Addendum to San Francisco Better Streets Plan Project Mitigated Negative Declaration

Date of Publication of Addendum: March 12, 2014
Date of Publication of Final MND: September 15, 2010
Final MND: San Francisco Better Streets Plan Project Final Mitigated Negative Declaration
Case No.: 2014.0060E
Project Title: Green Connections Project
Zoning: Various
Block/Lot: Various
Project Sponsor: San Francisco Planning Department
Kearstin Dischinger – (415) 558-6284
kearstin.dischinger@sfgov.org
Lead Agency: San Francisco Planning Department
Staff Contact: Melinda Hue – (415) 575-9041
Melinda.Hue@sfgov.org

The purpose of this Addendum to the San Francisco Better Streets Plan Project Final Mitigated Negative Declaration is to substantiate the Planning Department’s determination that no supplemental environmental review is required for the proposed Green Connections Project. This is because the environmental effects of implementation of the Green Connections Project have been adequately analyzed pursuant to the California Environmental Quality Act (“CEQA”) in a Final Mitigated Negative Declaration (“FMND”) previously prepared for the Better Streets Plan Project (“BSP”) and implementation of the Green Connections Project would not involve new significant environmental effects or a substantial increase in the severity of previously identified potentially significant effects that were reduced to less-than-significant levels with mitigation measures.

This Addendum describes the relationship of the Green Connections Project to the BSP and BSP FMND, analyzes the Green Connections Project in the context of the previous environmental review, and summarizes the potential environmental effects that may occur as a result of implementing the Green Connections Project.

BACKGROUND

A Final Mitigated Negative Declaration, File Number 2007.1238E, for the BSP was issued on September 15, 2010. The BSP, as analyzed in the FMND, describes a vision for the future of San Francisco’s pedestrian environment and involved adoption of a set of citywide streetscape and pedestrian policies and guidelines to help accomplish this vision. The BSP identifies goals, objectives, policies and design guidelines, as well as future strategies to improve the pedestrian realm in San Francisco. The BSP focuses on mainly pedestrian areas such as sidewalks and crosswalks, but in a few instances, also includes portions of the roadway.
The BSP involves implementation of standard and optional streetscape improvements. Major BSP concepts related to streetscape and pedestrian improvements include: (1) pedestrian safety and accessibility features, such as enhanced pedestrian crossings, corner or mid-block curb extensions, pedestrian countdown and priority signals, and traffic calming features; (2) universal pedestrian-oriented streetscape design incorporating street trees, sidewalk planting, furnishing, lighting, efficient utility location for unobstructed sidewalks, shared single-surface for small streets/alleys, sidewalk and median pocket parks, and temporary and permanent street closures to vehicles; (3) integrated pedestrian/transit functions using bus bulb-outs and boarding islands; (4) enhanced usability of streetscapes for social purposes with reuse of excess street area, creative use of parking lanes, and outdoor restaurant seating; and (5) improved ecological performance of streets and streetscape greening with incorporation of stormwater management techniques and urban forest maintenance. The BSP pedestrian realm improvements are implemented as future site-specific improvement projects in San Francisco, as part of the City’s ongoing streetscape/pedestrian realm improvement efforts. The BSP itself is a program-level policy document and does not identify site-specific projects in the City.

The Green Connections Project was identified as one of the next steps to implement the ideas in the BSP. Specifically, the Green Connections Project is the next step identified in BSP policies 5.2 and 8.4, as listed below:

- BSP Policy 5.2: Emphasize improvements to streets that link to parks, recreation centers and other community uses.
- BSP Policy 5.2 Next Step: Identify streets that are important connectors to parks and open spaces, and identify priority projects for improvement.
- BSP Policy 8.4: Use streetscape landscaping to increase the ecological value of public streets for people and wildlife.
- BSP Policy 8.4 Next Step: Identify streets that have important habitat value by linking natural areas, open spaces, and bodies of water, and identify priority projects for improvement.

The BSP FMND is a comprehensive, programmatic environmental review document that analyzes the environmental effects of implementing the BSP. The BSP FMND included analyses of environmental issues associated with the BSP related to: land use and land use planning; aesthetics; population and housing; cultural and paleontological resources; transportation and circulation; noise; air quality; greenhouse gas emissions; wind and shadow; recreation; utilities and service systems; public services; biological resources; geology and soils; hydrology and water quality; hazards and hazardous materials; mineral and energy resources; and agricultural and forest resources. As the BSP does not identify site-specific projects in the City, no site-specific street improvement projects were analyzed in the BSP FMND.

This Addendum reviews the proposed Green Connections Project in the context of the BSP FMND environmental analysis. Detailed project-level designs of specific applications of elements in the Green Connections Project along the Green Connections Network and neighborhood locations are not available.

at this time, and future projects under the Green Connections Project would be subject to project-specific environmental review.

PROJECT SETTING

A majority of Green Connections Network streets are Local Streets\(^2\) which are streets that abut residential or other land uses (rather than streets meant for through-traffic) and generally have lower traffic volumes. Some of the Green Connections Network street segments are Secondary Arterials\(^3\) (such as Sunset Boulevard, Washington Street, Jones Street, Vicente Street, 17th Street, Clipper Street, Cargo Way, Brotherhood Way, and Oakdale Avenue), which are intradistrict roadways of varying capacity, sometimes acting as collectors to nearby major arterials. A few of the street segments in the Green Connections Network are Major Arterials\(^4\) such as Park Presidio, Washington Street, Seventh Street, and Brotherhood Way, which are cross-town thoroughfares meant to accommodate heavier traffic volumes. Green Connection streets may or may not currently include existing traffic calming or street landscaping elements.

The Green Connections Network would better connect recreational areas, parks and open spaces to neighborhoods throughout the City. Some of the Green Connections streets or street segments are part of, or overlap with the citywide transit network. Most Green Connections streets, as discussed above, are not located on major or secondary arterials, which are more likely to have transit service included. Similarly the Green Connections Network overlaps with some dedicated Bicycle Routes throughout the city. Most Green Connections Network streets or pathways currently contain sidewalks and facilities for pedestrian travel. Some of these sidewalks may be lacking, narrow in width, or include asphalt materials along the routes. The pedestrian pathways connecting the Green Connections Network vary in quality, and may range from unimproved neighborhood paths to established paved/accessible improved routes.

PROJECT DESCRIPTION

The project sponsor, the San Francisco Planning Department (Department), is proposing to implement the Green Connections Project, an effort to increase access to parks, open spaces, and the waterfront by envisioning a network of ‘green connectors’ – city streets that would be upgraded incrementally over the next 20 years to make it safer and more pleasant to travel to parks by walking, biking, and other forms of active (non-motorized) transportation. The Green Connections Project does not create a new City program; rather, Green Connections routes would be implemented through a variety of existing City programs and agencies. Many of the elements identified as part of the Green Connections Project would be constructed as part of ongoing streetscape projects or as new projects identified through the Green Connections planning process by various city agencies such as the Department of Public Works (“DPW”) and the San Francisco Municipal Transportation Agency (“SFMTA”). SFMTA would be responsible for implementing some of the pedestrian, bicycle and traffic calming elements identified as part of the Green Connections Project.

\(^2\) Local Streets, Secondary Arterials and Major Arterials are roadway classifications established in the Transportation Element of the San Francisco General Plan.

\(^3\) Ibid.

\(^4\) Ibid.
Connections Project. The Green Connections Project builds on a number of City-adopted plans and policies including, but not limited to, the BSP. The Green Connections Project includes the following components:

A. Green Connections Network
B. Green Connections Ecology Guides/Planting Palette
C. Green Connections Design Toolkit
D. Green Connections Network Routes/Proposed Intersection Improvements
E. Green Connections Focus Neighborhood Concept Designs

Detailed description of each Green Connections project component is provided below.

A. **GREEN CONNECTIONS NETWORK**

The Green Connections Network includes 24 routes, totaling over 115 miles. These 24 routes would serve at a citywide scale connecting neighborhoods to one another in addition to improving San Francisco’s access to parks and open space. Routes would be designed to a Green Connections standard, using elements from the Green Connections Design Toolkit discussed in Section C below on page 6. Additionally, each Green Connections route includes a target species or habitat that could be enhanced along the route, as explained by the ecology guides/planting palette. See Figure 1 on page 5 for a map of the Green Connections Network.

B. **GREEN CONNECTIONS ECOLOGY GUIDES/PLANTING PALETTE**

The ecology guides/planting palette provides information on local flora, fauna, and habitat that could be enhanced as part of the Green Connections Network. Each of the 24 Green Connections Network routes is named after a key species or habitat that would serve an important ecological function and that would be suited to that particular Green Connections route. Figure 1 lists the key species or habitats associated with each Green Connections Network route.

Each ecology guide includes:

- A description of places along the route, including parks, schools, and neighborhood commercial districts.
- A description of the route’s key species or habitat, and the role it plays as part of the larger urban ecosystem.
- Habitat considerations – what the key species or habitat needs to thrive, including recommended plants.
- Nesting information for the key species, where applicable.

5 The Ecology Guides are included in the appendix of the *Green Connections Final Report* (December 2013) and the planting palette would be incorporated into an online database.
C. GREEN CONNECTIONS DESIGN TOOLKIT

The Green Connections Design Toolkit ("Design Toolkit") includes 16 elements, as shown in Figures 2 to 15 (beginning on page 9), and as described below, that could be applied to any designated Green Connections Network route.

1. Neckdown
 A neckdown design, or mid-block or block entry curb/sidewalk extensions, could create opportunities for greening landscaping and public realm amenities. Traffic could be calmed through the narrowing of the roadway and mid-block lane reduction. Narrowing of the roadway could involve curb extensions/bulb-outs and/or speed tables (flat top speed bump).

2. Wide Sidewalk Garden
 Sidewalk widening could help create space for greening and public space. Reduced travel lanes and lane widths could enhance pedestrian safety by reducing the road width and calming auto traffic.

3. Partial Diverters
 A partial diverter could reduce traffic volumes on Green Connections streets by restricting auto access in some directions. The Partial Diverter could create additional public spaces and opportunities for greening.

 Partial Diverters (Moderate to Low Volume Crossing): This would include wider corner bulbs that extend into the right-of-way and divert auto traffic in certain directions. Movement of pedestrians, bicycles, or emergency vehicles would not be restricted.

 Partial Diverters (High Volume Crossing): At intersections where cross streets have fast-moving traffic, partial diverters could be designed with enhanced pedestrian and bicycle crossing amenities such as striping and signalization.

4. Diagonal Diverters
 Diverters could help reduce traffic volumes by forcing vehicles to turn. The diverter could also create greening space that could enhance urban ecology.

5. Intersection Island
 Intersection Islands could help create additional greening space and reduce traffic volumes on a Green Connection street. This treatment could help divert some automobiles from the Green Connection street, while allowing for pedestrian and bicycle access.

6. Block-end Plazas
 Block-end Plazas could help divert cars and create additional public space streets crossing a Green Connection. A block-end plaza could help reduce vehicle traffic on the Green Connection street while allowing bicycle and pedestrian access.
7. **Play Street**

Play Streets could help create large areas for public space such as a basketball court in the roadway right-of-way. Traffic would be calmed with bulb-outs at the intersections and speed bumps or speed tables could be added next to the ‘play area’.

8. **Four Standard Bulbs with Stop Signs for Cross Traffic**

Corner bulb-outs could extend the sidewalk into the parking lane to narrow the roadway and provide additional pedestrian space. Corner bulb-outs would help enhance pedestrian safety by increasing pedestrian visibility, shortening pedestrian crossing distances, slowing turning vehicles, and visually narrowing the roadway.

Generally, pedestrian safety benefits are greater the further the bulb-out extends into the roadway and the tighter the turn radius created by the bulb-out, but bulb-out design would be balanced against other needs. Bulb-outs are often extended to create public spaces, permeable landscaped areas, or transit waiting areas.

9. **Traffic Circles**

Traffic Circles at intersections could provide opportunities for greening, stormwater management, a visual relief in wide streets, and calming traffic speeds.

Traffic Circle: A raised island could be placed in the center of an intersection; vehicles and bicyclists passing through the intersection must yield to other vehicles and pedestrians, but may not be required to stop.

Mountable Traffic Circles: These function similarly to traffic circles. They could be useful in situations where traffic circles may not fit in the intersection, or to accommodate wide-turning vehicles such as trucks or buses. They are slightly raised bumps in the center of an intersection. Cars would navigate the mountable traffic circle as if it were a traffic circle or a speed bump/table.

10. **Parking Lane Planters**

Parking Lane Planters could help create additional space for landscaping and street trees, which could calm traffic. Landscaped sidewalk extensions could be placed between parking spaces at regular intervals or at specific locations.

11. **Chicane**

Chicanes could help create new areas for landscaping and public space. A chicane is a series of alternating mid-block curb extensions or islands that narrow the roadway and require vehicles to follow a curving, S-shaped path. This could help to slow traffic and discourage speeding.

12. **Chicane + Sidewalk Widening**

A chicane combined with widened sidewalks could help create larger areas for landscaping and public space.
13. **Chicane + Back-In Angled Parking**
A chicane could include back-in angled parking and larger curb bulb-outs in instances where costs do not allow for extended sidewalks, or where more street parking is desired. A chicane with back-in angled parking could create an expanded area for landscaping and public space. Back-in angled parking would be preferred to front-loaded angled parking because it is safer for bikes.

14. **Landscaped Center Median**
Landscaped center medians could help create opportunities for greening, landscaping and public realm amenities. Landscaped medians could calm traffic, support urban ecology, and facilitate stormwater management.

15. **Intersection Mural**
Intersection murals on the roadway could help calm traffic and build identity for the neighborhood. They would be designed and implemented through a community process.

16. **Pedestrian Activated Beacons**
When adding pedestrian crosswalks to streets, particularly mid-block pedestrian crosswalks, additional pedestrian and/or bicycle signaling could help improve accessibility and facilitate crossings at major intersections, especially for streets with high traffic volumes. The following are three examples of pedestrian and/or bicycle signaling.

HAWK (High-intensity Activated Crosswalk): This signal design could help alert drivers to pedestrians crossing, or would require drivers to yield or stop. The HAWK could improve pedestrian safety, especially at mid-block crossings and busy arterial streets.

Bicycle Signals or “Toucans” (Two Can Cross): This signal design could accommodate pedestrians and bicyclists. The signal design could include a bicycle icon and a person icon and would mark distinct paths of travel for bicycles and pedestrians. Treatments could include a pedestrian crosswalk and an adjacent bicycle path with green sharrows.

Rapid Rectangular Flashing Beacons (RRFB): This signal design could alert drivers to pedestrians crossing. The flashing amber LED lights are activated with a push button to alert motorist to the presence of pedestrians in a crosswalk. A recent study by the Federal Highway Administration found that drivers are more likely to yield when RRFBs are installed.
Neckdowns, also known as Chokers, are mid-block curb extensions that extend beyond the line of the parking lane into the vehicle lane, effectively creating a pinch point along the street. They are effective traffic calming tools as they reduce a two-lane street to one lane (or two very narrow lanes) at the choker point, requiring motorists to yield to each other and slow down. Neckdown sidewalk extensions can create opportunities for placemaking, greening, and public realm amenities.

LOCATION CRITERIA:
Low traffic volume streets.

Sidewalk widening can create space for greening and public space. Reduced travel lanes can enhance pedestrian safety by reducing the road width and calming auto traffic.

LOCATION CRITERIA:
All street types, especially streets with excess road width.
INTERSECTIONS

FIGURE 4: TOOLKIT ELEMENT: PARTIAL DIVERTERS

A partial diverter can reduce traffic volumes on Green Connections blocks by restricting auto access in some directions, while creating additional public spaces and opportunities for greening.

PARTIAL DIVERTERS (Moderate to Low Volume Crossing): At intersections with moderate to low volumes of cross traffic, partial diverters would include wider corner bulbs that extend into the right of way and prevent automobile traffic from entering the block at that end, requiring some traffic to turn off the Green Connections route. Movement of pedestrians and bicycles is unrestricted, and the design should allow emergency vehicles to access the block either by crossing the bulb or by entering the oncoming traffic lane.

LOCATION CRITERIA:
When a Green Connection crosses a street with low to moderate traffic volumes.

PARTIAL DIVERTERS (High Volume Crossing): At intersections where cross streets have fast-moving traffic, partial diverters can be designed with enhanced pedestrian and bicycle crossing amenities such as striping and signalization.

LOCATION CRITERIA:
When a Green Connection crosses a major arterial with a bike lane.

INTERSECTIONS

FIGURE 5: TOOLKIT ELEMENT: DIAGONAL DIVERTERS

Diagonal diverters are landscaped areas that bisect an intersection diagonally. They prevent vehicles from traveling through a given intersection by forcing all vehicles at the intersection to turn. This reduces the use of the Green Connection street as well as the cross street for through traffic. Diagonal diverters can also provide opportunities to add greening and enhance urban ecology.

Motorists who drive through a neighborhood – rather than to a local destination – can cause congestion on residential streets, detracting from the neighborhood feel and reducing the comfort level for people bicycling or walking on that street. Diagonal Diverters can significantly reduce the volume of this “cut-through” traffic.

LOCATION CRITERIA:
When a Green Connection crosses a residential street with low traffic volumes or when two Green Connections cross.
Intersection Islands

Intersection islands are wide median islands designed to block the movement of through vehicle traffic in some directions, while allowing for pedestrian and bicycle access. Intersection Islands can create additional greening space and reduce traffic volumes on a Green Connection.

Location Criteria:
When a Green Connection crosses a street with low to moderate traffic volumes.

Block-End Plazas

Block-end plazas are areas of a street that have been closed-off to non-emergency vehicles and converted to community gathering spaces. They can be effective tools for reducing traffic volumes on a Green Connection by diverting through-traffic from cars while allowing bicycle and pedestrian access.

Location Criteria:
Anywhere along a Green Connection with the exception of street segments classified as Throughway Streets, and streets along the Muni network. Block-end Plazas can be effective tools when installed on a residential street with low traffic volumes adjacent to a street with high traffic volumes and/or a Muni route (e.g. Sloat Boulevard).
FIGURE 8: TOOLKIT ELEMENT: PLAY STREETS

Play streets repurpose street rights-of-way to create large areas of public space for active recreational uses, such as basketball courts, hopscotch, and other unstructured play activities. While play streets still accommodate local traffic, they typically include intense traffic calming to promote very slow driving speeds and allow people to use the street comfortably.

LOCATION CRITERIA:
Extremely low volume residential streets; dead-end streets.

FIGURE 9: TOOLKIT ELEMENT: FOUR STANDARD BULBS WITH STOP FOR CROSS TRAFFIC

Corner bulb-outs can extend the sidewalk into the parking lane to narrow the roadway and provide additional pedestrian space. Corner bulb-outs can enhance pedestrian safety by increasing pedestrian visibility, shortening crossing distances, slowing turning vehicles, and visually narrowing the roadway.

Generally, benefits are greater the further the bulb-out extends into the roadway and the tighter the turn radius created by the bulb-out, but should be balanced against other needs such as accommodating minimum turning radii for oversized and emergency vehicles. Bulb-outs can often be extended to create public spaces, landscaped areas, or transit waiting areas.

LOCATION CRITERIA:
Can be applied at all intersections.
Traffic Circles are raised islands located in the center of an intersection around which traffic must circulate. Drivers approaching an intersection with a traffic circle must yield to other vehicles and pedestrians passing through the intersection, but may not be required to come to a complete stop before entering the intersection. Traffic circles visually reduce the scale of wide intersections and break up the monotony of the street grid. When they include landscaping, they can beautify and enliven the streetscape. Traffic circles are generally used at low volume neighborhood intersections.

Mountable Traffic Circles function similarly to traffic circles. They can be useful in situations where traffic circles may not fit, or to accommodate wide-turning vehicles such as trucks or buses. They are slightly raised bumps in the center of an intersection. Cars can navigate the mountable traffic circle as if it were a traditional traffic circle or as if it were a speed bump, whereas larger vehicles can slowly mount the device in order to pass through the intersection.

Parking Lane Planters create additional space for landscaping and street trees, which can calm traffic. Landscaped sidewalk extensions could be placed between parking spaces at regular intervals or at specific locations.
CHICANES

Chicane + Sidewalk Widening. A chicane combined with widened sidewalks can create larger areas for landscaping and public space.

Chicane + Back-In Angled Parking. A chicane can include back-in angled parking and larger bulb-outs in instances where costs do not allow for extended sidewalks, or where more street parking is desired. A chicane with back-in angled parking could create an expanded area of landscaping and public space. Back-in angled parking is preferred to front-loaded angled parking because it improves visibility between the driver exiting a parking spot and a motorist or bicycle rider in the roadway.

LANDSCAPED CENTER MEDIANS

Landscaped medians can create opportunities for greening, landscaping, and public realm amenities. Landscaped medians can calm traffic, support urban ecology, and facilitate stormwater management.
INTERSECTIONS

FIGURE 14: TOOLKIT ELEMENT: INTERSECTION MURALS

Intersection murals are large works of art in neighborhood intersections painted by neighborhood residents. Experience in other cities has shown that painting a mural on the pavement of a public square or intersection encourages neighbors to gather in these locations, and drivers to slow down to admire the artwork. Intersection murals can thus calm traffic and build identity for the neighborhood. Intersection murals should be designed and implemented through community-driven processes.

LOCATION CRITERIA:
When a Green Connection crosses a residential street with low traffic volumes.

FIGURE 15: TOOLKIT ELEMENT: PEDESTRIAN ACTIVATED BEACONS

The Green Connections toolkit includes recommendations to make Green Connections streets more comfortable for walking and bicycling. The network includes many locations where Green Connections routes intersect with busier streets that may be difficult to cross. Signals and beacons can improve accessibility and facilitate crossings at these major intersections.

While in some cases standard traffic signals or 4-way stop signs can be added to stop traffic on a busy street, these measures must be warranted by a variety of specific intersection conditions. When those conditions are not met, alternative traffic signal devices or beacons that are activated by bicyclists and/or pedestrians may be added to enable users to cross arterial streets more easily and comfortably. Since these beacons must be activated to operate, they do not disrupt the flow of the cross street when bicyclists and pedestrians are not present.
D. GREEN CONNECTIONS NETWORK ROUTES/PROPOSED INTERSECTION IMPROVEMENTS

Over the course of developing the Green Connections Project, the SFMTA and the Planning Department developed proposals for potential improvements at 20 intersections located on the Green Connections Network. Proposed improvements to help increase overall connectivity of the Network were identified for these locations because they are difficult to traverse and are potential barriers in the Network. The list of intersections and proposed improvements and improvement types are listed in Table 1 below. Many of these improvements would be consistent with ongoing SFMTA program improvements throughout the city, including modifying or signalizing four-way stops, adding pedestrian crosswalks or countdown signals to intersections, or changing signal timing to accommodate vehicle, pedestrian, or bicycle travel.

Table 1: Green Connections Network Routes/Proposed Intersection Improvements

<table>
<thead>
<tr>
<th>Green Connections Street</th>
<th>Cross Street</th>
<th>Existing Conditions</th>
<th>Potential Improvement</th>
<th>Type of Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 20th Avenue</td>
<td>Noriega</td>
<td>4-leg intersection, stop controlled for 20th Ave</td>
<td>Add or relocate 4-way stop.</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>2. 41st Avenue</td>
<td>Noriega</td>
<td>4-leg intersection, stop controlled for 41st Ave</td>
<td>Add or relocate 4-way stop.</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>3. 41st Avenue</td>
<td>Taraval</td>
<td>4-leg intersection, stop controlled for 41st Ave</td>
<td>Add or relocate 4-way stop.</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>4. 42nd Avenue</td>
<td>Sloat</td>
<td>3-leg intersection, no way to cross Sloat</td>
<td>Add Signal</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>5. 5th Avenue</td>
<td>Lincoln</td>
<td>3-leg intersection, signalized but no pedestrian crossing</td>
<td>Open Closed Crosswalk & add pedestrian signal.</td>
<td>Pedestrian improvements.</td>
</tr>
<tr>
<td>6. 8th Avenue</td>
<td>Lake</td>
<td>4 leg intersection, stop controlled for 8th Ave</td>
<td>Add all-way stop.</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>7. Alemany</td>
<td>Lyell</td>
<td>Offset 4-leg intersection, traffic signal</td>
<td>Open closed crosswalk and convert southbound approach from (one LEFT ONLY and one LEFT RIGHT) into (one LEFT ONLY and one RIGHT ONLY)</td>
<td>Pedestrian improvements.</td>
</tr>
<tr>
<td>8. Arguello</td>
<td>McAllister Street</td>
<td>3-leg intersection, stop for McAllister</td>
<td>Add all-way stop.</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>9. Arguello</td>
<td>Clay Street</td>
<td>3-leg intersection, stop for Clay</td>
<td>Add all-way stop.</td>
<td>Add or alter intersection controls.</td>
</tr>
</tbody>
</table>
Table 1: Green Connections Network Routes/Proposed Intersection Improvements

<table>
<thead>
<tr>
<th></th>
<th>Green Connections Street</th>
<th>Cross Street</th>
<th>Existing Conditions</th>
<th>Potential Improvement</th>
<th>Type of Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>Athens</td>
<td>Geneva</td>
<td>4-leg intersection; stop controlled for Athens</td>
<td>Add signal.</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>11.</td>
<td>Cabrillo</td>
<td>22nd Ave</td>
<td>4-leg intersection, stop controlled for 22nd Ave</td>
<td>Add 4-way stop.</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>12.</td>
<td>Camelia</td>
<td>Silver</td>
<td>T-intersection, stop controlled for Camelia</td>
<td>Add all-way STOP or signal.</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>13.</td>
<td>Dellbrook</td>
<td>Clarendon</td>
<td>3-leg intersection, stop for Dellbrook and no sidewalk on Dellbrook side of Clarendon</td>
<td>Reduce Clarendon down to one lane each direction; add all-way STOP at Clarendon/Dellbrook.</td>
<td>Traffic calming. Add or alter intersection controls.</td>
</tr>
<tr>
<td>14.</td>
<td>Fillbert Street</td>
<td>Sansome</td>
<td>Sansome is 2-lane NB only; Fillbert is essentially pedestrian only.</td>
<td>Add signal to existing pedestrian crosswalk</td>
<td>Pedestrian improvements.</td>
</tr>
<tr>
<td>15.</td>
<td>Francisco</td>
<td>Columbus</td>
<td>4 leg diagonal intersection; Stop for Francisco Only, Marked X-walk and yield signs for Columbus</td>
<td>New Signal</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>16.</td>
<td>Jersey</td>
<td>Church</td>
<td>4 leg intersection, Stop signs for Jersey only</td>
<td>Add or relocate 4-way stop</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>17.</td>
<td>Marina</td>
<td>Scott/Cervantes</td>
<td>3 leg intersection, signalized, but one leg closed to pedestrians.</td>
<td>Open closed crosswalk, and covert northbound approach from (one left only and one left through) into (one left only and one through only)</td>
<td>Pedestrian improvements.</td>
</tr>
<tr>
<td>18.</td>
<td>Sagamore</td>
<td>Orizaba</td>
<td>Multi-leg intersection</td>
<td>Reduce northbound Alemany Blvd from three to one lane; and westbound Sagamore approach from three to two lanes. Add curb bulb-outs.</td>
<td>Intersection Modification/reduction of approach lanes.</td>
</tr>
</tbody>
</table>
Table 1: Green Connections Network Routes/Proposed Intersection Improvements

<table>
<thead>
<tr>
<th></th>
<th>Green Connections Street</th>
<th>Cross Street</th>
<th>Existing Conditions</th>
<th>Potential Improvement</th>
<th>Type of Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>Sunset</td>
<td>Wawona</td>
<td>Typical Sunset Blvd intersection, 4 way with two side streets.</td>
<td>New Signal</td>
<td>Add or alter intersection controls.</td>
</tr>
<tr>
<td>20.</td>
<td>Washington Street</td>
<td>Powell Street</td>
<td>4-Way Stop with Cable Car Tracks; EB Washington is 1 way west of intersection</td>
<td>New traffic signal</td>
<td>Add or alter intersection controls.</td>
</tr>
</tbody>
</table>

Source: Green Connections Transportation Memo, 2013.

E. GREEN CONNECTIONS FOCUS NEIGHBORHOOD CONCEPT DESIGNS

Preliminary designs or design concepts are being considered in five Focus Neighborhoods in San Francisco: Visitacion Valley, Potrero Hill, Chinatown, Tenderloin, and Western Addition. The following are preliminary descriptions of these conceptual designs and these are accompanied by Figures 16 to 20 (beginning on page 26).

1. Visitacion Valley Neighborhood Concept Design

 a) Project Boundaries

 The project area includes:

 - Visitacion Valley Greenway Corridor
 - Raymond Avenue between Rutland Street and Alpha Street
 - Arleta Avenue between Rutland Street and Alpha Street
 - Teddy Avenue between Rutland Street and Alpha Street
 - Tucker Avenue between Delta Street and Alpha Street
 - Tucker Avenue between the Visitacion Valley Greenway and Rutland Street (South Side of the Street)

 - Leland/Hahn Corridor
 - Leland Avenue from the west side of Rutland Street to John McLaren Park
 - Hahn Street from Leland Avenue to Sunnydale Street
 - Sawyer Street from Raymond Avenue to Leland Ave (1 block Stub)

6 A Categorical Exemption, Class 1 and Class 4 (State CEQA Guidelines Section 15301 and Section 15304), was issued for the Bayview Green Connections Focus Neighborhood Concept Design on October 24, 2013. The Certificate of Determination of Exemption from Environmental Review is on file and available for public review at the Planning Department, 1650 Mission Street, Suite 400, as part of case No. 2013.1479E.
b) Proposed Streetscape Design

- Visitacion Valley Greenway Corridor

The project sponsor proposes four mid-block crossings linking the segments of the Visitacion Valley Greenway. Two options for mid-block crossings are shown on Figure 16 on page 26.

- Option 1. Landscaped Curb Extension with raised crosswalk (Shown on Figure 16 on page 26 at Teddy Avenue Crossing).
- Option 2. Raised Crosswalk (shown at Raymond Avenue and Arleta Avenue Crossings on Figure 16 on page 26)
- In addition to mid-block Greenway connections, the project sponsor proposes a widened sidewalk and special sidewalk paving on the south side of Teddy Avenue from the Greenway to Rutland Street. The intent of the special paving and sidewalk widening is to mark a break in the Greenway corridor.

- Leland/Hahn Corridor

The project sponsor proposes the following changes to the corridor:

- Corridor-Wide Improvements
 - Permeable Parking Lane
 The proposed design includes permeable parking lanes wherever possible.
 - Paving and Streetscape Amenities
 Streetscape amenities would be added along the corridor including new street trees, sidewalk landscaping, and pedestrian scale lighting. High visibility crosswalks would be at all intersections where not already in place.

- Festival Street - Leland Street between Cora Street and Delta Street

The proposed design would include special “Rococo” (decorative) bulb-outs at the T-intersections. As proposed, the bulb-outs would maintain a 20-foot clear space between the curbs to allow for emergency vehicle access. The proposed bulb-outs would take advantage of the T-intersection to maximize green space and create a chicane-like “S” movement that would help calm traffic. The block segment between Raymond and Cora Streets would receive a special paving treatment creating a festival street that could be temporarily closed to vehicles for farmer’s markets and similar community events.

- Green Street – Leland Avenue between Delta Street and Hahn Street

Raised Crossings

The proposed project seeks to maximize stormwater infiltration along this street segment via a series of raised crosswalks that run parallel to Leland Ave and bioretention bulb-outs. Water flows down Leland Avenue in an east to west direction. Thus bulb-outs would be typically sited downslope to maximize their efficacy in capturing stormwater runoff. In some instances, raised crosswalks running parallel to Leland Avenue would be added to extend the bulb-out catchment area including on:

- The south side of the Hahn Street intersection
- The north side of the Sawyer Street intersection
Bulb-outs

The concept plan in Figure 16 on page 26 shows the maximum bulb-out size possible while avoiding conflicts with nearby driveways; however there are several types of bulb-out designs that could be applied to this stretch of Leland Avenue as described below. Bulb-out locations would be typically along the long side of corner parcels.

- Standard six- to seven-foot bioretention bulb-outs.
- Extended ten- to eleven-foot bioretention bulb-outs. These bulb-outs would be wider than standard six- to seven-foot bulb-outs. Where properties across the street from proposed bulb-outs have wide driveways that preclude on-street parking, the bulb-out would extend to maximize green space. These bulb-outs would be designed to maintain a 20-foot clear space between curbs for emergency vehicle access.
- Conceptual serpentine bioretention bulb-out. This design option (shown in the concept plan in Figure 16 on page 26 at the northwest corner of Sawyer Street and Leland Avenue) may be applied to either standard or extended bulb-outs. The design features a serpentine edge on the curb-side of the bulb-out which serves as an aesthetic enhancement. The concept plan shows the bulb-out designed with a curb radii of approximately 19 feet to accommodate street sweeper movements.

Speed Bumps/Tables

The proposed Leland and Hahn corridor design also includes speed bumps/tables (typically two per block segment) on Leland Avenue between Hahn Street and Delta Street.

- Play Street - Leland Street from Hahn Street to John McLaren Park

The Play Street would feature a neck-down at the Leland Street intersection to slow cars as they enter this dead-end block of Leland Avenue. The neck-down would reduce the driving isle to one bi-directional fourteen foot lane between the bulb-outs. As an additional traffic calming measure, a raised crosswalk would span the driving isle between the bulb-outs. The Play Street may include special paving or a lower cost paint treatment to mark the roadway and play equipment such as a basketball hoop to mark the space as a public gathering space. A pedestrian pathway would link the Play Street through an existing community garden to Visitacion Avenue in John McLaren Park.

- Visitacion Valley Middle School Connection – Sawyer Street from Leland Avenue to Raymond Avenue

This street segment would serve as a spur connecting Visitacion Valley Middle School to the Leland Avenue Green Connection route. This segment would predominantly feature sidewalk greening and tree planting but could include intersection improvements at Sawyer Street and Raymond Avenue such as bulb-outs at the southeast and southwest corners of the intersection or a mid-block curb extension on the northern side of Raymond Avenue.

- Hahn Street Hill Climb – Hahn Street Between Leland Avenue and Sunnydale Avenue
Uphill Bike Lane

The proposed design would include the addition of an uphill bike lane along a two-block stretch of Hahn Street between Leland Avenue and Sunnydale Avenue. This would not involve the removal of any existing travel or parking lanes. The bicycle lane on the southern block would overlap with the Muni 56 Rutland, 8X Bayshore Express and 8BX Bayshore ‘B’ Express routes, so the addition of the bike lane would be coordinated with SFMTA Muni Operations.

Off-street Pedestrian Pathway

The proposed design would also feature a potential off-street pedestrian pathway on the west side of Hahn Street between Visitacion Avenue and Sunnydale Avenue in front of the Herz Playground and Pool.

- OVERLAP WITH SFMTA MUNI OPERATIONS

The Planning Department’s proposed Leland Street/Hahn Street Green Connection route would overlap with the 8X Bayshore Express and 8BX Bayshore ‘B’ Express routes for one block in this project area. SFMTA, as part of citywide systematic improvements under the Transit Effectiveness Project (“TEP”) Improvement Project, is proposing transit service improvements to these routes. The concept plan in Figure 16 on page 26 shows both the proposed Green Connection and the MUNI 8X Bayshore Express/8BX Bayshore ‘B’ Express improvement areas. For clarification, the Green Connections are outlined with a green dashed line and the proposed TEP project is outlined with a red dashed line. The two projects would overlap for one block on Hahn Street between Visitacion Avenue and Sunnydale Avenue.

2. Potrero Hill Neighborhood Concept Design

a) Project Boundaries

The project area includes:

- 22nd Street Pathway – A pedestrian pathway in the 22nd Street right-of-way on the north edge of the Potrero Hill Recreation Center between Arkansas Street to Missouri Street.
- 22nd Street Hill Climb – An unimproved right-of-way on 22nd Street between the Potrero Hill Recreation Center and Texas Street.
- Dogpatch Commercial Core – 22nd Street between Texas Street and Illinois Street.
- 22nd Street Caltrain Station – Under Interstate 280.
- Blue Greenway – Illinois Street between 22nd Street and 24th Street.

7 The TEP includes projects that aim to improve San Francisco’s transit network with projects that would enhance reliability, provide faster transit travel times, safer boardings, shorter wait times, and more accessible service.
b) Proposed Streetscape Design

The project sponsor proposes the following changes:

- **22nd Street Pathway**
 The proposed project would include pedestrian improvements such as lighting and improvements to an informal pathway that currently links Arkansas Street to Missouri Street. The project would likely be funded and coordinated by the Rebuild Potrero redevelopment.

- **22nd Street Hill Climb**
 The proposed project would include a staircase on what is currently a vacated stretch of the 22nd street right-of-way (ROW) between the Potrero Hill Recreation Center and Texas Street. The staircase would be constructed as part of the 1395 22nd Street development project. If an accessible pathway is determined to be infeasible due to the steep slope of the ROW, potential alternate improvements could occur along the existing streets of Missouri Street to Sierra Street to Texas Street.

- **Caltrain Station**
 The proposed project would include station amenities like improved lighting, improved passenger drop-off areas, and public art.

- **Dogpatch Commercial Core**
 In 2007, GreentrustSF Central Waterfront led a three-year community process to develop a streetscape vision for 22nd Street between Interstate 280 and 3rd Street resulting in the Dogpatch 22nd Street Greening Master Plan. The Master Plan area as shown on Figure 17 on page 27 features bioretention bulb-outs at Pennsylvania Avenue, Indiana Street, Minnesota Street and Tennessee Street and the addition of 27 bike racks, 14 bulb-outs and four parklets along 22nd Street. The Green Connections project proposes to add two additional bulb-outs on the west side of 3rd Street at 22nd Street.

- **Blue Greenway (Illinois Street)**
 The proposed project would include the removal of abandoned railroad tracks along Illinois Street between 22nd Street and 24th Street. The Port of San Francisco is currently coordinating the removal of the abandoned railroad tracks but the date for removal is unknown at this time.

 The proposed project would also help improve the sidewalk on the east side of Illinois Street between 22nd Street and 23rd Street. The proposed project would involve the replacement of the existing asphalt sidewalk, which is in poor repair, with an improved concrete sidewalk. If soil conditions permit, stormwater management features like permeable pavers, landscaping and street trees would be incorporated in the sidewalk redesign.

- **Waterfront Connection**
 The concept plan includes a two-phase project for a two-block stretch on 24th Street between Illinois Street and Warm Water Cove Park. In the near term, the proposed project would include the removal of the truck bed trailers that are currently being parked on the street by a
local business. In the longer term, the proposed project would include widening the northern sidewalk on 24th Street between Michigan Street and Warm Water Cove Park to create an off-street bike/pedestrian trail.

c) **Paving And Streetscape Amenities**

Streetscape amenities would be added along the corridor, including new street trees, sidewalk landscaping, corner gardens, and pedestrian scale lighting. A raised crosswalk would be added across Dunshee Street at the intersection of Dunshee Street and Oakdale Avenue. The existing bike lane would be restriped and paint would be added to all intersections to improve pedestrian safety.

3. **Chinatown Neighborhood Concept Design**

a) **Project Boundaries**

The project area includes Washington Street from the west side of Mason Street to the west side of Columbus Avenue.

b) **Proposed Streetscape Design**

The project sponsor proposes the following changes along Washington Street:

- **Washington Street: Mason Street to Powell Street**

 Due to the presence of the cable car, minimal changes are proposed on this stretch of the street. The proposed project would involve additional street tree planting, greening and corner-bulb outs where feasible.

- **Washington Street: Powell Street to Walter Lum Place**

 The proposed project would include shared street treatments, focused primarily on stretches of Washington Street that run between north-south alleyways within this segment of the street as follows:
 - Stone Street to Trenton Street;
 - Spofford Street to Waverly Place; and
 - Grant Avenue (east side) to Walter Lum Place.

 At corners of street intersections with alleyways, new corner bulb-outs are proposed.

- **Washington Street: Walter Lum Place to Kearny Street**

 The proposed project would include the removal of the southern-most lane of traffic to expand the sidewalk adjacent to Portsmouth Square. This travel lane currently is a left-turn only lane that feeds traffic on to Walter Lum Place and serves as an extended queue for the Portsmouth Square garage.

c) **Paving And Streetscape Amenities**

Streetscape amenities would be added along the corridor, including new street trees, sidewalk landscaping, corner gardens, and pedestrian scale lighting. High visibility crosswalks would be provided at all intersections.
4. Tenderloin Neighborhood Concept Design

a) Project Boundaries
 The project area includes Ellis Street from the west side of Hyde Street to east side of Jones Street, and Jones Street from the north side of Ellis Street to north side of Market Street.

b) Proposed Streetscape Design
 The project sponsor proposes the following changes:

 - Ellis Street from Hyde to Jones Streets
 The proposed project would include bulb-outs at all corners where feasible.

 - Jones Street from Ellis to Golden Gate Streets
 The proposed project would include bulb-outs at all corners where feasible.

 - Jones Street from Golden Gate to McAllister Streets
 The following design options would be studied for this block:
 - Complete closure to automobile traffic except for timed loading;
 - Reduction from two south-bound travel lanes to one south-bound travel lane; or
 - Reduction from two south-bound travel lanes to one south-bound travel lane with a shared street design.

c) Paving And Streetscape Amenities
 Streetscape amenities would be added along the corridor, including new street trees, sidewalk landscaping, and pedestrian scale lighting. High visibility crosswalks would be at all intersections where not already in place.

5. Western Addition Neighborhood Concept Design

a) Project Boundaries
 The project area includes Eddy Street from the east side of Webster Street to the west side of Polk Street and Buchanan Street from the south side of Eddy Street to the south side of Larch Way.

b) Proposed Streetscape Design
 The project sponsor proposes the following:

 - Eddy Street: Webster Street to Gough Street
 The proposed project would include the addition of a traffic circle at Eddy and Buchanan Streets as well as a bus bulb-out on the northeast and southwest corners of this intersection. The proposed project would include bulb-outs on all four corners of Eddy and Laguna Streets.

 The proposed project would also include the streamlining of bus stops, removing the bus stops at the northeast and southwest corners of Eddy and Laguna Streets and consolidating them with the bus stop bulb-outs at the northeast and southwest corners of Eddy and Buchanan Streets. The project proposes a mid-block crossing with bulb-outs on Eddy Street
halfway between Laguna and Gough Streets. The proposed project would include the addition of bus stop bulb-outs on the northwest and southwest corners of Eddy and Gough Streets, respectively.

- Eddy Street: Gough Street to Van Ness Avenue
 The proposed project would include bulb-outs on all corners. The proposed project would involve mid-block bulb-outs on the north and south sides of the street between Gough and Franklin Streets and Franklin Street and Van Ness Avenue, respectively.

- Eddy Street: Van Ness Avenue to Polk Street
 The proposed project would include the addition of a bus bulb-out on the northeast and southeast corners of Eddy Street and Van Ness Avenue.

- Buchanan Street: Eddy Street to Larch Way
 The proposed project would include the addition of a Play Street design between Eddy Street and Larch Way. The project would add a speed table across Buchanan Street from the southwest corner to the southeast corner of Eddy and Buchanan Streets and a corner bulb-out at the southwest corner of the intersection.

c) **Paving And Streetscape Amenities**

 Streetscape amenities would be added along the corridor, including new street trees, sidewalk landscaping, corner gardens, and pedestrian scale lighting. Sharrows would be painted to improve bicycle safety. High visibility crosswalks would be provided at the mid-block crossing, as well as at all intersections where they are not already in place.
THE NEIGHBORHOOD
Visitacion Valley, tucked away in the southeastern section of the City, features retail corridors along Leland Ave. and Bayshore Blvd. Two Green Connections routes converge in the neighborhood. Route 12 runs E/W along the southern edge of the City, connecting Lake Merced, with the Candlestick Point. The Crosstown Trail runs from along a NW/SE axis following high-points along ridge lines connecting the Presidio to John McLaren Park.

CONNECTING COMMUNITY ASSETS
The portion of Green Connections analyzed in this case study connects the following amenities in the Visitacion Valley: John McLaren-Park, Visitacion Valley Greenway, Visitacion Valley Parkground, Visitacion Valley Library, Millwood, and Visitacion Valley Elementary School.Leland Ave Commercial District, Future redevelopment areas like the Excite Place Site and the Sunnydale Housing Redevelopment Area.

COMMUNITY INPUT
Visiting workshops - October 13, 2013. At this meeting neighborhood residents were participated in a visioning exercise to articulate their priorities and vision for what a Green Connection could look like in Visitacion Valley. Participants suggested several modifications to the proposed route and voiced support for a design focused on enhanced pedestrian amenities, increasedgreening, and traffic calming.

Concept design presentations - May 11 & May 18 2013. Residents were presented with an overview of the proposed concept design for the Visitacion Valley Green Connection. While there was some concern about potential parking loss, feedback was largely supportive of the design. The May 11 workshop was a joint workshop between Green Connections and the SFMTA's 8X bus line improvement project which is planning for additional improvements on Visitacion Avenue.

NEXT STEPS
The San Francisco Public Utilities Commission will install improvements to the community garden as an early implementation project for their Sewer System Improvement Plan. Additional funding from development impact fees for future improvements along Leland Avenue is anticipated by 2016, and the City will be returning to the neighborhood to further refine the design and prioritize future implementation priorities.

Greenway.
The concept design improves mid-block crossings by grading crosswalks and, where feasible, installing landscaped mid-block bulb-outs. It also proposes to mark the Greenway where it overlaps with the City's sidewalk system on Suler and Sandy Avenue with special sidewalk paving, landscaping and where feasible, landscaped mid-block curb extensions.

Leland Avenue Play Street.
A Play Street on the cul de sac West of Hahn Street. The play street concept is a heavily traffic-calmed street that is programmed with programming elements that encourage active play. Real Options for City Kids, a non-profit that provides after school programs for local youth, is adjacent to the proposed play street and would make active use of the space. The play street would also act as a gateway to John McLaren Park with improved pedestrian connections and an upgraded community garden.

Leland Ave. Traffic Calming.
The design proposes installing additional corner bulb-outs between McLaren Park and Cora St. programmed with stormwater and/or habitat gardens. Where existing driveways oppose some proposed bulb-outs provide curbside parking, the design proposes bulb-outs that extend further than a typical curb extension. These deeper bulb-outs provide more space for habitat and greening while doubling as chicanes that slow car traffic. Speed bumps and raised crosswalks at key locations further slow traffic, and encourage planting of infill street tree planting on Leland Ave.

Leland Ave. Festival Street
The street is adjacent to the neighborhood hub at the Visitacion Valley Elementary School, library, and playground, and is designed to be closed for special events like community fairs and farmer's markets. A special paving treatment or street mural slows traffic, and two unique bulb-outs repurpose underutilized space in the 'ironsights. These features are designed act as chicanes, slowing traffic and accommodating emergency vehicle movements.

Hahn Street:
The design on this two-block stretch of Hahn street between Leland and Sunnydale Avenues accommodates the 8X bus line which overlaps with the Green Connection from Visitacion Ave to Sunnydale Ave. The design features infill tree plantings were feasible and an up-fit bike lane. The concept design also proposes an improved pedestrian path fronting the Herz Playground Pool and future Sunnydale Housing redevelopment.

http://greenconnections.sfplanning.org
THE NEIGHBORHOOD
Two Green Connections routes converge in Dogpatch/Potrero Hill. **Route 24** follows the planned Blue Greenway, an urban trail currently on the City's eastern waterfront. **Route 8** is an east/west route connecting Diamond Heights, Noe Valley, the Mission, Potrero Hill and Dogpatch. The Dogpatch/Potrero Hill Green Connections concept design looked at the portion of 22nd, Illinois and 24th Streets connecting the following amenities:
- The Potrero Hill Playground & Rec. Center
- Arkansas Friendship Garden;
- 22nd Street Caltrain Station
- 22nd Street commercial corridor
- Warm Water Cove Park
- The future planned Blue Greenway trail and Pier 70 Redevelopment project.

COMMUNITY INPUT
Visioning workshop – 11/17/12.
Neighborhood residents participated in a visioning exercise to articulate their priorities and vision for a Green Connection in the Potrero/Dogpatch neighborhood. Participants voiced support for expanded public spaces, improved greening and habitat and stormwater management features.

Concept design presentations – 6/5/13
The concept design was presented to members of the public and the Dogpatch Neighborhood Association. Feedback from community stakeholders was generally positive.

NEXT STEPS
Hillclimb. These projects may be funded via the redevelopment of an adjacent properties.

Commercial Core. The City anticipates roughly $2M in development impact fees that can be allocated toward the project in FY 2016.

Blue Greenway / Illinois Street. Short Term: Work with the Port and PG&E to replace the asphalt sidewalk in front of the Power Plant with modern concrete sidewalk and landscaping. Remove obsolete railroad tracks from street to improve safety for bicyclists.

Warm Water Cove Park. The Parks Bond allocated $1.5 to improving the waterfront open space. Project planning is scheduled to begin in mid-2014 and construction is scheduled to start in mid-2016 to be completed in mid-2017.
INTRODUCTION
Washington Street street has the potential to serve as a pedestrian-friendly east-west spine connecting Chinatown’s network of north-south alleyways. This Green Connection connects the following community amenities in Chinatown:
- Chinese Recreation Center
- Cable Car Museum
- Gordon Lau Elementary School
- Chinatown Central Subway Station
- Portsmouth Square
- City College Chinatown/North Beach Center
- Connecting Alleyways

COMMUNITY INPUT
On May 3, 2013 a focus-group was convened with the Chinatown Community Development Center and the Committee for Better Parks and Recreation in Chinatown. Attendees expressed general support for the early design concepts for Washington Street. Some key recommendations are summarized below:
- Realize the potential for Washington Street to serve as a connection to the waterfront via wayfinding and landscaping that makes the route more inviting through the Financial District.
- Prioritize improvements between Kearny Street and Stockton Street (including the Central Subway Station corner). Consider parking-removal in this area to widen sidewalks and extend the shared-street design concept throughout this segment.
- Emphasize Spofford Street at Washington as a connection to the Willie "Woo Woo" Wong Playground.
- Respond to the changing character of the street; residential east of Powell, social services between Stockton and Powell, historic/cultural between Stockton and Grant, and recreation between Grant and Kearny.
- Find a way to integrate Central Subway Station.
- Consider regular temporary auto-traffic closures of the street, like Sunday Streets.

EXISTING CONDITIONS
- Washington Street in Chinatown has a 52-foot right-of-way. Generally the street is lined by 10-foot wide sidewalks, with one lane of traffic and parking on both sides of the street.
- Traffic travels west-bound from Columbus Avenue to Powell Street. West of Powell Street traffic travels east-bound and the lane is shared with cable cars.
- Between Powell and Stockton Streets the parking on the south-side of the street is removed from 7AM to 6PM on school days to allow traffic to travel east-bound past Gordon J. Lau Elementary School.

NEXT STEPS
The Planning Department will soon initiate a new planning effort to improve Portsmouth Square and the surrounding streets, including Washington Street. This offers the City the opportunity to further refine some of the Green Connections design proposals for the portions of Washington Street near Portsmouth Square. Funding for improvements to other portions of the street should be pursued by the City in collaboration with the Chinatown community. In the interim, temporary interventions such as regularly scheduled Sunday Streets or Play Streets events should be pursued to help emphasize Washington Street’s role as a Green Connection.
INTRODUCTION
The design for Ellis and Jones streets builds on grassroots efforts to increase safe access to green open spaces and other community resources. The concept design focused on a portion of two Green Connections routes in the Tenderloin: an L-shaped corridor that connects the following important amenities:

- Tenderloin Recreation Center
- Tenderloin Children’s Playground
- Tenderloin National Forest
- Boeddecker Park
- Tenderloin Boys & Girls Club
- Tenderloin Safe Passage

EXISTING CONDITIONS
- The majority of Jones Street in the case-study area features three lanes of south-bound traffic and 12-foot sidewalks lined with parking. South of Golden Gate Avenue, Jones Street narrows to two south-bound lanes and sidewalks are 15-feet.
- Topographically the street features a moderate incline, going uphill as one travels north.
- Ellis Street features 12-foot sidewalks lined with parking and two lanes of traffic. West of Jones Street the street is two-way.
- Since parking/playgrounds serve the local youth population, consider adding amenities that can serve single adults living in the neighborhood, such as chess tables.
- As an interim improvement, create a green landscaped buffer along the edge of the parking lot on Jones between Golden Gate Avenue and McAllister.
- Use public art to create a focal point where Jones Street intersects with Market Street.
- Significant sidewalk widening may not be a high-priority now, focus on smaller, more surgical public realm improvements.

TENDERLOIN SAFE PASSAGES ROUTE

Prioritize improvements on portions of Green Connections that overlap the Tenderloin “Safe Passages” route. Enhance “Safe Passages” sidewalk murals via permanent streetscape design features, including special paving, crosswalks, and way-finding.

SIDEWALK GREENING
Focus greening efforts along stretches of street where non-profits, schools, and other organizations can collaborate with the City on design, maintenance, and monitoring of improvements.

ARTWORK & WAYFINDING
Consider more durable streetscape elements to identify this route as a Green Connection such as public art, wayfinding signage, and trellises or building walls planted with hardy vines. Ensure these elements are durable and designed to withstand vandalism and abuse.

JONES STREET BETWEEN GOLDEN GATE AND MCALLISTER

Explore closing the street to repurpose all or portions of the roadway as public space. Work with neighborhood stakeholders to determine appropriate uses for the space, focusing first on temporary interventions. Coordinate long-term improvements with the renovation of adjacent structures, such as the Hibernia Bank Building.

NEXT STEPS
The City should continue to collaborate with community groups to implement Safe Passage enhancements and advance ideas for public realm improvements on Jones and Ellis Streets. Temporary interventions such as regularly scheduled Sunday Streets or Play Streets events should be pursued to help emphasize Jones and Ellis Streets roles as a Green Connections.
INTRODUCTION
As part of the larger Green Connections network, Eddy Street is part of a route that traverses through the Western Addition neighborhood, connecting it to Ocean Beach and Golden Gate Park to the West, to Civic Center and Downtown on the East, and a number of neighborhood parks and other destinations along the way.

The Green Connections concept design looked at the portion of Eddy Street between Buchanan and Polk streets, which connects the following community amenities in the Western Addition:
- Jefferson Square Park
- Margaret Hayward Playground
- James P Lang Field
- Buchanan Street Mall
- Buchanan YMCA
- Rosa Parks Elementary School

COMMUNITY INPUT
On July 29, 2013, the Planning Department and Walk San Francisco hosted an outreach event at the Buchanan YMCA, which included an introduction to Green Connections, discussion of the proposed concept design, and a walk along Eddy Street. The event was attended by District 5 Supervisor London Breed and a number of local organizations, businesses, and other community members. Participants expressed support for improving Eddy Street to increase neighborhood safety and to improve walking and biking connections.

Their recommendations included:
- Participants liked the idea of a mid-block crossing into Jefferson Square Park, but stressed the need to improve pedestrian safety at this point, where drivers often speed.
- Community members were enthusiastic about corner bulb-outs, greening & landscaping, and pedestrian safety improvements.
- Several participants had attended the Play Street event in July 2013, and were supportive of the idea of implementing a more permanent play street on Buchanan, which borders several dense housing developments where many families with young children live.

EXISTING CONDITIONS
- Eddy Street has a residential feel for much of the stretch between Buchanan and Van Ness, and more commercial as it nears Polk Street.
- Traffic is relatively calm on Eddy itself, with one travel lane in each direction, frequent stop signs and crosswalks, relatively wide sidewalks, and moderate street tree coverage.
- Where Eddy Street intersects faster arterials, such as Gough, Franklin and Van Ness, street crossings feel unsafe for pedestrians and cyclists.
- The 31-Balboa MUNI line travels down Eddy Street at 10-15 minute intervals throughout the day.

DESIGN CONCEPT
The design for Eddy Street is meant to improve pedestrian and cyclist safety, enhance street greening and landscaping, improve transit accessibility and efficiency, and connect residents to parks and other key neighborhood amenities.

NEXT STEPS
The City should continue to collaborate with community organizations and residents to advance ideas for public realm improvements on Eddy Street. In the near term, temporary interventions, such as Sunday Streets or additional Play Streets events could help emphasize Eddy Street’s role as a Green Connection and an important link to the neighborhood.

In the longer term, as funds become available for capital improvements on this stretch of Eddy Street, improvements should incorporate greening, pedestrian, and bicycle improvements.
REMARKS

The BSP FMND identified less-than-significant or no impacts for the following environmental topic areas: land use and land use planning; population and housing; noise; greenhouse gas emissions; wind and shadow; recreation; utilities and service systems; public services; geology and soils; hydrology and water quality; mineral and energy resources; and agricultural and forest resources. The BSP FMND found that impacts for the following environmental topic areas could be reduced to a less-than-significant level with mitigation measures incorporated: aesthetics; cultural and paleontological resources; transportation and circulation; air quality; biological resources; and hazards and hazardous materials.

As stated in the Background section, the Green Connections Project was identified as one of the next steps to implement the concepts in the BSP. Many of the Green Connections elements are also elements of the BSP. While there are some Green Connections elements not in the BSP, these elements do serve to further the goals of the BSP, and therefore would be considered consistent with the BSP. As such, the majority of the elements in the Green Connections Project have been previously analyzed in the BSP FMND and the Green Connections Project is within the scope of the BSP.

This Addendum focuses on the elements of the Green Connections Project that were not included in the BSP and that are not part of the ongoing SFMTA programs undergoing their own separate environmental review. Designation of the Green Connections Network would not, on its own, impact the physical conditions along the designated Green Connections Network routes. The Green Connections Ecology Guides/Planting Palettes do not propose additional streetscape landscaping elements; rather they provide recommendations for planting materials to be used for the BSP streetscape landscaping elements and Green Connections Design Toolkit Elements. The BSP included these streetscape landscaping elements; therefore the potential environmental impacts of such streetscape landscaping elements have been evaluated in the BSP FMD.

This Addendum evaluates the following components of the Green Connections Project:

1. **Green Connections Design Toolkit Elements**

Several of the Green Connections Design Toolkit elements have been previously analyzed in the BSP FMND or are part of existing ongoing SFMTA programs undergoing their own separate environmental review. Therefore, only the following Green Connections Design Toolkit Elements are evaluated in this Addendum (organized by categories for the purposes of analysis):

1a. Category: Lane Constrictions
 - Neck Downs

1b. Category: Traffic Diversions
 - Wide Sidewalk Gardens (where travel lanes are removed from the ROW)
 - Diverters (Partial and Diagonal)
 - Intersection Islands

1c. Category: Road Closures
 - Block-end Plazas
 - Play Streets
These Green Connections Design Toolkit Elements are environmentally analyzed in this Addendum at a program-level, and their potential impacts are representative of those that could occur as the Green Connections Network is further designed and implemented on a case-by-case or site-specific basis. For traffic diversion and road closure elements, the background transportation analysis conducted for the Green Connections Project recommends some parameters on how these toolkit elements could initially be considered to limit impacts to all travel modes. However, the recommended parameters are not meant to represent thresholds for potential impacts, but would instead serve as initial guidance as to where the road closure or traffic diversion elements may be applied on a given street segment or route. As project-level designs are established, not meeting one or more of the parameters would not exclude any project because the effects on the transportation network would need to be considered for project-level environmental review on a case-by-case and site-specific basis.

2. **Green Connections Network Routes/Proposed Intersection Improvements**

As presented in the Project Description, 20 intersections have been proposed for improvements and would apply elements of the Green Connections Design Toolkit. Many of these improvements would be consistent with ongoing SFMTA program improvements throughout the City (undergoing or subject to their own separate environmental review). Since a number of these intersection improvements are part of ongoing SFMTA programs (such as modifying or signalizing four-way stops, adding pedestrian crosswalks or countdown signals to intersections, or changing signal timing to accommodate vehicle, pedestrian, or bicycle travel), the analysis focuses on the following improvements:

2a. Addition of Crosswalks and Modification of Vehicle Approaches
 - Intersection #7: Alemany Boulevard/Lyell Street
 - Intersection #17: Marina Boulevard/Scott Street/Cervantes Boulevard

2b. Addition of a Three-way Stop and Reduction of Approach Lanes
 - Intersection #13: Dellbrook Avenue/Clarendon Avenue

2c. Reduction of Approach Lanes at a Multi-Leg Intersection
 - Intersection #18: Alemany Boulevard/Sagamore Street/Orizaba Avenue

Other than the conceptual improvements described in this Project Description, there are no preliminary designs for these intersections; therefore the potential project applications are analyzed at a program-level and further environmental review will be required in the future when detailed designs for these intersection improvements have been developed.

3. **Green Connections Focus Neighborhood Concept Designs**

As presented in the Project Description, the proposed Focus Neighborhood Concept Designs (“Concept Designs”) would apply several elements of the Green Connections Design Toolkit Elements, as well as BSP improvements and/or elements from ongoing SFMTA programs, which could help improve the

8 San Francisco Planning Department. Green Connections Transportation Analysis Memo. October 3, 2013. The Green Connections Transportation Analysis Memo is on file and available for public review at the Planning Department, 1650 Mission Street, Suite 400, as part of Case No. 2014.0060E Green Connections Project.
function of these streets for pedestrians, cyclists, and other users and provide additional habitat along these streets that connect to parks and open spaces. These Concept Designs, while representative of the types of Green Connections designs that could occur, do not include all potential design toolkit elements. Designs of these projects range in detail from a preliminary description to conceptual (but not engineering-level) designs; therefore, the analysis of the Focus Neighborhood Concept Designs is at a program-level, and focuses on elements that are not BSP improvements and not covered in ongoing SFMTA programs. The following Focus Neighborhood Concept Designs are evaluated:

3a. Visitacion Valley
3b. Potrero Hill
3c. Chinatown
3d. Tenderloin
3e. Western Addition

Section 31.19(c)(1) of the San Francisco Administrative Code states that a modified project\(^9\) must be reevaluated and that, “If, on the basis of such reevaluation, the Environmental Review Officer determines, based on the requirements of CEQA, that no additional environmental review is necessary, this determination and the reasons therefor shall be noted in writing in the case record, and no further evaluation shall be required by this Chapter.”

CEQA Guidelines Section 15164 provides for the use of an addendum to document the basis of a lead agency’s decision not to require a Subsequent EIR or Negative Declaration for a project that is already adequately covered in an existing certified EIR or Negative Declaration. The lead agency’s decision to use an addendum must be supported by substantial evidence that the conditions that would trigger the preparation of a Subsequent EIR or Negative Declaration, as provided in CEQA Guidelines Section 15162, are not present. The Green Connections Project, as demonstrated below, would not result in any new significant environmental effects or substantial increases in the severity of potentially significant effects that would necessitate implementation of additional or considerably different mitigation measures than those identified in the BSP FMND. The following discussion provides the basis for this conclusion.

\(^9\) The Green Connections Project is considered a modification of the BSP since the Green Connections Project is identified as an implementation action in the BSP and expands on the concepts contained in the BSP.
ANALYSIS OF POTENTIAL ENVIRONMENTAL EFFECTS

Transportation\(^{10}\)

Transportation Impacts Common to All Green Connections Project Components

The following transportation impacts would be common to all streetscape projects resulting from the implementation of the Green Connections Design Toolkit Elements along Green Connections Network routes and within Focus Neighborhoods. Therefore, these transportation impacts are not discussed further for the Green Connections Design Toolkit Elements (Section 1), Green Connections Proposed Intersection Improvements (Section 2), and Green Connections Focus Neighborhood Concept Designs (Section 3) sections below, starting on page 40, except where additional information may be presented for improvements with site-specific locations.

Traffic. Traffic impacts pertaining to implementation of Design Toolkit Elements, proposed Intersection Improvements, and Focus Neighborhood Concept Designs are discussed further below in Sections 1 through 3, starting on page 40.

Cumulative traffic impacts discussed herein would be common to all projects resulting from the implementation of the Green Connections Project. Discussion of intersection-specific cumulative traffic impacts for the proposed addition of crosswalks and modification of vehicle approaches is included in Subsection 2a below, starting on page 48, and for the proposed reduction of approach lanes at a multi-leg intersection is included in Subsection 2c below, starting on page 53. Discussion of neighborhood-specific cumulative traffic impacts for the Visitacion Valley Neighborhood Concept Design (which considers the San Francisco Sunnydale HOPE Housing redevelopment project [“Sunnydale HOPE project”] in the evaluation of cumulative impacts) are discussed in Subsection 3a below, starting on page 58.

Implementation of the Green Connections Design Toolkit Elements along Green Connections Network routes would not substantially alter future cumulative transportation conditions citywide. This is because the Design Toolkit Elements would generally be applied to lower traffic volume streets and/or streets where alternate adjacent routes are available. For example, road closure elements, as described Subsection 1c on page 44, would be considered only under certain conditions such as on low traffic volume streets. Furthermore, the traffic analysis of representative Green Connections projects discussed in Sections 1 through 3 indicates that the proposed improvements at intersections under these representative projects would not substantially alter traffic patterns, change traffic conditions, or significantly contribute to poorly operating conditions. In combination with cumulative traffic conditions and cumulative future projects and citywide cumulative growth in the city, implementation of the Green Connections project would not substantially alter traffic operations or patterns in the city under cumulative conditions. Therefore, implementation of the Green Connections Project would result in less-than-significant cumulative traffic impacts and there would be no cumulatively considerable contributions to significant traffic cumulative impacts related to the Green Connections Project.

\(^{10}\) San Francisco Planning Department. Green Connections Transportation Analysis Memo. October 3, 2013. The Green Connections Transportation Analysis Memo is on file and available for public review at the Planning Department, 1650 Mission Street, Suite 400, as part of Case No. 2014.0060E Green Connections Project.
As detailed designs are produced at a project-specific level, some additional cumulative-level traffic analysis may be required for implementation of specific proposed Toolkit Elements in areas or at cross streets with higher traffic volumes.

Transit. Transit impacts pertaining to the implementation Design Toolkit Elements, proposed Intersection Improvements, and Focus Neighborhood Concept Designs are discussed further below in Sections 1 through 3, starting on page 40.

Cumulative transit impacts discussed herein would be common to all projects resulting from the implementation of the Green Connections Project. Analysis of neighborhood-specific cumulative transit impacts for the Visitacion Valley and Potrero Hill Focus Neighborhood Concept Designs (which consider SFMTA TEP Service Improvements in the evaluation of cumulative impacts) is presented in Subsections 3a and 3b below, starting on page 58.

In general, transit facilities (if transit routes are present along certain Green Connection Network routes) would be required to be incorporated into the design of site-specific Green Connection projects and would likely improve transit conditions, such that significant project-level transit impacts would not be anticipated. In consideration with other future cumulative growth anticipated throughout the City in the future, implementation of the Green Connections Project would not be considered a substantial change to the transit network. Therefore, implementation of the Green Connections Project would result in less-than-significant cumulative transit impacts and there would be no cumulatively considerable contributions to significant cumulative transit impacts related to the Green Connections Project.

Bicycle. Transit impacts pertaining to the implementation Design Toolkit Elements, proposed Intersection Improvements, and Focus Neighborhood Concept Designs are discussed further below in Sections 1 through 3, starting on page 40.

Cumulative bicycle impacts discussed herein would be common to all projects resulting from the implementation of the Green Connections Project. Analysis of neighborhood-specific cumulative bicycle impacts for the Visitacion Valley Neighborhood Concept Design (which considers the proposal of new bicycle lanes part of the Sunnydale HOPE project in the evaluation of cumulative impacts) is presented in Subsections 3a below, starting on page 58.

In general, bicycle facilities (if bicycle routes or routes with bicycle facilities are present along certain Green Connection Network routes) would be required to be incorporated into the design of site-specific Green Connection projects and would likely improve bicycle conditions, such that significant project-level bicycle impacts would not be anticipated. In consideration with other future cumulative growth throughout the City, the implementation of the Green Connections Project would not be considered a substantial change to the bicycle network. Therefore, implementation of the Green Connections Project would result in less-than-significant cumulative bicycle impacts and there would be no cumulatively considerable contributions to significant cumulative bicycle impacts related to the Green Connections Project.
Pedestrian. The Green Connections Project, by design, is intended to improve pedestrian conditions along the Green Connections Network routes. The proposed designs include elements related to improving pedestrian crosswalks, pedestrian crossing time and visibility, calming traffic to improve pedestrian conditions, improving pedestrian facilities (sidewalks), and shortening pedestrian crossings. The proposed designs would be consistent with the requirements of the Americans with Disabilities Act (ADA) and improve overall accessibility along the Green Connections Network routes. The Green Connections Project would overall improve pedestrian conditions and facilities over existing conditions. Therefore, implementation of the Green Connections Project would result in less-than-significant pedestrian impacts.

Analysis of neighborhood-specific pedestrian impacts for the Visitation Valley, Chinatown, Tenderloin, and Western Addition Neighborhood Concept Designs (which evaluates pedestrian and vehicle conflicts) is presented in Subsections 3a and 3c through 3e below, starting on page 58.

Cumulative pedestrian impacts discussed herein would be common to all projects resulting from the implementation of the Green Connections Project. In general, pedestrian facilities would be required to be incorporated into the design of site-specific Green Connection projects and would likely improve pedestrian conditions, such that significant project-level pedestrian impacts would not be anticipated. In consideration with other future cumulative growth throughout the City, the implementation of the Green Connections Project would not be considered a substantial change to the pedestrian network. Therefore, implementation of the Green Connections Project would result in less-than-significant cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant cumulative pedestrian impacts related to the Green Connections Project.

Parking. The loss of parking that would result from the implementation of Design Toolkit Elements, proposed Intersection Improvements, and Focus Neighborhood Concept Designs is discussed further below in Sections 1 through 3, starting on page 40.

The Green Connections Project could result in the removal of on-street parking, which would increase the competition for remaining on-street and potentially off-street parking. However, as discussed in the Design Toolkit Elements, proposed Intersection Improvements, and Focus Neighborhood Concept Designs analysis below in Sections 1 and 3 below, starting on page 40, the amount of parking removed for most project elements would not be considered a substantial parking loss. The loss of parking resulting from implementation of the Design Toolkit Elements would be at most four parking spaces per Toolkit Element, with the exception of the Play Streets Design Toolkit Element, which could result in the loss of six to eight parking spaces if street parking were to be prohibited as part of the design, which is unknown at this time. However, the Play Street Design Toolkit Element would be applied to residential streets, where off-street parking would most likely be available. For the Neighborhood Concept Designs, where on-street parking loss could be estimated, the loss of parking could be on average approximately four parking spaces per block. This potential loss of on-street parking spaces is expected to be minimal in the context of the overall parking supply along Green Connections Network routes. Additionally, many of the on-street parking loss locations are near alternative transportation networks, such as stops on transit routes, or bicycle corridors, allowing for alternative modes of travel. Therefore, impacts related to loss of parking, either individually or cumulatively, as a result of implementation of the Green Connections...
Project would be less than significant. Additionally, there would be no cumulatively considerable contributions to significant cumulative parking impacts related to the Green Connections Project.

As detailed designs are produced at a project-specific level, some additional cumulative-level parking analysis may be required for implementation of proposed Design Toolkit Elements.

Loading. On-street commercial loading spaces would be removed as a result of the proposed application of Design Toolkit Elements at various locations along certain Green Connections Network routes. For the majority of Green Connections locations, which tend to be residential in nature, removal of on-street parking would not include the removal of commercial loading zones. Analysis of neighborhood-specific loading impacts for the Chinatown and Tenderloin Neighborhood Concept Designs is presented in Subsections 3c and 3d below, starting on page 66. Where commercial loading spaces were proposed to be removed, the BSP FMND included a commercial loading mitigation measure to reduce potentially significant impacts to loading to less-than-significant levels. This mitigation measure, as shown below, shall be applied to any proposed improvements under the Green Connections Project that could potentially result in significant loading impacts so as to reduce these impacts to less-than-significant levels.

Mitigation Measure TR-1 – Provision of New Loading Space from San Francisco Better Streets Plan FMND

To avoid any potential adverse effect from the Proposed Project on loading, the Project Sponsor shall install new loading spaces, of equal length, on the same block and side-of-the-street at locations where truck loading spaces are removed. This would ensure that an equally convenient supply of on-street loading space is provided to compensate for any space that is removed.

To update this BSP FMND Mitigation Measure TR-1 so as to make it consistent with current City practices, when further project-specific environmental review is conducted for individual elements under the Green Connections Project, it is recommended that this mitigation measure be updated to reflect the current practice of replacing commercial loading spaces within 250 feet of the commercial loading space removal. Implementation of Mitigation Measure TR-1 would mitigate individual and cumulative impacts related to the loss of commercial loading spaces resulting from the implementation of the Green Connections Project to less-than-significant levels. Additionally, there would be no cumulatively considerable contributions to significant cumulative loading impacts related to the Green Connections Project.

Construction. Specific construction schedules for Green Connections Projects would vary by location, proposed designs, and site conditions, but implementation of each Design Toolkit Element or Concept Design could last from several weeks to up to twelve months in duration.

General individual and cumulative construction impacts discussed herein would be common to all projects resulting from the implementation of the Green Connections Project. Analysis of neighborhood-specific cumulative construction impacts for the Visitacion Valley, Potrero Hill, and Chinatown

11 Commercial loading spaces are for active freight loading and unloading only by commercial vehicles.
Neighborhood Concept Designs (which consider cumulative projects such as the Sunnydale HOPE project, Port removal of railroad tracks, and the Central Subway project, respectively, in the evaluation of cumulative impacts) is presented in Subsections 3a, 3b, and 3c below, starting on page 58.

Prior to construction, as part of the construction application phase, the project sponsor and construction contractor(s) for specific projects that would implement proposed improvements called for in the Green Connections Project would be required to meet with DPW and SFMTA staff to develop and review truck routing plans for demolition, disposal of excavated materials, materials delivery and storage, as well as staging for construction vehicles. Similarly, the construction contractor would be required to meet the City of San Francisco’s Regulations for Working in San Francisco Streets, (the Blue Book), including those regarding sidewalk and lane closures and avoiding peak hour construction activities on adjacent streets, and would be required to meet with SFMTA staff to determine if any special traffic permits would be required. Prior to construction, the project contractor would coordinate with Muni’s Street Operations and Special Events Office to coordinate construction activities and reduce any impacts to overlapping transit operations, if applicable. In addition to the regulations in the Blue Book, the contractor would be responsible for complying with all City, state and federal codes, rules and regulations.

Construction-related activities along Green Connection Network routes would typically occur Monday through Friday, between 7:00 AM and 4:00 PM. Construction is not anticipated to occur on Saturdays, Sundays or major legal holidays, but may occur on an as-needed basis. Generally, construction would occur on a block-by-block basis or one-to-two blocks at a time. Construction would include changes to the pavement, curb and sidewalk, which could include some excavation depths of up to one to two feet below ground surface. Some pavement markings and curb bulb-outs may cause the temporary diversion or closure of travel, parking or bicycle lanes or pedestrian traffic on sidewalks. These diversions/closures would be intermittent and temporary in nature and would be subject to review and approval by the City’s Transportation Advisory Staff Committee (TASC), which consists of representatives of several City departments including SFMTA, DPW, Fire, Police, and the Planning Department. The TASC review and approval process takes into consideration other construction projects in the vicinity.

As a whole, construction in the area would increase construction vehicles in the area. During any project construction, temporary and intermittent traffic and transit impacts may result from truck movements to and from construction sites. The increase in vehicles traveling to and from the project sites during construction could increase traffic safety hazards from potential conflicts between construction vehicles (with slower speeds and wider turning radii than autos) and automobiles, transit, bicyclists, and pedestrians. During the construction period, construction workers would travel to and from the project site on a daily basis. Construction workers who drive to the site would cause a temporary parking demand in the surrounding neighborhoods (with either on- or off-street parking).

Overall, because construction activities would be temporary and limited in duration and are required to be coordinated with other nearby construction projects in the vicinity and conducted in accordance with

all City requirements, individual and cumulative construction-related transportation impacts associated with the Green Connections Project would be less than significant. Additionally, there would be no cumulatively considerable contributions to significant cumulative construction-related transportation impacts related to the Green Connections Project.

Emergency Access and Design Hazards. Emergency access and design hazard impacts discussed herein would be common to all projects resulting from the implementation of the Green Connections Project. Implementing the Green Connections Project along Green Connections Network routes would not substantially alter emergency vehicle access in the city. This is because any proposed changes to the transportation network (for instance, street closures) are provided in advance to emergency vehicle providers for their review and their comments are incorporated into the design of these elements. Furthermore, the design of Green Connections projects would be required to meet emergency vehicle design/clearance standards. As discussed under the BSP FMND, some elements (curb bulb-outs, etc.) would create tighter turning radii for larger emergency vehicles; however, emergency vehicles have sirens to direct other traffic out of the way and have priority in intersections movements. The design of any site-specific Green Connections Network project would be reviewed by local San Francisco Fire Department (“SFFD”) and San Francisco Police Department (“SFPD”) officials, to make sure they are consistent with all applicable design/clearance standards for emergency vehicles, with possibly field testing for maneuverability prior to installation of the proposed elements. Therefore as a whole, implementation of the Green Connections Project would have less-than-significant impacts related to emergency access.

As discussed under the BSP, with the installation of curb bulb-outs, the turning radii of larger trucks may increase delays to some nearby traffic and larger trucks may be required to utilize opposing travel lanes to complete the turn. San Francisco includes a wide range of street widths, and therefore, this is not an uncommon practice on streets, whether they include curb bulb-outs or not. As a whole, implementation of the Green Connections Project would not substantially increase design hazards due to the implementation of Design Toolkit Elements, resulting in less-than-significant impacts related to design hazards.

The Green Connections Project would result in relatively minor changes to the overall vehicular circulation patterns along Green Connections Network routes. Therefore cumulative impacts related to emergency access and design hazards would be less than significant. Additionally there would be no cumulatively considerable contributions to significant emergency access and design hazards impacts related to the Green Connections Project.

Air Traffic. The project site is not located within an airport land use plan area, or in the vicinity of a private airstrip so implementation of the Green Connections Project would have no impact related to air traffic and is not discussed any further in this Addendum.
1. Green Connections Design Toolkit

The following is a discussion of the Green Connections Project’s potential transportation-related impacts related to the implementation of the Green Connections Design Toolkit Elements. The environmental evaluation of these Toolkit Elements is conducted on a program-level and further environmental review will be required in the future when detailed designs for the application of these Toolkit Elements have been developed.

1a. Lane Constrictions: including Neckdowns

Traffic. Lane Constrictions, such as the Neckdown Design Toolkit Element (see Figure 2), would narrow traffic lanes and potentially limit movements mid-block, causing through-traffic to merge to proceed through the neckdown or stop and yield to oncoming traffic in the case of two-way traffic. Although this design would result in an increase in vehicle delay, it would likely be applied to lower volume or dead-end streets, and queues resulting from this traffic calming element would therefore not affect traffic on adjacent streets or in the project vicinity. Although some traffic diversion, to avoid the constriction, could occur over time, the level of traffic diverted to adjacent streets would not be anticipated to be substantial (up to 30 percent, but likely less), and operations of adjacent streets would not be substantially affected. Traffic impacts resulting from the implementation of lane constriction Toolkit Elements, including Neckdowns, as part of the Green Connections Project would therefore be less than significant. Cumulative traffic impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed there, there would be less-than-significant cumulative traffic impacts and there would be no cumulatively considerable contributions to significant traffic cumulative impacts related to the Green Connections Project.

As part of the potential implementation of the Neckdown Design Toolkit Element, the following improvement measure is proposed. This is because although a less-than-significant traffic impact would occur with implementation of the Neckdown Design Toolkit Element, traffic impedance and traffic diversions could occur.

Improvement Measure 1: For at least the first three applications of the Neckdown toolkit element, as part of the design, it is recommended that the application is field tested prior to complete design to determine the level of traffic impedance and traffic diversions to ensure adjacent street operations are not substantially delayed.

Transit. Generally, the Neckdown Design Toolkit Element is not recommended for transit streets, and because it is recommended for low traffic volume street, it would not likely be applied to streets with Muni or other routes. If applied to a local service Muni route (on a low volume residential street), it is recommended that transit service be accounted for as part of the overall design, to ensure that if applied, transit service would be given priority through the neckdown and would not be substantially delayed. Transit impacts resulting from the implementation of the Neckdown Design Toolkit Element as part of the Green Connections Project would therefore be less than significant. Cumulative transit facility impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed there, there would be less-
than-significant cumulative transit impacts and there would be no cumulatively considerable contributions to significant transit cumulative impacts related to the Green Connections Project.

Bicycles. While possible, it is not likely that the Neckdown Design Toolkit Element would be applied to a designated bicycle network street. Similar to transit, any application of the neckdown design would, by design, consider local bicycle traffic, particularly if proposed on a designated bicycle route. Bicycle impacts resulting from the implementation of the Neckdown Design Toolkit Element as part of the Green Connections Project would therefore be less than significant. Cumulative bicycle facility impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed there, there would be less-than-significant cumulative bicycle impacts and there would be no cumulatively considerable contributions to significant bicycle cumulative impacts related to the Green Connections Project.

Pedestrian. Pedestrian impacts (including cumulative impacts) for Design Toolkit Elements are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. Depending on the size of the proposed Neckdown design, implementation of related curb bulb-outs and/or speed tables would likely remove up to approximately four on-street parking spaces per application (two per street side), when existing parking is present along the corridor. This level of parking loss would not be considered a substantial parking loss along a corridor. Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading, construction, emergency access and design hazards impacts (including cumulative impacts for these topics) are discussed, as applicable, in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, Implementation of Mitigation Measure TR-1, as applicable, would mitigate individual and cumulative impacts related to the loss of commercial loading spaces resulting from the implementation of the Green Connections Project to less-than-significant levels. Additionally, there would be no cumulatively considerable contributions to significant cumulative loading impacts related to the Green Connections Project. As discussed under “Transportation Impacts Common to All Green Connections Project Components,” there would be less-than-significant individual and cumulative construction and emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant construction and emergency access and design hazards impacts related to the Green Connections Project.

Overall, individual and cumulative transportation impacts resulting from the implementation of proposed lane constriction Toolkit Elements, including Neckdowns, as part of the Green Connections
Project would be less than significant with the implementation of Mitigation Measure TR-1 Provision of New Loading Space (as applicable). While individual and cumulative traffic impacts would be less than significant, implementation of Improvement Measure 1 as part of the application of lane constriction Toolkit Elements, including Neckdowns, would further reduce potential traffic impacts.

1b. Traffic Diversions: including Intersection Islands, Partial and Diagonal Diverters and Sidewalk Gardens (when removing travel lanes)

Traffic. Traffic diverting toolkit elements, such as Intersection Islands (Figure 6), Partial and Diagonal Diverters (Figures 4 and 5), and Sidewalk Gardens (Figure 3) would serve to reduce traffic volumes or calm traffic on Green Connections streets, while allowing bicyclists and pedestrians to connect through the Green Connections intersection with additional pedestrian refuge areas that would provide shelter from traffic. Some general parameters for Traffic Diversions have been created, which would limit how they would be applied throughout the City. Each project-level design would need to be reviewed on a case-by-case basis if these parameters are not met, as these parameters are not meant to be thresholds, but instead, are meant to be design considerations in the application of Design Toolkit Elements which divert traffic.

The following parameters, consistent with professional standards of San Francisco and other cities, were established in consultation with traffic engineers at the Planning Department and SFMTA.

1. The road to be closed or diverted has fewer than 300 vehicles in either direction during the peak hour.
2. The road to be closed or diverted is not a transit or bicycle network street, unless as part of the diversion or closure, transit or bicycle travel is accommodated in the design.
3. There is at least one parallel adjacent street that can accept the diverted traffic, and that parallel street meets both of the following conditions:
 i. The parallel street is not a transit route, or if it is a transit street, that transit operates in dedicated transit-only lanes;
 ii. The parallel street has acceptable traffic operations, as defined by operations and/or traffic volume capacity, during the peak hour.

With the application of these or similar parameters for traffic diversions, it is not anticipated that impacts related to traffic diversions or operations with the application of the Design Toolkit would be significant. As indicated above, they would be applied where parallel streets with capacity for additional traffic existed, and the amount of traffic diverted could be accommodated in these parallel streets. Traffic impacts resulting from the implementation of the traffic diversion Toolkit Elements, including Intersection Islands, Partial and Diagonal Diverters, and Sidewalk Gardens (when removing travel lanes), as part of the Green Connections Project would therefore be less than significant. Cumulative traffic impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative traffic impacts and there would be no cumulatively considerable contributions to significant traffic cumulative impacts related to the Green Connections Project.
Transit. As established by the recommended parameters, traffic diversions would not be established on and would not likely be adjacent to transit streets, unless transit was accommodated in the proposed design. Traffic diversions could occur onto area-wide transit streets, but as indicated in the traffic discussion section above, parallel streets would have the capacity to accommodate additional traffic so the levels of diversions would not be anticipated to substantially impact transit operations. Therefore, transit impacts resulting from the implementation of the traffic diversion Toolkit Elements, including Intersection Islands, Partial and Diagonal Diversers, and Sidewalk Gardens (when removing travel lanes), as part of the Green Connections Project would be less than significant. Cumulative transit facility impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative transit impacts and there would be no cumulatively considerable contributions to significant transit cumulative impacts related to the Green Connections Project.

Bicycles. These Design Toolkit items could be applied along the Green Connections routes, including those that are part of the citywide Bicycle Network. However, as indicated in the Project Description, the proposed designs would consider local and commuting bicycle traffic along the Green Connections Network, with the overall goal of improving bicycle travel conditions. Therefore, bicycle impacts resulting from the implementation of the traffic diversion Toolkit Elements, including Intersection Islands, Partial and Diagonal Diversers, and Sidewalk Gardens (when removing travel lanes), as part of the Green Connections Project would be less than significant. Cumulative bicycle facility impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative bicycle impacts and there would be no cumulatively considerable contributions to significant bicycle cumulative impacts related to the Green Connections Project.

Pedestrian. Pedestrian impacts (including cumulative impacts) for Design Toolkit Elements are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. The proposed elements of the Green Connections Design Toolkit would likely remove some on-street parking with installation of the elements. The Diversion Design Toolkit Element would likely remove an estimated four parking spaces per application. Similarly the Partial Diverter Design Toolkit Element would likely remove two to four spaces per application. Intersection Islands, on their own, would not likely require the removal of parking, however, if implemented with corner bulb-outs, as shown in the toolkit design figures, would result in the loss of one to two parking spaces per curb bulb-out application. The amount of on-street parking to be removed under the Sidewalk Garden Toolkit Element (when designs remove travel lanes) would be dependent on the length and design of the sidewalk widening, but could remove parking all along the length of the Sidewalk Garden. Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual
and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading, construction, emergency access and design hazards are discussed, as applicable, in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed there, Implementation of Mitigation Measure TR-1, as applicable, would mitigate individual and cumulative impacts related to the loss of commercial loading spaces resulting from the implementation of the Green Connections Project to less-than-significant levels. Additionally, there would be no cumulatively considerable contributions to significant cumulative loading impacts related to the Green Connections Project. As discussed under “Transportation Impacts Common to All Green Connections Project Components,” there would be less-than-significant individual and cumulative construction and emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant construction and emergency access and design hazards impacts related to the Green Connections Project.

Overall, transportation impacts resulting from the implementation of the proposed traffic diversion Toolkit Elements, including Intersection Islands, Partial and Diagonal Diversers, and Sidewalk Gardens (when removing travel lanes), as part of the Green Connections Project would be less than significant with the implementation of Mitigation Measure TR-1 Provision of New Loading Space (as applicable).

1c. Road Closures including: Play Street and Block-end Plaza

Traffic. Road closures, whether permanent because of the creation of ‘dead-end’ streets as shown in the Block-end Plaza design (Figure 7) or temporary and intermittent because of the creation of community Play Streets (Figure 8), would provide additional public space and calm traffic on certain neighborhood streets. The Play Street design would design a traffic-calmed area on an extremely low traffic volume residential street, which could be closed to through-traffic intermittently when the play area is in use. The road closure Toolkit Elements would likely be established on low volume Green Connections streets as they approach busier streets. This would help calm the busier street cross traffic while prioritizing travel for pedestrian and bicycles traveling on the Green Connections streets, which would be closed permanently or intermittently to through-traffic.

Similar to Traffic Diversions, the following establishes some recommended parameters in applying the toolkit elements that could close roadways. These recommendations were established as initial screening tools to avoid potential transportation system effects, but as applied on a case-by-case basis, are not meant to act as thresholds to this design element’s application. Each design would need to be evaluated on a case-by-case and site-specific basis.

These parameters, consistent with professional standards of San Francisco and other cities, were established in consultation with traffic engineers at the Planning Department and SFMTA.

1. The road to be closed or diverted has fewer than 300 vehicles in either direction during the peak hour.
2. The road to be closed or diverted is not a transit or bicycle network street, unless as part of the diversion or closure, transit or bicycle travel is accommodated in the design.

3. There is at least one parallel adjacent street that can accept the diverted traffic, and that parallel street meets both of the following conditions:
 i. The parallel street is not a transit route, or if it is a transit street, that transit operates in dedicated transit-only lanes;
 ii. The parallel street has acceptable traffic operations, as defined by operations and/or traffic volume capacity, during the peak hour.

With the application of these or similar parameters for road closures, it is not anticipated that impacts related to these applications of the Design Toolkit would be significant. As indicated above, they would be applied where parallel streets have capacity for additional traffic existed, and the amount of traffic diverted could be accommodated in these parallel streets. Traffic impacts resulting from the implementation of the road closure Toolkit Elements, including Play Streets and Block-end Plazas, as part of the Green Connections Project would therefore be less than significant. Cumulative traffic impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative traffic impacts and there would be no cumulatively considerable contributions to significant traffic cumulative impacts related to the Green Connections Project.

As part of the potential implementation of the Play Street design toolkit item, the following improvement measure is recommended. This is because although a less-than-significant traffic impact would occur with the implementation of the Play Street design, the roadway closures would be more frequent and unpredictable as compared to current event-type closures, and therefore, the conflicts between pedestrians (community users) and traffic could increase.

Improvement Measure 2: In the design of the potential application of the Play Street design, SFMTA, DPW, and the local neighborhood shall be consulted regarding the potential use, design and signage of Play Streets, so that when the community space is being utilized, the best methods and signage is employed such that traffic entering such a street is prepared to be delayed or not be able to proceed through the community space, similar to when temporary street closures occur currently for community events, such as block parties, etc.

Transit. The Green Connections Design Toolkit elements that result in road closures would not be applied to local or regional transit routes. If such a design element was proposed on a local transit service route (with very low traffic volumes), the design would be required to incorporate transit travel or facilities within the road closure element. Transit impacts resulting from the implementation of the road closure Toolkit Elements, including Play Streets and Block-end Plazas, as part of the Green Connections Project would therefore be less than significant. Cumulative transit facility impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative transit impacts and there would be no cumulatively considerable contributions to significant transit cumulative impacts related to the Green Connections Project.
Bicycles. Road closures would not likely occur on designated bicycle routes since the Play Street and Block-end Plaza Design Toolkit Elements would be applied to mainly low volume or dead-end streets. However, the design of all Green Connection Toolkit elements would consider and account for local bicycle traffic travelling along the Green Connection Network routes. Bicycle impacts resulting from the implementation of the road closure Design Toolkit Elements, including Play Streets and Block-end Plazas, as part of the Green Connections Project would therefore be less than significant. Cumulative bicycle facility impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative bicycle impacts and there would be no cumulatively considerable contributions to significant bicycle cumulative impacts related to the Green Connections Project.

Pedestrian. Pedestrian impacts (including cumulative impacts) for Design Toolkit Elements are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. The Block-end Plaza element would likely result in the removal of about four on-street parking spaces per application. For the Play Street design it is unknown whether on-street parking along the edges of the play area would be permitted. If not, this could result in the loss of an estimated six to eight on-street parking spaces per application. This amount of potential on-street parking removal would not be considered a substantial parking loss in the project area, given the overall availability of parking in the area and access to alternative travel modes. Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading, construction, emergency access and design hazard impacts (including cumulative impacts for these topics) are discussed, as applicable, in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed there, Implementation of Mitigation Measure TR-1, as applicable, would mitigate individual and cumulative impacts related to the loss of commercial loading spaces resulting from the implementation of the Green Connections Project to less-than-significant levels. Additionally, there would be no cumulatively considerable contributions to significant cumulative loading impacts related to the Green Connections Project. As discussed under “Transportation Impacts Common to All Green Connections Project Components,” there would be less-than-significant individual and cumulative construction and emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant construction and emergency access and design hazards impacts related to the Green Connections Project.
Overall, individual and cumulative transportation impacts resulting from the implementation of the proposed road closure Toolkit Elements, including Play Streets and Block-end Plazas, as part of the Green Connections Project would be less than significant with the implementation of Mitigation Measure TR-1 Provision of New Loading Space (as applicable). While individual and cumulative traffic impacts would be less than significant, implementation of Improvement Measure 1 as part of the application of road closure Toolkit Elements, including Play Streets and Block-end Plazas, would further reduce potential traffic impacts.
2. **Green Connections Network Routes/Proposed Intersection Improvements**

The following is a discussion of the Green Connections Project’s potential transportation-related impacts related to the implementation of the proposed Intersection Improvements along Green Connections Network routes. Detailed designs of these improvements are not available at this time so the environmental evaluation of these improvements is conducted on a program-level and further environmental review will be required in the future when detailed designs for these intersection improvements have been developed.

2a. **Addition of Crosswalks and Modification of Vehicle Approaches**

The addition of crosswalks and modification of vehicle approaches was considered at two intersections: Alemany Boulevard/Lyell Street (Intersection #7) and Marina Boulevard/Scott Street/Cervantes Boulevard (Intersection #17). For Alemany Boulevard/Lyell Street (Intersection #7), the proposed improvements would include adding a crosswalk from the northeast corner of Alemany Boulevard/Lyell Street extending to the southern side of Alemany Boulevard and modifying the southbound approach by turning the shared left/right turn lane into a left-only turn lane, and some signal adjustments (though exact signal adjustment details are unknown at this time.) For Marina Boulevard/Scott Street/Cervantes Boulevard (Intersection #17), the propose design would include adding a crosswalk between the northwest and southwest corner of Marina Boulevard/Scott Street and modifying the northbound approach along Cervantes Boulevard by turning the shared left-turn/through lane into a through-only lane.

Existing traffic volumes were based on counts available from other studies or conducted for this analysis. Traffic modeling utilized Synchro Traffic Analysis software, and results are included in Attachment B of the Green Connections Transportation Analysis Memo. 2040 Cumulative traffic volumes were obtained from the San Francisco Chained Activity Modeling Process (SF-CHAMP) citywide transportation model.

The intersections of Alemany Boulevard/Lyell Street (Intersection #7) and Marina Boulevard/Scott Street/Cervantes Boulevard (Intersection #17) were studied under Existing, Existing plus Project and Cumulative conditions, to determine the level of potential effects to traffic operations that would occur with the proposed improvements described above.

14 Alemany/Lyell Street intersection counts were obtained from counts taken in 2009 for the Glen Park Plan project (Case No. 2005.1004E) analysis and counts for Scott/Marina intersection were taken by SFMTA in September 2013.

15 San Francisco Planning Department. Green Connections Transportation Analysis Memo. October 3, 2013. The Green Connections Transportation Analysis Memo is on file and available for public review at the Planning Department, 1650 Mission Street, Suite 400, as part of Case No. 2014.0060E Green Connections Project.
Traffic/Cumulative Traffic. The intersection operating conditions were analyzed in terms of intersection Level of Service (LOS)\(^{16}\) during the weekday PM peak period (4:00 to 6:00 pm). The intersection LOS analysis for these intersections with and without the proposed improvements is presented in Table 3. Generally, the proposed addition of a new crosswalk and modifications to the overall traffic signal timing could potentially delay left-turning vehicles, compared to existing conditions. However, as shown in the table, this would not substantially alter intersection operating conditions.

Table 3: Intersection Analysis for two Green Connections Additions of Crosswalks and Modification of Vehicle Approaches Projects (PM Peak Hour)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Alemany Blvd/Lyell St</td>
<td>B</td>
<td>18.5</td>
<td>C</td>
<td>21.6</td>
<td>C</td>
<td>22.1</td>
</tr>
<tr>
<td>17. Marina Blvd/Scott St/Cervantes Blvd</td>
<td>B</td>
<td>13.3</td>
<td>B</td>
<td>19.2</td>
<td>B</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Source: Green Connections Transportation Memo, 2013.

As shown in Table 3, the intersections of Alemany Boulevard/Lyell Street (Intersection #7) and Marina Boulevard/Scott Street/Cervantes Boulevard (Intersection #17) would continue to operate at acceptable operating conditions with the project proposals under both Existing and Cumulative conditions. Similarly, adding an additional crosswalk and modifying vehicle approaches at these intersections would not cause a major traffic hazard. Traffic impacts, either individually or cumulatively, resulting from the implementation of the proposed additions of crosswalks and modification of vehicle approaches, as part of the Green Connections Project would therefore be less than significant.

Transit. Currently, Muni Routes 44 O'Shaughnessy and 52 Excelsior travel southbound on Lyell Street, up to the Alemany Boulevard/Lyell Street intersection, and make a right turn onto Alemany Boulevard westbound. Altering the southbound approach on Lyell Street (by making it into a right-turn-only lane) would not substantially change and may slightly improve the right-turn bus movement onto Alemany Boulevard. Neither Scott Street nor Marina Boulevard have transit routes, therefore changes to intersection approaches and movements at this intersection would not substantially affect local transit service. Transit facility impacts resulting from the implementation of the proposed additions of crosswalks and modification of vehicle approaches as part of the Green Connections Project would therefore be less than significant. Cumulative transit impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections.

\(^{16}\) LOS is a qualitative description of the performance of an intersection based on the average delay per vehicle. Intersection levels of service range from LOS A, which indicates free flow or excellent conditions with short delays, to LOS F, which indicates congested or overloaded conditions with extremely long delays. LOS A through LOS D are considered excellent to satisfactory service levels, LOS E is undesirable, and LOS F conditions are unacceptable. In San Francisco, LOS E and F are considered unacceptable operating conditions for signalized intersections.
Project Components” and as discussed in that section, there would be less-than-significant cumulative transit impacts and there would be no cumulatively considerable contributions to significant transit cumulative impacts related to the Green Connections Project.

Bicycle. Marina Boulevard is part of Bicycle Network Route 2, and Lyell Street and Alemany Boulevard are both part of Bicycle Network Route 45. At the Marina Boulevard/Scott Street/Cervantes Boulevard (Intersection #17) and Alemany Boulevard/Lyell Street (Intersection #7) intersections, the proposed addition of a pedestrian crosswalk across Marina and Alemany Boulevards may cause some delay to left-turning vehicles including for bicycles; however this would not substantially change overall traffic operating conditions in the area. Although not part of the Bicycle network, local bicycles travelling on Scott Street and Cervantes Boulevard toward Bicycle Route 2 would experience a greater predictability of vehicular movements with the proposed installation of a right-turn only lane. Similarly bicycles travelling southbound on Lyell Street, which is part of Bicycle Route 45, could have more predictable vehicle traffic movements. Bicycle impacts resulting from the implementation of the proposed additions of crosswalks and modification of vehicle approaches as part of the Green Connections Project would therefore be less than significant. Cumulative bicycle impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative bicycle impacts and there would be no cumulatively considerable contributions to significant bicycle cumulative impacts related to the Green Connections Project.

Pedestrian. Pedestrian impacts (including cumulative impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. In general, the installation of an additional crosswalk at a given intersection would not directly remove parking; however, one to two parking spaces could be removed near such applications to improve visibility of the new crosswalk. At the two example intersections noted above, no parking would be removed as part of the proposed changes. Overall parking impacts and conclusions (including for cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading/Cumulative Loading. Commercial loading spaces would not be removed as part of the proposed improvements at the intersections of Alemany Boulevard/Lyell Street (Intersection #7) and Marina Boulevard/Scott Street/Cervantes Boulevard (Intersection #17); there would be no impact, either individually or cumulatively, related to commercial loading.

Construction and emergency access and design hazards (including cumulative impacts for these topics) are discussed, as applicable, in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed under “Transportation Impacts Common
to All Green Connections Project Components,” there would be less-than-significant individual and cumulative construction and emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant construction and emergency access and design hazards impacts related to the Green Connections Project.

Overall, individual and cumulative transportation impacts resulting from the implementation of the proposed additions of crosswalks and modification of vehicle approaches as applied to the intersections of Alemany Boulevard/Lyell Street (Intersection #7) and Marina Boulevard/Scott Street/Cervantes Boulevard (Intersection #17) as part of the Green Connections Project would be less than significant.

2b. Addition of a Three-Way Stop and Reduction of Approach Lanes

Although intersection modifications are part of ongoing SFMTA improvements throughout the city and road diets and lane reductions have successfully been established throughout the city to calm traffic and improve alternative mode travel, each lane reduction proposal is reviewed to determine if significant traffic impacts could occur. The intersection of Clarendon Avenue/Dellbrook Avenue (Intersection #13) is being considered for the addition of a three-way stop and reduction of vehicular approach lanes. Clarendon Avenue is a mixture of a Residential Throughway17 (east of the project area) and Park Edge18 Street that fluctuates in both directions (northbound/southbound) from one to two travel lanes. At Clarendon Avenue/Dellbrook Avenue (Intersection #13), Clarendon Avenue is one-lane in the southbound direction (with a left-turn pocket approaching and following the intersection) and two lanes in the northbound direction.

Since there are no sidewalks on Dellbrook Avenue or on the east side of Clarendon Avenue, pedestrians on the Green Connections street (Dellbrook Avenue) must cross Clarendon Avenue to reach the sidewalk on the west side (toward Mt. Sutro Open Space Preserve). Without stop-controlled vehicle movements and with limited pedestrian shelter opportunities, it is currently difficult for pedestrians to cross three lanes of traffic (with turning movements). Therefore, the Green Connections proposal would add a three-way stop to this location to allow for pedestrian movements across Clarendon Avenue, to further shelter pedestrians, and to reduce the travel lanes for Clarendon Avenue from two lanes to one in each direction. With stop-controls being added to this intersection, the need for the left-turn receiving pocket from Dellbrook Avenue onto Clarendon Avenue would be eliminated and the pocket would be removed. The specific designs of the stops, pedestrian crosswalk locations and where northbound traffic would transition from two to one-lanes is currently not available; therefore, the environmental evaluation of this project improvement has been conducted at a program-level and further environmental review will be required in the future when detailed designs for these intersection improvements have been developed.

17 Residential Throughway and Park Edge Streets are roadway classifications established in the San Francisco Better Streets Plan. Residential Throughways are streets that have high levels of fast-moving traffic with residential land uses. Park Edge Streets are streets that border major parks or the waterfront and that have one set of conditions on one side of the street and a distinctly different set of conditions on the other.

18 Ibid.
Traffic. Based on the proposed design and the level of traffic typically experienced on Clarendon Avenue, the proposed implementation of a stop-control intersection would not substantially affect travel times on Clarendon Avenue. Based on anticipated traffic volumes, the reduction of the northbound lane from two to one lane, similar to other locations along Clarendon Avenue, would not cause this newly stop-controlled intersection to operate at unacceptable levels. As mentioned, there are other intersections along Clarendon Avenue similar to this design (with stop-controls and traffic being narrowed down from two to one lane), such as at Clarendon Avenue and Twin Peaks Boulevard, where existing traffic volumes operate acceptably. Therefore, the potential design at Dellbrook Avenue, would not cause traffic conditions to worsen to unacceptable levels. Traffic impacts, either individually or cumulatively, resulting from the implementation of the proposed addition of a three-way stop and reduction of approach lanes as part of the Green Connections Project would therefore be less than significant. Cumulative traffic impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative traffic impacts and there would be no cumulatively considerable contributions to significant traffic cumulative impacts related to the Green Connections Project.

Transit/Cumulative Transit. No transit routes are located on either Dellbrook or Clarendon Avenues; therefore the proposed improvements to this intersection would not affect transit operating conditions. The proposed improvements at this intersection would have a less-than-significant impact on transit, either individually or cumulatively.

Bicycle. Neither Clarendon nor Dellbrook Avenues are part of the bicycle network and therefore the proposed improvements would not impact existing bicycle facilities. Local bicyclists who could travel on Clarendon Avenue would experience some minor delay. However, with stop-controls added, bicycle travel on both streets could likely become safer with more predictable vehicle movements, and bicycles on Dellbrook Avenue would no longer have to yield to traffic on Clarendon Avenue. Bicycle impacts resulting from the implementation of the proposed addition of a three-way stop and reduction of approach lanes as part of the Green Connections Project would therefore be less than significant. Cumulative bicycle impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative bicycle impacts and there would be no cumulatively considerable contributions to significant bicycle cumulative impacts related to the Green Connections Project.

Pedestrian. Pedestrian conditions at this intersection with the proposed modifications would improve over existing conditions, with vehicles being required to yield to crossing pedestrians and the crossing distance for pedestrians being reduced by one or more travel lanes. Pedestrian impacts resulting from the implementation of the proposed addition of a three-way stop and reduction of

19 SFMTA traffic counts indicate on average that Clarendon Avenue experiences approximately 300 vehicles per direction in the peak hours. (San Francisco Planning Department. Green Connections Transportation Analysis Memo. October 3, 2013. The Green Connections Transportation Analysis Memo is on file and available for public review at the Planning Department, 1650 Mission Street, Suite 400, as part of Case No. 2014.0060E Green Connections Project.)
approach lanes as part of the Green Connections Project would therefore be less than significant. Cumulative pedestrian impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. Some on-street parking (unmarked and unmetered) would likely be removed with the addition of crosswalks and stop controls around the curb of Dellbrook Avenue/Clarendon Avenue and along Clarendon Avenue southbound. Currently, vehicles park on-street along Dellbrook Avenue and then around the corner and along Clarendon Avenue. Therefore, to establish a stop sign at Dellbrook Avenue and crosswalks across Clarendon Avenue, an estimated six parking spaces (three on Dellbrook Avenue and three on Clarendon Avenue) would be removed. This would not represent a substantial removal of parking or change to parking conditions in the project area. Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading/Cumulative Loading. Commercial loading spaces would not be removed as part of the proposed improvements at Clarendon Avenue/Dellbrook Avenue (Intersection #13); there would be no impact, either individually or cumulatively, related to commercial loading.

Construction and emergency access and design hazards are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed under “Transportation Impacts Common to All Green Connections Project Components,” there would be less-than-significant individual and cumulative construction and emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant construction and emergency access and design hazards impacts related to the Green Connections Project.

Overall, individual and cumulative transportation impacts resulting from the implementation of the proposed addition of a three-way stop and reduction of approach lanes as applied to the intersection of Clarendon Avenue/Dellbrook Avenue (Intersection #13) as part of the Green Connections Project would be less than significant.

2c. Reduction of Approach Lanes at a Multi-leg Intersection

As indicated above, although lane reductions and intersection modifications are ongoing SFMTA programs, the application of travel lane reductions was reviewed in this environmental analysis to determine if significant traffic impacts could occur. The existing intersection of Alemany Boulevard/Sagamore Street/Orizaba Avenue (Intersection #18) is a complicated multi-leg intersection, which presents a challenge on a Green Connections network street (Sagamore Street). At this intersection, westbound Sagamore Street onto Alemany Boulevard (three lanes) and eastbound Alemany Boulevard left-turn (one left-turn pocket onto Sagamore Street) have the right-of-way
because westbound Alemany Street (three lanes) is stop-controlled. Orizaba Avenue, located on the north side of the intersection, is a stop-controlled side street unto westbound Brotherhood Way or Alemany Boulevard (right-turn only). A traffic signal is located on Alemany Boulevard to the west where it intersects with eastbound Brotherhood Way.

The Green Connections network extends from Sagamore Street to Brotherhood Way. Pedestrians crossing from Sagamore Street onto the Brotherhood Way pathways are required to potentially cross to the north side of Sagamore Street, then across Orizaba Avenue to reach the pathway on the north side of Brotherhood Way. Since there is no connection across Alemany Boulevard, pedestrians trying to reach the south side of the Brotherhood Way pathway must proceed further along this route from the north side of Brotherhood Way across the roadway to the south side pathway. Since other similar intersections may exist on the Green Connections network, where lane reductions and bulb-outs at complicated intersections could improve pedestrian safety conditions, this above-noted intersection would be representative of such improvements at Green Connection Street intersections.

Although the detailed design has not yet been completed, the proposal for the intersection of Sagamore Street and Orizaba Avenue would include reducing the travel lanes on Alemany Boulevard westbound from three (two through and one right-turn pocket) to one shared lane; reducing the travel lanes on Alemany Boulevard eastbound from four lanes (three through and one left turn lane) to three lanes (two through and one left turn lane); and reducing the travel lanes on westbound Sagamore Street from three (two through and one right turn lane) to two lanes (one through and one through/right turn lane). In addition to these modifications, curb bulb-outs would likely be added at these locations (Alemany Boulevard eastbound and westbound at the crosswalks and Sagamore Street eastbound and westbound at the crosswalks) and considered for other nearby streets (Orizaba Avenue and Brotherhood Way). Overall, the proposals would calm traffic in the area and shorten the pedestrian crossing distances across Alemany Boulevard and Sagamore Street.

Traffic/Cumulative Traffic: The LOS analysis for this intersection with and without the proposed lane reductions is presented in Table 4. Existing vehicle traffic volumes were based on previous counts taken in 2010.\(^\text{20}\)

\(^{20}\) PM peak hour traffic volumes for the intersection of Alemany Boulevard and Sagamore Street were taken from the Park Merced Plan project (Case No. 2008.0021E) analysis, February 2010.
Table 4: Intersection Operating Conditions with Green Connections Signalization at Alemany Boulevard & Sagamore Street (PM Peak hour)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing</th>
<th>Existing Plus Project</th>
<th>Cumulative</th>
<th>Cumulative plus Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Avg. Delay (sec/veh)</td>
<td>LOS</td>
<td>Avg. Delay (sec/veh)</td>
</tr>
<tr>
<td>18. Alemany Boulevard/</td>
<td>F* >50</td>
<td>F* >50</td>
<td>F* >50</td>
<td>F* >50</td>
</tr>
<tr>
<td>Sagamore Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* LOS F for this unsignalized intersection was based on the worst approach of Alemany Boulevard westbound, however westbound Alemany Boulevard has lower traffic volumes than Sagamore Street, and due to low traffic volumes does not meet signal warrants.

Source: Green Connections Transportation Memo, 2013.

As shown in Table 4, this multi-leg intersection with two-way stop controls operates at LOS F under Existing and Cumulative conditions with or without the proposed changes. Under Existing and Cumulative Conditions, the LOS F operating condition is based on the worst approach, which is Alemany Boulevard westbound. Alemany Boulevard westbound at Alemany Boulevard/Sagamore Street (Intersection #18) has low traffic volumes, since westbound Alemany Boulevard traffic to the east at Alemany Boulevard/San Jose Avenue and Alemany Boulevard/Sickles Avenue is redirected under I-280 and onto Sagamore Street. The traffic traveling on this segment of westbound Alemany Boulevard (at the intersection of Alemany Boulevard and Sagamore Street) is either U-turn traffic from eastbound Alemany Boulevard or traveling across eastbound Alemany Boulevard from DeLong Street and the residential area south of I-280. With the existing low traffic volumes, the proposed changes to the westbound Alemany Boulevard approach would not cause peak hour signal warrants to be met under either Existing plus Project or Cumulative plus Project conditions. Therefore, traffic impacts, either individually or cumulatively, resulting from the implementation of the reduction of approach lanes as part of the Green Connections Project would therefore be less than significant.

Transit: There is one transit route located at this intersection, Muni’s 54 Felton Daly City BART route which proceeds from Sagamore Street onto Alemany Boulevard with an inbound stop located on the south side of Sagamore Street near the intersection and an outbound stop approximately 250 feet east of the intersection (on the north side of the street). Modifying the approach at this intersection from three lanes to two may delay transit slightly. However, traffic proceeding westbound onto Alemany Boulevard and eastbound onto Sagamore Street (the bus route) has the right-of-way, and therefore traffic operations would remain the same as under existing conditions. Similarly, the existing conflict between buses and vehicles at the outbound midblock bus stop (pulling in and out of traffic) would remain the same as under existing conditions. Therefore, the signalization of this intersection would not significantly affect the operations of the 54 Felton Daly City BART route. Transit impacts resulting from the implementation of the reduction of approach lanes as part of the Green Connections Project would therefore be less than significant. Cumulative transit impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant...
cumulative transit impacts and there would be no cumulatively considerable contributions to significant transit cumulative impacts related to the Green Connections Project.

Bicycle. Bicycle Route 98 is located on Sagamore Street with Class II (bicycle lane) facilities in both directions. The westbound bicycle route continues onto Brotherhood Way, where similar Class II bicycle lanes exist. Although westbound bicycle traffic from Sagamore Street proceeds from one bicycle lane to another on Brotherhood Way, eastbound Brotherhood Way bicyclists must proceed with vehicle traffic onto Alemany Boulevard and then turn left onto Sagamore Street (if that is their destination), or dismount to use the pedestrian crossings. Altering the westbound Sagamore Street approach by adding in curb bulb-outs and removing two westbound travel lanes (one lane of travel and the right turn pocket onto Orizaba Street) would cause the right-turning vehicles onto Orizaba Avenue to share the lane with vehicles proceeding onto Brotherhood Way, likely altering the bicycle lane for this approach and introduce a potential conflict between westbound bicycles and right-turning vehicles. However, right-turn volumes onto Orizaba Avenue are low under existing conditions (seven vehicles during the PM peak hour), such that this conflict under proposed project conditions would not be considered significant, and would be similar to existing conflicts between bicycle lanes and right-turning vehicles on this corridor and throughout the city. Altering the westbound Alemany Boulevard approach would therefore not substantially change conditions for eastbound bicycle traffic. Overall, bicycle conditions would not be substantially changed, compared to existing conditions as a result of the proposed project, and could likely improve from the calming of traffic along this corridor. Bicycle impacts resulting from the implementation of the reduction of approach lanes as part of the Green Connections Project would therefore be less than significant. Cumulative bicycle impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative bicycle impacts and there would be no cumulatively considerable contributions to significant bicycle cumulative impacts related to the Green Connections Project.

Pedestrian. Pedestrian conditions at this intersection would improve over existing conditions with the proposed changes. The improvements would include traffic calming at the intersection approaches, and curb bulb-outs that would shorten the crossing distances for pedestrians across Sagamore Street and Alemany Boulevard. Additional curb bulb-outs may be considered across Orizaba Avenue and Brotherhood Way. Pedestrian impacts resulting from the implementation of the reduction of approach lanes as part of the Green Connections Project would therefore be less than significant. Cumulative pedestrian impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” As discussed in that section, there would be less-than-significant cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. Altering the approaches of Sagamore Street and Alemany Boulevard at this intersection may cause the removal of some on-street parking approaching the intersection where curb bulb-outs would be installed or lanes narrowed. Based on the potential design, parking removal would be limited to approximately two to four spaces, and therefore would not be considered a substantial
parking loss. Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading/Cumulative Loading. Commercial loading spaces would not be removed as part of the proposed improvements at Alemany Boulevard/Sagamore Street, Orizaba Avenue (Intersection #18); therefore, there would be no impact, either individually or cumulatively, related to commercial loading.

Construction and emergency access and design hazards impacts (including cumulative impacts for these topics) are discussed, as applicable, in the section above under “Transportation Impacts Common to All Green Connections Project Components.” Construction and emergency access and design hazards are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed under “Transportation Impacts Common to All Green Connections Project Components,” there would be less-than-significant individual and cumulative construction and emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant construction and emergency access and design hazards impacts related to the Green Connections Project.

Overall, individual and cumulative transportation impacts resulting from the implementation of the proposed reduction of approach lanes as applied to the intersection of Alemany Boulevard/Sagamore Street/Orizaba Avenue (Intersection #18) as part of the Green Connections Project would be less than significant.
3. Green Connections Focus Neighborhood Concept Designs

The following is a discussion of the Green Connections Project’s potential transportation-related impacts related to the implementation of the proposed Green Connections Focus Neighborhood Concept Designs in planning areas along Green Connections Network routes. Detailed designs of these Neighborhood Concepts are not available at this time, so the environmental evaluation of these Neighborhood Concepts is conducted on a program-level and further environmental review will be required in the future when detailed designs for these Neighborhood Concepts have been developed.

3a. Visitacion Valley Neighborhood Concept Design

The Visitacion Valley Green Connections Neighborhood Concept Design includes improvements such as pedestrian crosswalks (with curb extensions, raised crosswalks, wider sidewalks), curb bulb-outs (chicanes, neckdown design, stormwater catchment bulbs), designations of a “Festival Street” and “Play Street”, permeable parking lanes and other modifications to on-street parking, installation of a bicycle lane, raised crosswalks, speed bumps/tables, and other streetscape improvements on the Visitacion Valley Greenway Corridor (from Raymond Avenue to Tucker Avenue, on Leland Avenue from Rutland Street to John McLaren Park, on Hahn Street from Leland Avenue to Sunnydale Street, and on Sawyer Street from Raymond Avenue to Leland Avenue).

Several of the elements proposed in the Visitacion Valley Neighborhood Concept would be elements that were evaluated in the BSP FMND, such as the streetscape amenities that would be added along the entire roadway segment (which includes street trees, sidewalk landscaping, curb bulb-outs, corner gardens, and pedestrian scale lighting); mid-block pedestrian crossing improvements; sidewalk widening; parking lane treatments (permeable lanes); chicanes; bio-retention bulb-outs; and pedestrian pathways. These individual elements were previously environmentally cleared in the BSP FMND.

Some of the other elements proposed in the Visitacion Valley Neighborhood Concept Design would be improvements similar to under ongoing SFMTA programs, such as the proposed speed bumps/tables, the proposed intersection improvements at Sawyer Street and Raymond Avenue (Visitacion Valley Middle School Connection), and proposed bicycle lane (two blocks of Hahn Street from Leland to Sunnydale Avenues). Detailed designs of these proposed improvements are not available at this time and further environmental review will be required in the future when detailed designs for these intersection improvements have been developed.

The program-level environmental analysis below focuses on the implementation of the proposed elements and improvements described above, the Play Street design, and Festival Street design at site-specific locations within the Visitacion Valley Neighborhood Concept Design project area.

Traffic/Cumulative Traffic. The proposed mid-block crossings as part of the Visitacion Valley Greenway Corridor would be added along residential streets with low traffic volumes and the associated proposed raised crosswalks/curb bulb-outs would serve to slow average speed of vehicles on these streets. Therefore, the proposed improvements as part of the Visitacion Valley Greenway Corridor would not substantially alter traffic patterns on residential streets. While the proposed curb bulb-outs for stormwater infiltration and street improvements (curb bulb-outs, speed tables/bumps, the bicycle lane, and plantings) would narrow the travel lanes along Hahn Street, Leland Avenue or
Sawyer Street, vehicle capacity and operations on the streets would be maintained as no lanes would be removed. Therefore the proposed elements would not substantially alter traffic patterns in the project area. These proposed elements would instead serve to slow the average speed of vehicles along this corridor, which could cause some vehicles to switch to alternate routes or alternative modes of travel. Vehicle diversions or mode shifts would be expected to be small and could be accommodated on adjacent streets, such as Visitacion or Sunnydale Avenues or within other modes of travel.

The proposed “Play Street” design for a dead-end segment of Leland Avenue, between Hahn Street and the Community Garden, would include a neckdown design at the west approach of the intersection of Leland Avenue and Hahn Street and pavement improvements that would potentially require the removal of some on-street parking. There are several (approximately ten) residences currently along this dead-end street, which would retain local access to their residences and garages, similar to under existing conditions. Improvement Measure 2 (on page 45) related to SFMTA and neighborhood consultation would also apply to this proposed Play Street design. Since this segment of Leland Avenue is currently a dead-end street, the conflicts between community users of the Play Street area and residential vehicle traffic would be limited.

The proposed “Festival Street” design for Leland Avenue from Cora Street to Delta Street north of the Visitacion Valley Clubhouse, Playground and Elementary School would include the installation of chicane curb bulb-outs and special paving treatment to allow for special event-type closures, such as farmer’s markets. The chicanes would serve as traffic calming elements for this two block portion of Leland Avenue and while vehicle lanes along Leland Avenue would be narrowed as a result, the number of travel lanes would remain the same (one eastbound and one westbound). These proposed elements would serve to slow the average speed of vehicles along this corridor and intermittently and temporarily divert traffic when closed, which could cause some vehicles to switch to alternate routes or alternative modes of travel. Vehicle diversions or mode shifts would be expected to be small and could be accommodated on adjacent streets, such as Visitacion or Raymond Avenues or within other modes of travel.

The Visitacion Valley Neighborhood Concept Design project area is located near the Sunnydale HOPE project, which would redevelop the affordable housing development southwest of the project area into a mix of affordable and market-rate housing. The Sunnydale HOPE project would include the realignment of streets running through the area into more of a grid pattern, similar to surrounding blocks. Elements proposed under the Green Connections Project would not conflict with any of the potential changes under the Sunnydale HOPE project, and as with the Sunnydale HOPE project, would serve to improve pedestrian conditions in the larger project area.

Overall as explained above, traffic impacts, either individually or cumulatively, resulting from the implementation of the Visitacion Valley Neighborhood Concept Design as part of the Green Connections Project would therefore be less than significant.

21 Information related to the Sunnydale Housing Development Project can be found under Case file number 2010.0305, on file and available for public review at the Planning Department, 1650 Mission Street, Suite 400.
Transit/Cumulative Transit. Most of the project area is not part of SFMTA Muni routes, with the exception of one block of Sawyer Street between Raymond Avenue and Leland Avenue for Muni Route 56 Rutland (local route) and one block of Hahn Street between Visitacion and Sunnydale Avenues for Muni Routes 8BX Bayshore ‘B’ Express, 8X Bayshore Express, 56 Rutland local route, and 91 Owl (night service). There are Muni transit stops inbound and outbound on Hahn Street at Sunnydale Avenue (northwest and northeast corners on Hahn Street). The proposed improvements along Sawyer Street would include streetscape amenities, which would not substantially affect Muni operations. The proposed improvements to Hahn Street between Visitacion and Sunnydale Avenues include a bicycle lane on the east side of the street, an off-street pedestrian pathway west of the street, and streetscape improvements along the corridor. Although the proposed bicycle lane could narrow the vehicle/transit travel lanes on this street segment, it would not substantially alter the traffic patterns or capacity of the roadway (the one existing southbound and one existing northbound travel lane would be retained on this street segment). Any improvements on the street would require review and coordination with SFMTA Muni Operations Division.

As part of SFMTA’s TEP Service Improvements, the 56 Rutland route segment along Hahn Street would be eliminated and the 56 Rutland route would travel on Leland Avenue east of Sawyer Street. Therefore, cumulatively, the proposed improvements would occur on a modified 56 Rutland route, and the proposed improvements along Leland Avenue (including the chicanes) would be required to be coordinated with SFMTA’s Muni Operations to allow for sufficient clearance of this local transit route.

Overall as explained above, transit impacts, either individually or cumulatively, resulting from the implementation of the Visitacion Valley Neighborhood Concept Design as part of the Green Connections Project would be less than significant.

Bicycle/Cumulative Bicycle. The streets within the Visitacion Valley Neighborhood Concept Design project area are not currently designated bicycle routes; therefore, the proposed design would not affect existing bicycle facilities in the project area. The proposed design would include a bicycle lane on the eastside of Hahn Street. Hahn Street and the connecting streets are not currently designated bicycle routes, so the proposed bicycle lane along Hahn Street would not currently connect to any existing City bicycle routes. Therefore, the bicycle lane along the east side could encourage more bicycles to use this route, increasing the potential of bicycle and vehicle (including transit) conflict. However, this level of bicycle-vehicle conflict would be similar to the conditions at other bicycle lane locations in the city. Additionally, along this segment of Hahn Street, the bicycle traffic would be expected to be relatively low (and likely to be local traffic).

As part of the Sunnydale HOPE project, which is located to the left of Sunnydale Avenue/Hahn Street, potential bicycle lanes may be established on some of the residential streets that run through the Sunnydale HOPE project site. Considering the potential bicycle lanes that may be part of the Sunnydale HOPE project, in conjunction with the proposed Green Connections bicycle lane along Hahn Street discussed above, it may be possible that north/south bicycle route designations and/or improvements within the project area to connect these potential bicycle improvements to the broader designated bicycle network (such as the east/west 705 Bicycle Route which runs on Mansell Street) may be considered. This potential long-term improvement would be required to be coordinated and would not be a significant cumulative environmental impact.
Overall as explained above, bicycle impacts, either individually or cumulatively, resulting from the implementation of the Visitacion Valley Neighborhood Concept Design as part of the Green Connections Project would be less than significant.

Pedestrian. The proposed project elements would improve pedestrian conditions in the project area. The Play Street design on Leland Avenue would introduce a public ‘play’ area, and potential pedestrian-traffic conflict point, onto a local access street. While this would not represent a significant pedestrian hazard due to low traffic volumes along this street segment, Improvement Measure 2 (page 45), which calls for further SFMTA and local neighborhood consultation on the design, traffic calming features and signage to further reduce potential conflicts between the local users of the play area and local residential traffic, is recommended for the Play Street design at this location. Pedestrian impacts resulting from the implementation of the Visitacion Valley Neighborhood Concept Design as part of the Green Connections Project would therefore be less than significant. Cumulative pedestrian impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. The proposed elements of the Visitacion Valley Neighborhood Concept Design would include parking lane modifications such as the installation of permeable parking lanes where feasible and the removal of parking to install various elements of the Concept Design (curb bulb-outs, Play Street, etc.) The design along this Green Connections route is preliminary in nature and the removal of specific parking spaces unknown; therefore, the following is a programmatic analysis of this Concept Design's parking impacts. Along Hahn Street between Sunnydale Avenue and Leland Avenue, the preliminary design of the bicycle lane would retain the on-street parking spaces along the east side of Hahn Street (approximately 27 spaces). It is unknown whether the design of the Play Street along Leland Avenue would include the retention of the approximately nine on-street parking spaces along this dead-end street. Each application of the mid-block crossings along the Visitacion Valley Greenway Corridor could include the removal of an estimated four parking spaces (two on each side of the street), for a total of 13 parking spaces. Similarly, each application of curb bulb-outs could remove approximately one to two on-street parking spaces, if parking is allowed near the intersection as under existing conditions.

Based on the preliminary design of the route, this proposed design could remove an estimated 25 on-street parking spaces (23 spaces noted above plus two spaces for the Play Street bulb-outs) over this approximate twelve block project area. The loss of on-street parking spaces would be at most four per block, which would not represent a substantial loss of parking in the project area. As noted above, the design of the Leland Avenue Play Street is unknown and could remove an additional seven parking spaces. Although this would represent a concentrated loss of parking along this segment of Leland Avenue, on-street parking on nearby streets would still be available. The area is also well-served by public transit, including the 8X Bayshore and 8BX Bayshore ‘B’ Express and 56 Rutland local routes along Hahn and Sawyer Streets. Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-
significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading/Cumulative Loading. Commercial loading spaces would not be removed as part of the proposed Visitacion Valley Neighborhood Concept Design; therefore, there would be no impact, either individually or cumulatively, on commercial loading spaces.

Construction/Cumulative Construction. The proposed design would be constructed in phases and likely in one-to-two block segments, limiting the amount of local disturbance related to construction-related activities and construction vehicles. Construction along SFMTA Muni vehicle routes would require coordination with SF Muni Operations.

Cumulatively, while the schedule of the project implementation is unknown, there is a potential for overlap with the nearby Sunnydale HOPE project, which is a multi-year construction project. Similarly although further away from the project area, ongoing development of the Candlestick Hunters Point redevelopment and Executive Park Plan projects could overlap with construction related to the implementation of the proposed Visitacion Valley Neighborhood Concept Design. The project sponsor, as part of the construction management plan review, would be required to coordinate with any such overlapping development construction, particularly the Sunnydale HOPE project.

Construction impacts would be considered temporary and intermittent in nature, and construction-related transportation impacts, either individually or cumulatively, resulting from the implementation of the Visitacion Valley Neighborhood Concept Design as part of the Green Connections Project, would be less than significant.

Emergency access and design hazards impacts (including cumulative impacts for those topics) are discussed, as applicable, in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed under “Transportation Impacts Common to All Green Connections Project Components,” there would be less-than-significant individual and cumulative emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant emergency access and design hazards impacts related to the Green Connections Project.

Overall, individual and cumulative transportation impacts resulting from the implementation of the proposed Visitacion Valley Neighborhood Concept Design as part of the Green Connections Project would be less than significant. While individual and cumulative traffic impacts would be less than significant, implementation of Improvement Measure 2 as part of the Visitacion Valley Neighborhood Concept Design would further reduce potential traffic impacts.

3b. Potrero Hill Neighborhood Concept Design

The Potrero Hill Neighborhood Concept Design project includes proposed improvements such as pedestrian pathway improvements connecting local residential streets to recreational areas, curb bulb-outs (with landscaping, bio-retention plantings, bicycle parking, extended sidewalk areas), parklets, sidewalk improvements, and other streetscape amenities along 22nd, Illinois and 24th Streets.
Several of the elements proposed in the Potrero Hill Neighborhood Concept Design would be elements that were addressed in the BSP FMND such as the streetscape amenities that would be added along the entire segment of the route (which includes street trees, widening sidewalks, sidewalk landscaping, corner gardens, and pedestrian scale lighting); curb bulb-outs at intersection corners and midblock locations; and the potential greenway/path near or along an adjacent park. These individual elements were previously environmentally cleared in the BSP FMND.

Some of the other elements proposed in the Potrero Hill Neighborhood Concept Design would be improvements similar to elements under ongoing SFMTA, Caltrain and San Francisco Recreation and Parks Department programs, such as proposed improved lighting, drop-off areas and amenities around the Caltrain Station and proposed improved pedestrian pathways at Potrero Recreation Center. Other elements in the Potrero Hill Neighborhood Concept Design are current ongoing projects in the area, such as the proposed removal of the railroad tracks on Illinois Street by the Port, the installation of parklets as part of an ongoing citywide program, and 22nd Street Hill climb stairway (proposed as part of the 1395 22nd Street development project). If it is found that the 22nd Street Hill Climb is infeasible as part of the private development project, improvements could be made along Missouri Street to Sierra Street to Texas Street to 22nd Street.

The program-level environmental analysis below focuses on the implementation of the proposed elements at site-specific locations within the Potrero Hill Neighborhood Concept Design project area.

Traffic. 22nd Street currently has two wide travel lanes (one in each direction), with a parking lane on both sides of the street. Travel lanes would be narrowed in locations where curb bulb-outs, landscaping and parklets are proposed, but would operate with substantially the same vehicle capacity and vehicle turning movements. Traffic calming elements such as proposed bulb-outs would serve to slow the average speed of vehicles on this corridor, which could cause some vehicles to switch to alternate routes or modes of travel. Vehicle diversions or mode shifts would be expected to be small and could be accommodated on adjacent streets and other modes of travel. Therefore, implementation of the proposed design along 22nd Street and adjacent streets extending to Warm Water Cove Park would not substantially alter traffic patterns in the project area. Traffic impacts resulting from the implementation of the Potrero Hill Neighborhood Concept Design, as part of the Green Connections Project, would therefore be less than significant. Cumulative traffic impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative traffic impacts and there would be no cumulatively considerable contributions to significant traffic cumulative impacts related to the Green Connections Project.

Transit/Cumulative Transit. 22nd Street from Pennsylvania to Illinois (and then north along Illinois) is part of the 48 Quintara Muni route. The Muni Woods Division Operation Yard is also located on the south side of 22nd Street between I-280 and Indiana Street (with the yard entry/exit on Indiana Street). The proposed designs, which include some curb bulb-outs along 22nd Street, would not interfere with Muni operations of the Yard facility, and would be required to coordinate with SFMTA Muni Operations. Under SFMTA’s TEP project, this segment of the 48 Quintara would be replaced.

22 Project plans for 1395 22nd Street (aka 790 Pennsylvania Street) development project is on file and available for public review at the Planning Department, 1650 Mission Street, Suite 400, as part of Case No. 2011.0671E.
with similar service under the proposed new 58 24th Street route. (Proposed TEP alterations to Muni routes within Green Connection project areas are included in Attachment C of the Green Connections Transportation Analysis Memo.)

Although the proposed bulbs on 22nd Street would not be expected to conflict with Muni operations, their installation would need to be coordinated with SFMTA.

Overall as explained above, transit impacts, either individually or cumulatively, resulting from the implementation of the Potrero Hill Neighborhood Concept Design as part of the Green Connections Project would be less than significant.

Bicycle/Pedestrian. The proposed Potrero Hill Neighborhood Concept Design would serve to improve both pedestrian and bicycle conditions along this corridor. 22nd Street in this location is not a designated bicycle route. The Port’s proposed removal of the railroad tracks on Illinois Street, which is part of Bicycle Route 5, would improve bicycle safety along this route. Coordination with San Francisco Recreation and Parks Department and Caltrain would be required for the proposed pedestrian improvements/pathways within or connecting to park or Caltrain property. Bicycles that may be travelling along 22nd Street, may experience slower travel speeds, similar to motor vehicle traffic, but since this is not a designated bicycle route, the local bicycle volumes along the corridor likely be low. Overall, bicycle and pedestrian impacts resulting from the implementation of the Potrero Hill Neighborhood Concept Design as part of the Green Connections Project would therefore be less than significant. Cumulative bicycle and pedestrian impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant cumulative bicycle and pedestrian impacts and there would be no cumulatively considerable contributions to significant bicycle and pedestrian cumulative impacts related to the Green Connections Project.

Parking. Several of the proposed elements would remove on-street parking; for instance, the installation of curb bulb-outs which could remove one to two parking spaces per installation. While parklets would be implemented by commercial businesses and designs are unknown at this time, typically one to two parking spaces per parklet would be removed. Based on the proposed concept design, which includes corner curb bulb-outs along 22nd Street, the estimated potential parking loss along the corridor would be 56 parking spaces, which includes: four spaces at Mississippi/22nd Streets, six spaces at Pennsylvania/22nd Streets, up to six spaces at the Caltrain station if passenger loading/unloading is proposed to be added on one side of the street, eight spaces at Indiana/22nd Streets, five spaces at Minnesota/22nd Streets, nine spaces at Tennessee/22nd Streets, and four spaces at Third /22nd Streets, six spaces at Illinois/22nd Streets, and two spaces at Illinois/23rd Streets. While parklets would be implemented by commercial business and designs are unknown at this time, potentially six parking spaces could be removed through the proposed installation of three parklets along the route. Additionally, although the exact design is unknown, some parking along the north side of 24th Street could be removed for the potential greenway/pedestrian pathway connecting Illinois Street to Warm Water Cove Park. While the proposed design for this portion of the route may

23 San Francisco Planning Department. Green Connections Transportation Analysis Memo. October 3, 2013. The Green Connections Transportation Analysis Memo is on file and available for public review at the Planning Department, 1650 Mission Street, Suite 400, as part of Case No. 2014.0060E Green Connections Project.
potentially involve installation of perpendicular parking on the south side of 24th Street, most of the existing street parking is currently utilized for flatbed truck trailer, recreational vehicle, and other tractor trailer parking/storage, so the potential loss or addition of on-street parking spaces was not included in the calculation for the estimated parking removal resulting from the implementation of the Potrero Hill Neighborhood Concept Design.

The estimated removal of 56 parking spaces over approximately 14 blocks would average four spaces per block. The loss of on-street parking spaces would be at most four to six a block and would not be considered a substantial loss of parking in the project area. Additionally, the project area is well-served by transit including Muni’s 48 Quintara route on 22nd Street, Caltrain 22nd Street Station, and the T Third Street rail line on Third Street. Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading/Cumulative Loading. Commercial loading spaces would not be removed as part of the proposed Potrero Hill Neighborhood Concept Design; therefore, there would be no impact, either individually or cumulatively, related to commercial loading.

Construction/Cumulative Construction. The proposed design would be constructed in phases and likely in one-to-two block segments, limiting the amount of local disturbance related to construction-related activities and construction vehicles. Construction along SFMTA Muni vehicle routes would be required to coordinate with SFMTA Muni Operations.

Installation of some of the proposed traffic calming elements could require the diversion or temporary intermittent closures of travel lanes, parking lanes, and sidewalk traffic. For example, the Port’s proposed removal of the train tracks along Illinois Street would likely require the diversion and temporary intermittent closures of northbound and southbound travel lanes. The proposed 22nd Street Hill Climb would be completed as part of the 1395 22nd Street development project (which has an estimated construction schedule of 24 months) and the development project is currently undergoing its own project level environmental review. Construction impacts would be considered temporary and intermittent in nature and construction-related transportation impacts, either individually or cumulatively, resulting from the implementation of the Potrero Hill Neighborhood Concept Design, as part of the Green Connections Project, would be less than significant.

Emergency access and design hazards impacts (including cumulative impacts for those topics) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed under “Transportation Impacts Common to All Green Connections Project Components,” there would be less-than-significant individual and cumulative emergency access and design hazards impacts resulting from the implementation of the Green

24 Project plans for 1395 22nd Street (aka 790 Pennsylvania Street) development project is on file and available for public review at the Planning Department, 1650 Mission Street, Suite 400, as part of Case No. 2011.0671E.
Connections Project and there would be no cumulatively considerable contributions to significant emergency access and design hazards impacts related to the Green Connections Project.

Overall, individual and cumulative transportation impacts resulting from the implementation the proposed Potrero Hill Neighborhood Concept Design as part of the Green Connections Project would be less than significant.

3c. Chinatown Neighborhood Concept Design

The Chinatown Neighborhood Concept Design would include the installation of streetscape improvements, corner bulb-outs, Shared Street treatments near alleyways, and sidewalk extensions along Washington Street from Mason Street to Columbus Avenue.

Several of the proposed elements would be considered elements that were addressed in the BSP FMND such as streetscape amenities that would be added along the entire roadway segment (including street trees, sidewalk landscaping, corner gardens, and pedestrian scale lighting) and corner bulb-outs. These individual elements were previously environmentally cleared in the BSP FMND.

The Shared Street concept was addressed in the BSP FMND, but as applicable along neighborhood residential streets, local boulevards, or alleyways. Washington Street in the project area is a mix of Residential Throughway (Jones to Stockton); Commercial Throughway25 (Stockton to Kearny); and Downtown Commercial26 (Kearney to Columbus); therefore the application of the Shared Street design element as applied in this project area (which was not addressed in the BSP FMND) is discussed in more detail below. Similarly, although sidewalk improvements/extensions were addressed in the BSP FMND, the proposed Design Concept would eliminate a vehicle travel/turning lane for the sidewalk extension, so it is therefore further analyzed below.

The program-level environmental analysis below focuses on the implementation of the proposed elements and improvements described above at site-specific locations within the Chinatown Neighborhood Concept Design project area.

Traffic. With the exception of the Shared Streets and Sidewalk extension, traffic patterns related to implementation the proposed design elements (streetscape improvements and curb bulb-outs) would essentially remain the same as under existing conditions. Travel lanes could be narrowed as a result of implementing proposed bulb-outs in some locations, but would operate with substantially the same vehicle capacity and turning movements. The proposed sidewalk extension along Portsmouth Square would remove the south left-turn lane onto Walter Lum Place along Washington Street, between Walter Lum Place and Kearny Street. Following project installation, the traffic along Washington Street, between Walter Lum Place and Kearny Street, would be required to share the remaining one lane of travel. Based on traffic patterns in the area, vehicle queues at Walter Lum Place

25 Commercial Throughway and Downtown Commercial Streets are roadway classifications established in the San Francisco Better Streets Plan. Commercial Throughways move significant volumes of people across town in a variety of travel modes and attract them to shop, eat, and play from across the city. Downtown Commercial streets handle high pedestrian volumes and high levels of activity throughout the day.

26 Ibid.
and Kearny Street, or extending back to Kearny Street; however, the following improvement measure is recommended.

Improvement Measure 3: The proposed project along Washington Street, between Walter Lum Place and Kearny Street, when designed, should conduct PM peak period and mid-day weekend traffic counts at the intersection of Washington Street and Walter Lum Place (for the through- and left-turn movements) to determine if sufficient capacity in the through-lane exists to accommodate the left-turning vehicles. If it does not, then the project should narrow the sidewalk extension, install a left-turn pocket, and/or remove some or all of the on-street parking on the north side of Washington Street for this block to accommodate the relocation of both of the vehicle movements (through and left-turn movements).

The Shared Street concept was analyzed in the BSP FMND for streets with lower traffic volumes (neighborhood residential and alleys) than envisioned in the Green Connections Project. Although the proposed design is preliminary in nature, the function of the shared street concept along Washington Street would connect local alleys that are cross streets to Washington Street, including Stone Street, Trenton Street, Spofford Street, Waverly Place, Grant Avenue (east side) and Walter Lum Place, across Washington Street. It is unknown at this time what kind of improvements would be proposed, but it could include midblock crosswalks, specialized pavement treatments, parking removals, signage, and traffic calming measures (narrowing of travel lanes, widening of sidewalks). These types of improvements would not substantially alter traffic patterns in the area. Improvements would reduce vehicle speeds, which could result in the diversion of some traffic to other local streets, or shifts in modes of travel. Vehicle diversions or mode shifts would be expected to be small and would likely be accommodated on adjacent streets, such as Pacific Avenue and Sacramento Street and within other modes of travel. Since specific designs are not known at this time, the following improvement measures are recommended.

Improvement Measure 4: As designs for the Shared Streets concepts progress, the project should coordinate with SFMTA, DPW, and the neighborhood (including neighborhood groups, schools and businesses) on the design elements, signage, and use of these street segments to address potential safety concerns, in particular for elder, disabled, and student populations.

Improvement Measure 5: The Shared Street concept between Stone and Trenton Streets should be coordinated further with SFMTA, local schools, in particular Gordon Lau Elementary School (Washington Street from Stockton to Powell Streets has a contraflow bus lane operating during school days [8 a.m. to 6 p.m.]), and Central Subway construction (if overlapping).

Traffic impacts resulting from the implementation of the Chinatown Neighborhood Concept Design as part of the Green Connections Project would be less than significant. Overall cumulative traffic impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative traffic impacts and there would be no cumulatively considerable contributions to significant traffic cumulative impacts related to the Green Connections Project.

Transit: Washington Street from Mason to Powell Streets is part of the Powell/Mason streetcar route. Improvements for this block would include streetscape improvements and potential curb bulb-out elements, which would not substantially interfere with transit operations. Any improvements on the street would require review and coordination with SFMTA Muni Operations Division. The
remainder of Washington Street is not part of Muni route system and proposed improvements would therefore not affect transit operations.

Transit impacts resulting from the implementation of the Chinatown Neighborhood Concept Design as part of the Green Connections Project would therefore be less than significant. Overall cumulative transit impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative transit impacts and there would be no cumulatively considerable contributions to significant transit cumulative impacts related to the Green Connections Project.

Bicycle. Washington Street is not a designated bicycle route, and therefore the proposed improvements would not affect bicycle facilities, or substantially affect bicycle travel in the project area. Bicycles that may be travelling along Washington Street may, similar to motor vehicles, experience slower travel speeds due to proposed traffic calming improvements such as narrowing of travel lanes but it is not anticipated that the proposed improvements would substantially alter bicycle movement in the project area. Therefore, overall bicycle impacts resulting from the implementation of the Chinatown Neighborhood Concept Design as part of the Green Connections Project would be less than significant. Overall cumulative bicycle impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative bicycle impacts and there would be no cumulatively considerable contributions to significant bicycle cumulative impacts related to the Green Connections Project.

Pedestrian. The proposed Chinatown Neighborhood Concept Design would serve to improve pedestrian conditions along the corridor. The inclusion of the Shared Street concept along several segments of Washington Street could potentially increase the number of conflict points between pedestrians and vehicles; however detailed improvements have not yet been proposed at this time. Further environmental review would be required in the future when detailed designs for the Shared Street concept along these segments of Washington Street have been developed. Overall, the Chinatown Neighborhood Concept Design would address pedestrian safety improvements along the corridor. Furthermore, as discussed above, Improvement Measure 4 is recommended to coordinate specific designs with SFMTA and the neighborhood. Pedestrian impacts resulting from the implementation of the Chinatown Neighborhood Concept Design as part of the Green Connections Project would therefore be less than significant. Overall cumulative pedestrian impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” As discussed in that section, there would be less-than-significant cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. Designs for the project are preliminary in nature, and the potential loss of parking unknown. It is likely that curb bulb-outs could result in the loss of one to two parking spaces for each installation along this corridor. Similarly, it is possible that the Shared Street concept, which could include traffic calming elements, could result in the loss of some parking spaces. As specified in Improvement Measure 3, it is recommended that additional traffic counts/observations be made near Walter Lum Place and Washington Street to determine if retention of the left turn lane (through a pocket or lane relocation) is advisable. Retention of current travel lane patterns (whether in a pocket
or left-turn lane), if needed, would likely result in the loss of some parking along this block. Parking removal in this area would result in greater competition for on- and potentially off-street parking spaces in the project area; however, the project area is located near the Portsmouth Square parking garage as well as being in a neighborhood that is well served by transit. Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading/Cumulative Loading. Since this is a commercial segment of Washington Street, it is possible that implementation of proposed improvements could result in the removal of commercial loading spaces. If commercial loading spaces would be removed, as under the BSP, commercial loading spaces shall be replaced in the immediate area (within 250 feet), pursuant to Mitigation Measure TR-1 in the BSP FMND (page 37) and recommendations discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” Mitigation Measure TR-1 would mitigate individual and cumulative significant impacts related to the loss of commercial loading spaces, resulting from the implementation the Chinatown Neighborhood Concept Design as part of the Green Connections Project to less-than-significant levels.

Construction/Cumulative Construction. The proposed design would be constructed in phases and likely in one-to-two block segments, limiting the amount of local disturbance related to construction-related activities and construction vehicles.

Cumulatively, while the schedule of project implementation of the Chinatown Neighborhood Concept Design is unknown, there is potential for overlap with the ongoing construction of the Central Subway and other projects. The project sponsor, as part of the construction management plan review, would be required to coordinate with any such overlapping development construction in order to limit temporary travel, sidewalk, and parking lane closures in the area. Furthermore, as discussed above, Improvement Measure 5 is recommended to coordinate construction with SFMTA and Central Subway construction.

Construction impacts would be considered temporary and intermittent in nature, and construction-related transportation impacts, either individually or cumulatively, resulting from the implementation of the Chinatown Neighborhood Concept Design as part of the Green Connections Project would be less than significant.

Emergency access and design hazards impacts (including cumulative impacts for those topics) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed under that section, there would be less-than-significant individual and cumulative emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant emergency access and design hazards impacts related to the Green Connections Project.
Overall, individual and cumulative transportation impacts resulting from the implementation of the Chinatown Neighborhood Concept Design as part of the Green Connections Project would be less than significant with the implementation of Mitigation Measure TR-1 Provision of New Loading Space. While individual and cumulative traffic impacts would be less than significant, implementation of Improvement Measures 3, 4, and 5 as part of the Chinatown Neighborhood Concept Design would further reduce potential traffic impacts.

3d. Tenderloin Neighborhood Concept Design

The Tenderloin Neighborhood Concept Design includes improvements such as corner bulb-outs, potential street closure/or reduction of travel lanes (on Jones Street), and streetscape amenities along Ellis Street from Hyde to Jones Streets, and along Jones Street from Ellis to Market Streets.

The curb bulb-outs and streetscape amenities would be elements that were addressed in the BSP FMND. These individual elements were previously cleared in the BSP FMND. The street closure or alteration of travel lanes on Jones Street (between Golden Gate Avenue and McAllister Street) warrants further analysis.

The program-level environmental analysis below focuses on the implementation of the proposed elements described above as they apply to site-specific locations in the project area, and the implementation of the proposed street closure or alteration of travel lanes on Jones Street (between Golden Gate Avenue and McAllister Street).

Traffic. The corner bulb-outs along Ellis Street and Jones Streets and installation of streetscape amenities would not substantially affect travel capacity or movements in the project area. It is possible that through the installation of traffic calming elements, including the narrowing of travel lanes, that average travel speeds would reduce and some vehicle traffic may divert to other local streets. However, these diversions, if any, would be expected to be small and could be accommodated on nearby streets, such as Turk and Hyde Streets.

There are three potential design options for Jones Street between Golden Gate Avenue and McAllister Street: 1) complete closure of the one block segment, with the exception of commercial loading during certain hours; 2) reduction of lanes from two (one through/one right-turn) travel lanes to one southbound shared (through/right-turn) lane; and 3) in addition to the reduced lane option, installing Shared Street design elements along the street segment. Proposed closure of this block to vehicle traffic would cause vehicles to use other local streets, increasing the use of Turk Street westbound and Golden Gate Avenue at the closure point. Although specific traffic counts or volumes were not available for this segment of Jones Street, nearby intersection analysis indicates traffic volumes are likely less than 300 vehicles southbound during the PM peak hour. Jones Street at this location does not cross Market Street; therefore, modifications to this one block segment would mainly impact local (not through or commuter) traffic. Considering the other street closure parameters, as presented in Section 1c (page 44) above under design toolkit elements categorized as “road closures,” this street segment is not part of regular Muni service (5 Fulton Owl service only), which could be incorporated into the design if needed. Additionally, there are several alternate travel routes available in this downtown location. Reduction of travel lanes through this block would likely divert some traffic onto other adjacent streets. With several alternate routes available and the traffic volumes on this one-block segment of Jones Street, these diversions of local traffic would not be expected to be substantial.
Traffic impacts resulting from the implementation of the Tenderloin Neighborhood Concept Design as part of the Green Connections Project would be less than significant. Cumulative traffic impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative traffic impacts and there would be no cumulatively considerable contributions to significant traffic cumulative impacts related to the Green Connections Project.

As part of the potential implementation of the proposed street closure or alteration of travel lanes, the following improvement measure is recommended. This is because although a less-than-significant traffic impact would occur with implementation of the proposed street closure or alteration of travel lanes, traffic diversions could occur.

Improvement Measure 6: Traffic counts on this segment of Jones Street, between Golden Gate Avenue and McAllister Street, should be counted to determine, with the closure design, the amount of traffic being diverted to other nearby streets. Similarly, traffic counts for the lane reduction options would serve to inform on the amount of right-turning and through-traffic that could share one vehicle lane, particularly with shared street design concepts, to aid in the design of traffic calming elements.

Transit. Ellis Street from Leavenworth Street to Jones Street is part of SFMTA Muni 27 Bryant outbound service route. Proposed improvements, specifically corner curb bulb-outs would not substantially affect transit service along Ellis Street and would be required to be coordinated with SF Muni operations to ensure sufficient operating street widths remain, in particular at the northwest corner transit stop at Ellis and Jones Streets. For Jones Street, between Golden Gate Avenue and McAllister Street, although not part of the daytime route, the 5 Fulton Owl service utilizes Golden Gate Avenue to Jones Street to McAllister; therefore, the proposed designs would have to incorporate the 5 Fulton Owl service route and its operations, or coordinate with SFMTA further about potential reroutes for the 5 Fulton Owl service. The reroute or accommodation of nighttime 5 Fulton Owl service along this one block would not substantially impact Muni Service in the project area. Transit impacts resulting from the implementation of the Tenderloin Neighborhood Concept Design as part of the Green Connections Project would therefore be less than significant. Overall cumulative transit impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative transit impacts and there would be no cumulatively considerable contributions to significant transit cumulative impacts related to the Green Connections Project.

Bicycle. Ellis Street or Jones Street is not a designated bicycle route, and therefore the project would not impact bicycle facilities or substantially affect bicycle travel in the project area. Bicycles that may be travelling along Ellis or Jones Streets could, similar to motor vehicle traffic, experience slower travel speeds, or diversions. However, similar to motor vehicles, this bicycle traffic would likely be local (and low in volume) and not through commuter traffic. Therefore, bicycle impacts resulting from the implementation of the Tenderloin Neighborhood Concept Design as part of the Green Connections Project would be less than significant. Overall cumulative bicycle impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative
bicycle impacts and there would be no cumulatively considerable contributions to significant bicycle cumulative impacts related to the Green Connections Project.

Pedestrian. The proposed Tenderloin Neighborhood Concept Design would serve to improve pedestrian conditions along both Ellis and Jones Streets in this corridor. The inclusion of Shared Street elements, while overall improving pedestrian conditions, should, as recommended in Improvement Measure 4, include consultation with SFMTA and the neighborhood to address any safety related concerns, in particular for disabled and elderly populations due to potential pedestrian-traffic conflicts. Therefore, pedestrian impacts resulting from the implementation of the Tenderloin Neighborhood Concept Design as part of the Green Connections Project would be less than significant. Overall cumulative pedestrian impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. The application of Toolkit Elements at site-specific locations as part of the Chinatown Neighborhood Concept Design is unknown at this point; therefore a parking loss estimate cannot be estimated. The installation of corner curb bulb-out design could result in the loss of about one to two parking spaces per installation. Similarly, it is possible that the Shared Street concept could include traffic calming elements that could result in the loss of some parking spaces. The closure or limited access on Jones Street for one block could remove up to 16 on-street parking spaces. Alternate on-street parking is available on adjacent streets and the Turk Street Garage is less than one block away from this section of the corridor. Therefore the potential loss of on-street parking spaces on Jones is not considered substantial given the availability of alternative parking near Jones Street. Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading/Cumulative Loading. The implementation of the proposed improvements could result in the removal of commercial loading spaces. Commercial loading access would be retained on Jones Street, if the street closure option was pursued. If other commercial loading spaces would be removed, as under the BSP, commercial loading spaces shall be replaced in the immediate area (within 250 feet), pursuant to Mitigation Measure TR-1 (page 37) and recommendations discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” Mitigation Measure TR-1 would mitigate individual and cumulative impacts related to the loss of commercial loading spaces, resulting from the implementation the Chinatown Neighborhood Concept Design as part of the Green Connections Project to less-than-significant levels.

Construction/Cumulative Construction. The proposed design would be constructed in phases and likely in one-to-two block segments, limiting the amount of local disturbance related to construction-related activities and construction vehicles. Construction along SFMTA Muni vehicle routes would require coordination with SF Muni Operations. Construction impacts would be considered temporary and intermittent in nature, and individual and cumulative construction-related
transportation impacts resulting from the implementation of the Tenderloin Neighborhood Concept Design as part of the Green Connections Project would be less than significant.

Emergency access and design hazards impacts (including cumulative impacts for these topics) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed under “Transportation Impacts Common to All Green Connections Project Components,” there would be less-than-significant individual and cumulative emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant emergency access and design hazards impacts related to the Green Connections Project.

Overall, individual and cumulative transportation impacts resulting from the implementation of the Tenderloin Neighborhood Concept Design as part of the Green Connections Project would be less than significant with the implementation of Mitigation Measure TR-1 provision of New Loading Space (as applicable). While individual and cumulative traffic impacts would be less than significant, implementation of Improvement Measures 4 and 6 as part of the Tenderloin Neighborhood Concept Design would further reduce potential traffic impacts.

3e. Western Addition Neighborhood Concept Design

The Western Addition Neighborhood Concept Design includes improvements such as transit and curb bulb-outs, mid-block crossings, a traffic circle, a potential Play Street area, speed table, and streetscape improvements along Eddy Street from Webster Street to Polk Street, and a portion of Buchanan Street south of Eddy Street up to Larch Street alley (the Play Street portion of the project). The proposed design also includes the addition of bicycle sharrows along this segment of Eddy Street (Eddy Street is currently not a designated bicycle route).

Several of the proposed elements in the Western Addition Neighborhood Concept Design would be elements that were addressed in the BSP FMND such as the streetscape amenities that would be added along the entire roadway segment (including street trees, sidewalk landscaping, corner gardens, and pedestrian scale lighting); landscaped bulb-outs/parking lane planters; Eddy Street transit bulbs on the northeast and southwest corner of Eddy/Buchanan, on the northwest and southwest corners of Eddy/Gough Streets, and on the northeast and southeast corners of Eddy Street/Van Ness Avenue; the curb bulb-outs on all four corners of Eddy/Buchanan Streets, Eddy/Gough Streets, and Eddy/Franklin Streets intersections; and the mid-block crossing with bulb-outs mid-block on Eddy Street between Laguna and Gough Streets (with potentially high-visibility crosswalk elements near Jefferson Park). These individual elements were previously environmentally cleared in the BSP FMND.

The Traffic Circle concept was addressed in the BSP MND, but as applicable along streets without any transit routes; therefore the implementation of the proposed traffic circle at Eddy/Buchanan Streets (Eddy Street includes a transit route) is further analyzed below.

The bus stop consolidation, which would remove the stops on the northeast and southwest of Eddy/Laguna Streets, proposed in the Western Addition Neighborhood Concept Design would be similar to improvements under ongoing SFMTA programs. Bus stop removal is implemented elsewhere in the City by SFMTA on a case-by-case basis and under the SFMTA TEP project, but since
the proposed removal of these bus stops is not currently planned as part of the TEP project, it is further analyzed below.

As part of the Western Addition Neighborhood Concept Design, implementation of the Play Street Design Toolkit Element is proposed for Buchanan Street, south of Eddy Street leading to the Buchanan Street Mall (which is closed off to vehicular traffic), and would include a speed table across Buchanan Street (south side of Eddy Street). The Play Street design as it applies to the site-specific location is further analyzed below.

Overall, the program-level environmental analysis below focuses on implementation of proposed improvements described above, including the traffic circle, Play Street design, bus stop consolidation, and bicycle sharrows, as they apply to site-specific locations within the Western Addition Concept project area.

Traffic. The installation of the proposed design on Eddy Street between Buchanan Street and Van Ness Avenue would serve to calm traffic in the project area, but would not substantially alter traffic patterns. Eddy Street west of Van Ness Avenue currently has one lane of traffic in each direction and parking (metered and unmetered) on both sides of the street. While travel lanes could be narrowed at some locations (resulting from the proposed implementation of traffic circle, transit bulbs, mid-block crossing with curb bulb-outs), traffic movements (including turning movements) and capacity would substantially remain the same as under existing conditions. It is possible with the traffic calming that some vehicle traffic would divert to other nearby streets or alternate modes of travel; however, diversions related to traffic calming elements would generally be low and could be accommodated on adjacent streets, including Turk Street or Golden Gate Avenue or by alternate modes of travel. The installation of transit bulbs would delay traffic behind the 31-Balboa local bus service route when a bus is loading or loading at a bus stop; however, this delay would be considered temporary and intermittent and would not substantially affect overall traffic patterns in the project area.

The Play Street design of Buchanan Street, south of Eddy Street and to the north of the Buchanan Street Mall (which is closed to vehicle traffic) would primarily impact local traffic. This segment of Buchanan Street includes multi-family residential uses on both sides of the street, with driveways on the west side of the street and on-street parking on the east side of the street. This segment of Buchanan Street also currently provides access to Larch Way, which is a one-way driveway between Buchanan Street and Laguna Street that includes residential off-street parking spaces. The residential uses would retain local access to their residences and garages/off-street parking, similar to under existing conditions and travel capacity or movements in the project area would not be substantially impacted.

Although a less-than-significant traffic would occur with the implementation of the Play Street design, the applications of the Play Street design on a low traffic volume street could increase the potential for vehicle conflicts with pedestrians (community members utilizing the Play Street area). Therefore it is recommended that Improvement Measure 2 (page 45) be implemented as part of the Play Street design, to further coordinate with SFMTA and the neighborhood on its application and design. Analysis regarding potential pedestrian-traffic conflicts relating to the Play Street design is presented below under Pedestrians.
At this time, it is unknown whether the different design elements (traffic circle, speed table, transit bulbs, curb bulb-outs) proposed at the intersection of Buchanan/Eddy Streets could be accommodated within the right-of-way and still maintain travel lanes and transit maneuvers (with overhead wires). Therefore it is recommended that preliminary designs be further coordinated with SFMTA per Improvement Measure 7 below. This coordination could result in the proposed traffic circle design being potentially altered to a Mountable Traffic Circle design. Subsequent detailed designs as reviewed by SFMTA would ensure the maintenance of existing traffic patterns and transit maneuvers at this intersection; therefore, the design would not result in a significant traffic impact. Analysis regarding potential transit impacts is presented below under Transit.

Improvement Measure 7: The design of the Eddy Street/Buchanan Street intersection should be developed in coordination with SFMTA to ensure traffic and transit operations are not substantially impacted.

Overall, traffic impacts resulting from the implementation of the Western Addition Neighborhood Concept Design as part of the Green Connections Project would be less than significant. General cumulative traffic impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative traffic impacts and there would be no cumulatively considerable contributions to significant traffic cumulative impacts related to the Green Connections Project.

Transit. The proposed transit bulbs on Eddy Street on the northeast and southwest corner of Buchanan/Eddy Streets, on the northwest and southwest corners of Eddy/Gough Streets, and on the northeast and southeast corners of Eddy Street/Van Ness Avenue would improve transit operations for the 31-Balboa local transit service since buses would no longer have to pull in and out of Eddy Street traffic to load and unload passengers. The potential transit stop removal at Laguna Street would require additional review by SFMTA Operations Division, and would need to be consistent with SFMTA’s transit stop spacing policy. The proposed traffic calming elements along this local Muni route, including the mid-block crossing, would not substantially alter vehicle or Muni transit travel in the project area.

In conjunction with the proposed transit bulbs at the northeast and southwest corners of the Buchanan/Eddy Streets intersection, a traffic circle is also proposed at this intersection. Given the presence of overhead wires for Muni’s 31-Balboa route along Eddy Street and the width of the existing right-of-way, implementation of both the transit bulbs and traffic circle may not be feasible. Alternatively, the proposed traffic circle may be altered to a mountable traffic circle as the proposed design is further reviewed with SFMTA pursuant to Improvement Measure 7 above. The design at Buchanan/Eddy Streets would be designed such that it would not substantially interfere with Muni’s 31-Balboa transit route maneuvers. Similarly, the design of the mid-block crossing with high-visibility crossing design and the stop consolidations would also be reviewed with SFMTA Muni operations.

Overall, transit impacts resulting from the implementation of the Western Addition Neighborhood Concept Design as part of the Green Connections Project would be less than significant. General cumulative transit impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” and as discussed in that section, there would be less-than-significant cumulative transit impacts and there would be no cumulatively...
considerable contributions to significant transit cumulative impacts related to the Green Connections Project.

Bicycle. Eddy Street is not a designated bicycle route, and therefore the proposed project would not impact bicycle facilities in the project area. Bicycles that may be travelling along Eddy Street may, similar to motor vehicle traffic, experience slower travel speeds and temporary delays when buses are stopped at transit bulbs. The proposed design would involve the addition of bicycle sharrows along this segment of Eddy Street, even though Eddy Street is not currently a designated bicycle route. Although this would not substantially impact bicycle travel in the project area, this component of the proposed design would be required to be coordinated further with SFMTA. Overall, bicycle impacts resulting from the implementation of the Western Addition Neighborhood Concept Design as part of the Green Connections Project would be less than significant. General cumulative bicycle impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components and as discussed in that section, there would be less-than-significant cumulative bicycle impacts and there would be no cumulatively considerable contributions to significant bicycle cumulative impacts related to the Green Connections Project.”

Pedestrian. The proposed Western Addition Neighborhood Concept Design would serve to improve pedestrian conditions along this corridor. However, the inclusion of the Play Street area design on Buchanan Street, south of Eddy Street and north of Buchanan Street Mall, could introduce a potential hazard to pedestrians. This segment of Buchanan Street currently provides car access to multi-family residential uses on both sides of the street segment and the residential uses would retain local access to their residences and garages/off-street parking areas. So while a less-than-significant traffic would occur with the implementation of the Play Street design, the applications of the Play Street design on a low traffic volume street could increase the potential for vehicle conflicts with pedestrians (community members utilizing the Play Street area). Therefore it is recommended that Improvement Measure 2 (page 45) be implemented as part of the Play Street design, to further coordinate with SFMTA and the neighborhood on its application and design to ensure the Play Street design could operate safely in this project area.

Overall, pedestrian impacts resulting from the implementation of the Western Addition Neighborhood Concept Design as part of the Green Connections Project would be less than significant. General cumulative pedestrian impacts are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components” And as discussed in that section, there would be less-than-significant cumulative pedestrian impacts and there would be no cumulatively considerable contributions to significant pedestrian cumulative impacts related to the Green Connections Project.

Parking. Implementation of the Western Addition Neighborhood Concept Design could result in the removal of on-street parking, which is metered east of Gough Street and unmetered west of Gough Street (with a 2 hour parking restrictions under Parking Permit Area R except around Jefferson Square). It is unknown whether the Play Street design would remove parking along Buchanan Street, south of Eddy Street, but there are approximately six on-street parking spaces located on this segment of Buchanan Street.
The installation of curb bulb-outs at corners or midblock could remove one to two parking spaces per installation, with an estimate of four spaces at the intersection of Buchanan/Eddy Streets, three spaces at the intersection of Eddy/Laguna Streets, eight spaces at the Eddy Street mid-block crossing, two spaces at the intersection of Eddy/Gough Streets, four spaces midblock on Eddy Street between Gough and Franklin Streets, and two spaces on Eddy Street approaching Van Ness Avenue, for a total of 29 estimated parking space removals. The estimated removal of 29 on-street parking spaces over approximately six blocks would average approximately almost five spaces per block. The loss of on-street parking spaces would be at most eight a block and not be considered a substantial loss of parking. Additionally, the project corridor is well-served by transit (on local service route 31-Balboa). Overall parking impacts and conclusions (including cumulative parking impacts) are discussed in the section above under “Transportation Impacts Common to All Green Connections Project Components.” As discussed in that section, there would be less-than-significant individual and cumulative parking impacts and there would be no cumulatively considerable contributions to significant parking cumulative impacts related to the Green Connections Project.

Loading/Cumulative Loading. Commercial loading spaces would not be removed as part of the proposed Western Addition Neighborhood Concept Design; therefore, there would be no impact, either individually or cumulatively, on commercial loading spaces.

Construction and emergency access and design hazards impacts (including cumulative impacts for these topics) are discussed in the section above under “Transportation Impacts Common to All Green connections Project Components.” As discussed under that section, there would be less-than-significant individual and cumulative construction and emergency access and design hazards impacts resulting from the implementation of the Green Connections Project and there would be no cumulatively considerable contributions to significant construction and emergency access and design hazards impacts related to the Green Connections Project.

Overall, individual and cumulative transportation impacts resulting from the implementation of the Western Addition Neighborhood Concept Design as part of the Green Connections Project would be less than significant. While individual and cumulative traffic impacts would be less than significant, implementation of Improvement Measures 2 and 7 as part of the Western Addition Concept Design would further reduce potential traffic impacts.

Aesthetics
The Green Connections Design Toolkit Elements considered in this Addendum do not involve development or removal of substantial above grade structures; nor do they involve substantial adverse physical changes to the public right-of-way. There are no designated scenic highways in the Green Connections Network. Portions of Green Connections Route 24 (Skyline Boulevard/State Route 35 from the San Francisco border to the Great Highway), portions of Green Connections Route 22 (from Lake Merced to Sloat Boulevard), and portions of Green Connections Route 23 (from the northern portion of Golden Gate Park to the Presidio) are eligible for Scenic Highway Status but are not designated. There are no specific improvements being proposed for those Green Connections Network street segments at this time and substantial obstruction of scenic views is not anticipated with implementation of the proposed project. Therefore, the proposed project would result in less-than-significant impacts on scenic views.
Similar to the BSP, the Green Connections Project may include the removal, relocation, or replacement of significant street trees. Site-specific projects associated with the implementation of the Green Connections Project, like BSP projects, would be required to adhere to Department of Public Works and/or Recreation and Park Department regulations and procedures for tree removal, as discussed in the BSP FMND. Similar to the BSP, implementation of the Green Connections Project may require minor excavation that could result in trimming of tree roots. BSP FMND Mitigation Measure AE-1 (see page 53 of the BSP FMND), which requires a qualified arborist to be on site if project construction involves the trimming of tree roots greater than two inches, shall apply to the Green Connections Project, which would ensure that trimming does not cause an adverse sight impact to the trees and would reduce the impacts of the Green Connections Project to streets trees to less-than-significant levels. Overall, the proposed project, with implementation of Mitigation Measure AE-1, would result in less-than-significant impacts on scenic tree resources.

Similar to the BSP, the Green Connections Project includes standard streetscape improvements related to street lighting. This element was previously environmentally cleared in the BSP FMND.

Similar to the BSP, the Green Connections Project is intended to help improve the visual quality of City streetscapes. While the additional design elements and improvements could result in incremental visual changes in the public right-of-way, implementation of the Green Connections Project, as demonstrated by the representative Focus Neighborhood Concept Designs that are discussed starting on page 58, would be designed to be consistent with the existing character of the surrounding neighborhoods. Therefore, the Green Connections Project would result in less-than-significant impacts related to aesthetic visual character.

Implementation of the Green Connections Project in combination with other cumulative projects combined could represent a change in the visual character of the project area. However, the proposed project is not expected to impact scenic views and the removal of trees would be subject to compliance with DPW regulation. The change in visual character resulting from the implementation of the Green Connections Project, although noticeable, would be consistent with the visually diverse nature of the project area.

Therefore, implementation of the Green Connections project overall would result in less-than-significant individual or cumulative impacts related to aesthetics, similar to the findings in the BSP FMND.

Air Quality

Similar to the BSP, the Green Connections Project would involve construction in the public right-of-way. The BSP FMND identified Mitigation Measure AQ-1 (see page 120 of the BSP FMND), which requires the preparation of Site-specific Dust Control Plans\(^\text{27}\) prior to starting construction of BSP-based projects,

\(^{27}\) Pursuant to the San Francisco Health Code Article 22B, Section 1247, for construction on City property, “All departments, boards, commissions, and agencies of the City and County of San Francisco that authorize construction or improvements on land under their jurisdiction under circumstances where no building, excavation, grading, foundation, or other permit needs to be obtained under the San Francisco Building Code shall adopt rules and regulations to insure that the same dust control requirements that are set forth in this Article are followed.”
implementing the City’s Construction Dust Control Ordinance (Ordinance 176-08, effective July 30, 2008). The Green Connections Project is required to adhere to the Construction Dust Control Ordinance, which would reduce potential dust-related air quality impacts resulting from future site-specific projects under the overall Green Connections Project to less-than-significant levels.

Similar to the BSP, the Green Connections Project would not generate any new vehicle trips. However, the Design Toolkit Elements that would result in reduced roadway capacity could cause an increase in traffic congestion that could, in turn, result in an increase in criteria air pollutants. The reduction in width and reconfiguration of vehicle travel and turn lanes could potentially result in localized traffic congestion. The background transportation analysis for this Addendum evaluated the potential for the Green Connections Project to result in traffic delays. For all the proposed design features analyzed that could potentially cause a traffic delay, the transportation analysis in this document concluded that these delays would not result in a substantial increase in delay over existing conditions. Therefore the incremental traffic delays resulting from the implementation of the Green Connections Project would result in less-than-significant localized air quality impacts.

Similar to the BSP, the Green Connections project at a programmatic level would not expose sensitive receptors to substantial amount of pollutants and impacts to sensitive receptors so impacts to sensitive receptors are considered less than significant. The Green Connections project would not include uses prone to the generation of odors.

Therefore, implementation of the Green Connections project overall would result in less-than-significant individual and cumulative impacts related to air quality, similar to the findings in the BSP FMND.

Greenhouse Gas Emissions

The Green Connections Project could result in additional greenhouse gas (GHG) emissions during the construction period by requiring additional curbs or concrete. However, these construction-related emissions could be partially or wholly off-set by the incorporation of vegetation/landscaping into the Design Toolkit Elements, increasing the amount of carbon sequestered. The Green Connections Project could slightly reduce travel speeds where proposed traffic calming improvements would be installed, resulting in longer trip times. These incrementally longer trip times could result in a negligible increase in GHGs. The Green Connections Project is also intended to enhance pedestrian safety overall, which could encourage pedestrian trips citywide, thereby reducing overall vehicle miles traveled (VMT) citywide. The BSP FMND concluded that the proposed objectives and policies of the BSP are not anticipated to generate substantial amount of GHG emissions, either directly or indirectly; nor conflict with any plans, policies or regulations adopted for the purpose of reducing GHG emissions. Since the objectives and policies of the Green Connections Project are consistent with those of the BSP, the conclusions reached in the BSP FMND for GHG emissions remain relevant for the Green Connections Project.

Therefore, the implementation of the Green Connections project would result in less-than-significant individual and cumulative impacts related to greenhouse gas emissions, similar to the findings in the BSP FMND.
Other Environmental Topics

The BSP FMND identified less-than-significant or no impacts for the following environmental topic areas: land use and land use planning; population and housing; noise; wind and shadow; recreation; utilities and service systems; public services; geology and soils; hydrology and water quality; mineral and energy resources; and agricultural and forest resources. The conclusions reached in the BSP FMND for these topics also remain relevant for the Green Connections Project because elements that are part of the Green Connections Project are similar in scope to those analyzed in the BSP FMND and the significance conclusions reached in the BSP FMND for these environmental topics would not be different for the Green Connections Project. These topics were therefore not further analyzed in this Green Connections Project Addendum.

The BSP FMND found that impacts for the following environmental topic areas not discussed above could be reduced to a less-than-significant level with mitigation measures incorporated: cultural and paleontological resources; biological resources; and hazards and hazardous materials.

The BSP FMND determined that the BSP could result in soil disturbing activities that could potentially impact archeological resources. The Green Connections Project could result in similar soil disturbing activities. BSP FMND Mitigation Measure Cul-1 Archeological Resources – Accidental Discovery (presented on page 64 of the BSP FMND) and BSP FMND Mitigation Measure Cul-2 Archeological Monitoring: Hispanic Period Archeological District (presented on page 65 of the BSP FMND) shall apply to the Green Connections Project and would reduce potentially significant archeological impacts to less-than-significant levels. As the Green Connections Project is similar in scope to the BSP improvements, the conclusions reached in the BSP FMND for cultural and paleontological resources remain relevant for the Green Connections Project. Therefore, with Mitigation Measures Cul-1 and Cul-2, the Green Connections Project would result in less-than-significant individual and cumulative impacts related to archeological resources, similar to the findings in the BSP FMND.

The BSP FMND determined that the BSP could lead to physical changes within the public right-of-way, which consists primarily of paved surfaces, but also includes trees and landscaping located along the streets and in the medians. The BSP FMND determined that the BSP could potentially result in the removal, relocation, and/or replacement of trees (primarily street trees) in the public right-of-way, which could affect migratory nesting birds. The Green Connections Project could result in physical changes similar to the BSP. The BSP FMND identified Mitigation Measure BIO-1 Biological Resources-Nesting Birds (presented on page 151 of the BSP FMND), which implements the Migratory Bird Treaty Act to reduce potentially significant impacts associated with nesting birds to less-than-significant levels. The Green Connections Project is required to adhere to the Migratory Bird Treaty Act, which would ensure that potential impacts on biological resources would be reduced to a less-than-significant level. Additionally, as discussed under Aesthetics, BSP FMND Mitigation Measure M-AE-1 Tree Root Protection would apply to the Green Connections Project and reduce impacts to street trees to a less-than-significant level. As the Green Connections Project is similar in scope to the BSP improvements, the conclusions reached in the BSP FMND for biological resources remain relevant for the Green Connections Project. Therefore, with implementation of Mitigation Measure M-AE-1, implementation of the Green Connections project overall would result in less-than-significant individual and cumulative impacts related to biological resources, similar to the findings in the BSP FMND.
The BSP FMND determined that the BSP could result in soil disturbing activities in Maher-designated areas, and soil with hazardous concentrations of metals or petroleum hydrocarbons could be encountered. As such, it was determined that the BSP project-related construction activities could have the potential to create a significant hazardous materials impacts in the future related to excavation and transport exposure to contaminated soil during the construction phase of future BSP-proposed streetscape improvements. The Green Connections Project could result in similar soil disturbing activities as the BSP. Existing local, state, and federal requirements regarding the handling and disposal of soil and groundwater containing chemical contaminants would apply to the Green Connections Project, which would reduce potentially significant impacts associated with hazardous materials to less-than-significant levels. The BSP FMND identified Mitigation Measure HAZ-1 Hazardous Materials (presented on page 162 of the BSP FMND) to reduce impacts associated with hazards; however, this measure is deemed no longer applicable. Since approval of the BSP FMND, the Board of Supervisors passed Ordinance 155-13 (effective July 25, 2013), which updated the Maher Ordinance and expanded the boundaries and types of projects for which soil testing is required and includes all substantive elements and actions called for in Mitigation measure HAZ-1. As the improvements in the Green Connections Project are similar in scope to the BSP improvements, the conclusions reached in the BSP FMND for hazards remain relevant for the Green Connections Project. Therefore, the Green Connections project overall would result in less-than-significant individual and cumulative impacts related to hazards and hazardous materials, similar to the findings in the BSP FMND.

CONCLUSION

Based on the foregoing, it is concluded that the analyses conducted and the conclusions reached in the BSP FMND, adopted and issued on September 15, 2010, remain valid and that no supplemental environmental review is required. The Green Connections Project would not cause new significant impacts not identified in the final mitigated negative declaration, and no new mitigation measures would be necessary to reduce potentially significant impacts. No changes have occurred with respect to circumstances surrounding the Green Connections Project that would cause significant environmental impacts to which the project would contribute considerably, and no new information has become available that shows that the project would cause significant environmental impacts. Therefore, no supplemental environmental review is required beyond this addendum.

28 The Maher Ordinance (first passed in 1986 [Ordinance 253-86] and subsequently updated in 2013 [Ordinance 155-13]) requires the analysis of soils for contamination for certain projects in areas of Bay fill or areas of current or historical industrial use, areas within 150 feet of an elevated freeway and areas near sites with current or past underground storage tanks (including current and former gas stations and dry cleaners).
Addendum to Mitigated Negative Declaration
March 12, 2014 Green Connections Project

I do hereby certify that the above determination has been made pursuant to State and Local requirements.

DATE March 12, 2014

Sarah B. Jones, Environmental Review Officer for John Rahaim, Director of Planning

cc: Kearstin Dischinger, Project Sponsor