operate on a 90 second cycle from 6:00 AM—7:00 PM, seven days of the week.
G. PUBLIC NOTICE AND COMMENT

A “Notification of Project Receiving Environmental Review” was sent out on September 9, 2010, to interested parties, neighborhood organizations and responsible agencies. One comment was received by a member of the public requesting to be kept on the project’s mailing list.
H. DETERMINATION

On the basis of this Initial Study:

☐ I find that the proposed project COULD NOT have a significant effect on the environment, and
 a NEGATIVE DECLARATION will be prepared.

☒ I find that although the proposed project could have a significant effect on the environment,
 there will not be a significant effect in this case because revisions in the project have been
 made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION
 will be prepared.

☐ I find that the proposed project MAY have a significant effect on the environment, and an
 ENVIRONMENTAL IMPACT REPORT is required.

☐ I find that the proposed project MAY have a "potentially significant impact" or "potentially
 significant unless mitigated" impact on the environment, but at least one effect 1) has been
 adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has
 been addressed by mitigation measures based on the earlier analysis as described on attached
 sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the
 effects that remain to be addressed.

☐ I find that although the proposed project could have a significant effect on the environment,
 because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or
 NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or
 mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or
 mitigation measures that are imposed upon the proposed project, no further environmental
 documentation is required.

Bill Wycko
Environmental Review Officer
for
John Rahaim
Director of Planning

DATE 4/19/2011
I. INITIAL STUDY AUTHORS AND PROJECT SPONSOR

INITIAL STUDY AUTHORS
Planning Department, City and County of San Francisco
Environmental Planning
1650 Mission Street, Suite 400
San Francisco, CA 94103

Environmental Review Officer: William C. Wycko
Senior Environmental Planner: Joy Navarrete
Environmental Planner: Monica Pereira
Senior Transportation Planner: Viktoriya Wise
Transportation Planner: Greg Riessen
Archeologist: Randall Dean
Historic Preservation: Shelly Caltagirone
Air Quality Planner: Jessica Range
Urban Design Planners: Neil Hrushowy, Nicholas Perry
Transportation Intern: Rachel Moody

PROJECT SPONSOR
San Francisco Planning Department
Citywide Policy Planning
1650 Mission Street, Suite 400
San Francisco, CA 94103
Neil Hrushowy, Urban Designer/Planner