Appendix 4.7A Potrero HOPE Transportation Study. CDM Smith. October 11, 2012. Case NO. 2010.0515E

POTRERO HOPE TRANSPORTATION STUDY

Draft \#4

Case No. 2010.0515!

Prepared for:
City and County of San Francisco
Planning Department

Prepared by:
CDM Smith
(This page intentionally left blank)

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1-1
1.1 Project Location 1-1
1.2 Project Description 1-2
1.3 Project Alternatives or Variants 1-9
1.3.1 Alternative 1 1-10
1.3.2 Alternative 2 1-13
1.4 Project Transportation Characteristics 1-13
1.4.1 Pedestrian Access 1-13
1.4.2 Vehicular Access 1-15
1.4.3 Freight Loading and Unloading 1-19
1.4.4 Emergency Vehicle Access 1-19
1.4.5 Project Parking 1-20
1.4.6 Trash Access 1-21
1.4.7 Bicycle Parking 1-21
1.5 Study Scope and Approach 1-22
CHAPTER 2: SETTING 2-1
2.1 Roadway Network 2-1
2.1.1 Regional Access 2-1
2.1.2 Local Access 2-1
2.2 Intersection Operating Conditions 2-4
2.3 Freeway and Ramp Junction Operating Conditions 2-7
2.4 Transit Network 2-9
2.4.1 Local Transit Providers 2-10
2.4.2 Existing Muni Corridor Analysis 2-12
2.4.3 Muni Transit Effectiveness Project (TEP) Recommendations 2-14
2.4.4 Regional Transit Providers 2-15
2.4.5 Existing Regional Transit Screenline Analysis 2-15
2.5 Pedestrian Conditions 2-16
2.6 Bicycle Conditions 2-17
2.7 Retail and Freight Loading Conditions 2-19
2.8 Parking Conditions 2-19
2.8.1 On-Street Parking Conditions 2-20
2.8.2 Off-Street Parking Conditions 2-20
2.8.3 On-Site Parking Conditions 2-23
CHAPTER 3: TRAVEL DEMAND ANALYSIS 3-1
3.1 Trip Generation 3-1
3.2 Mode Split 3-3
3.3 TRIP DISTRIBUTION/ASSIGNMENT 3-5
3.4 Freight Delivery and Service Vehicle Demand 3-9
3.5 Parking Demand 3-9
CHAPTER 4: IMPACT ANALYSIS 4-1
4.1 SIGNIFICANCE CRITERIA 4-1
4.2 EXISting plus Project Conditions 4-2
4.2.1 Traffic Impacts 4-2
4.2.2 Transit Impacts 4-14
4.2.3 Pedestrian Impacts 4-26
4.2.4 Bicycle Impacts 4-28
4.2.5 Loading Impacts 4-30
4.2.6 Emergency Vehicle Access Operations 4-32
4.2.7 Construction Impacts 4-32
4.2.8 Parking Analysis 4-44
4.3 2030 Cumulative Impacts 4-46
4.3.1 Background Growth 4-46
4.3.2 Foreseeable Transportation Network Changes 4-53
4.3.3 Traffic Impacts 4-54
4.3.4 Transit Impacts 4-67
CHAPTER 5: MITIGATION AND IMPROVEMENT MEASURES 5-1
5.1 Mitigation Measures - Existing plus Project Conditions 5-1
5.1.1 Traffic and Circulation 5-1
5.1.2 Transit 5-2
5.1.3 Pedestrian 5-2
5.1.4 Bicycle 5-2
5.1.5 Loading 5-2
5.1.6 Emergency Access 5-3
5.1.7 Construction 5-3
5.2 Mitigation Measures - 2030 Cumulative plus Project Conditions 5-4
5.2.1 Traffic 5-4
5.2.2 Transit 5-7
5.3 IMPROVEMENT MEASURES 5-8
5.3.1 Transportation Demand Management Plan 5-8
List of Tables
Table 1-1: Summary of Existing and Proposed Project Land Uses 1-2
Table 1-2: Distribution of Housing Units by Block - Proposed Project 1-5
Table 1-3: Summary of Existing and Alternative 1 Land Uses 1-10
Table 1-4: Distribution of Housing Units by Block - Alternative 1 1-12
Table 2-1: Existing Intersection Operations - Weekday PM Peak Hour 2-7
Table 2-2: Existing Freeway Segment Operations - Weekday AM and PM Peak Hours 2-9
Table 2-3: Existing Ramp Junction Operations - Weekday PM Peak Hour 2-9
Table 2-4: Nearby Muni Service - Weekday Conditions 2-12
Table 2-5: Muni Route Analysis - Existing Weekday PM Peak Hour 2-13
Table 2-6: Muni Screenline Analysis - Existing Weekday PM Peak Hour. 2-14
Table 2-7: Regional Transit Screenline Analysis - Existing Weekday PM Peak Hour 2-16
Table 2-8: San Francisco Bicycle Plan Projects near the Project Site. 2-19
Table 2-9: Existing Study Area On-Street Parking Supply and Occupancy - Weekday PM Peak Period 2-22
Table 2-10: Existing Project Site Parking Occupancy - Weekday PM Peak Period 2-24
Table 3-1: Weekday Trip Generation Rates. 3-2
Table 3-2: Weekday Person-Trip Generation - Proposed Project 3-3
Table 3-3: Mode Split of Project-Related Trips 3-4
Table 3-4: Trip Generation by Mode - Weekday PM Peak Hour 3-4
Table 3-5: Trip Distribution Patterns 3-5
Table 3-6: Project Trip Distribution to Study Intersections - PM Peak Hour. 3-6
Table 3-7: Delivery/Service Vehicle Trips and Loading Space Demand 3-9
Table 3-8: Proposed Project and Alternative 1 Housing Mix 3-10
Table 3-9: Parking Demand - Weekday Evening Peak Period 3-11
Table 4-1: PM Peak Hour Intersection Operations - Existing vs. Existing plus Project Conditions 4-6
Table 4-2: Existing vs. Existing plus Project Freeway Segment Operations - Weekday AM and PM Peak Hours 4-8
Table 4-3: Existing vs. Existing plus Project Ramp Junction Operations - Weekday PM Peak Hour 4-8
Table 4-4: Distribution of Transit Trips - Weekday PM Peak Hour. 4-15
Table 4-5: Muni Line-by-Line Analysis - Existing plus Project Weekday PM Peak Hour 4-17
Table 4-6: Existing plus Project Muni Screenline Analysis - Weekday PM Peak Hour 4-20
Table 4-7: Existing plus Project Regional Screenline Analysis - Weekday PM Peak Hour. 4-22
Table 4-8: San Francisco Planning Code Off-Street Parking Requirements 4-45
Table 4-9: 2030 Cumulative and 2030 Cumulative plus Project Traffic Volumes (AM Peak Hour) - Study Freeway Segments 4-51
Table 4-10: 2030 Cumulative and 2030 Cumulative plus Project Traffic Volumes (PM Peak Hour) - Study Freeway Segments 4-51
Table 4-11: 2030 Cumulative and 2030 Cumulative plus Project Traffic Volumes (PM Peak Hour) - Study Ramp Junctions 4-52
table 4-12: PM Peak Hour Intersection Operations - 2030 Cumulative vs. Cumulative plus Project CONDITIONS 4-55
Table 4-13: AM and PM Peak Hour Freeway Segment Operations - 2030 Cumulative vs. 2030 Cumulative plus Project Conditions. 4-63
Table 4-14: PM Peak Hour Ramp Junction Operations - 2030 Cumulative vs. 2030 Cumulative plus Project Conditions 4-66
table 4-15: Muni line-by-Line Analysis - 2030 Cumulative vs. Cumulative plus Project Weekday PM Peak Hour. 4-69
table 4-16: 2030 Cumulative vs. Cumulative plus Project Muni Screenline Analysis - Weekday PM Peak Hour...4-74
table 4-17: 2030 Cumulative vs. Cumulative plus Project Regional Transit Screenline Analysis - Weekday PM Peak Hour..

4-77
List of Figures
Figure 1-1: Project Location 1-3
Figure 1-2: Project Site 1-4
Figure 1-3: Project Site Plan 1-6
Figure 1-4: Project Site Plan over Existing Site 1-7
Figure 1-5: Proposed Project Land Use Plan 1-8
Figure 1-6: Alternative 1 Land Use Plan 1-11
Figure 1-7: Planned Muni Routes and Stops 1-18
Figure 1-8: Project Study Area 1-24
Figure 2-1: Intersection Volumes and Geometric Configurations - Existing PM Peak Hour 2-5
Figure 2-2: Existing Transit Network 2-11
FIGURE 2-3: EXISTING BICYCLE NETWORK 2-18
Figure 2-4: Parking Study Area 2-21
Figure 3-1: Project Trip Distribution - Inbound 3-7
Figure 3-2: Project Trip Distribution - Outbound 3-8
Figure 4-1: Intersection Volumes and Geometric Configurations - Existing plus Project PM Peak Hour (PRoposed Project) 4-3
Figure 4-2: Intersection Volumes and Geometric Configurations - Existing plus Project PM Peak Hour (Alternative 1) 4-4
Figure 4-3: New Vehicle and Pedestrian Connections 4-13
Figure 4-4: Preliminary Construction Phasing - Proposed Project and Alternative 1 4-33
Figure 4-5: Preliminary Construction Phasing - Alternative 2 4-34
Figure 4-6: Construction Emergency Vehicle Access - Proposed Project and Alternative 1 4-43
Figure 4-7: Intersection Volumes and Geometric Configurations - 2030 Cumulative PM Peak Hour 4-48
Figure 4-8: Intersection Volumes and Geometric Configurations - 2030 Cumulative plus Project PM Peak Hour (Proposed Project) 4-49
Figure 4-9: Intersection Volumes and Geometric Configurations - 2030 Cumulative plus Project PM Peak Hour (Alternative 1) 4-50

ApPENDICES

ApPENDIX A	Scope of Work
ApPENDIX B	Project Site Plans
Appendix C	Roadway Network Definitions
APPENDIX D	HCM 2000 Methodology
ApPENDIX E	Traffic Counts
ApPENDIX F	Intersection LOS Analysis
ApPENDIX G	Freeway and Ramp Analysis
ApPENDIX H	Transit Data and Analysis
Appendix I	Travel Demand Analysis
Appendix J	Parking and Loading Analysis
APPENDIX K	Signal Warrant Analysis
APPENDIX L	Future Volume Development

(This page intentionally left blank)

Chapter 1: Introduction

A discussion of the existing transportation conditions and an assessment of the effect on circulation network operations associated with the proposed Potrero Annex and Terraces HOPE SF Development project in San Francisco (herein referred to as the Proposed Project) are included in this transportation report. The following transportation operations were evaluated in the study for the Proposed Project and project alternatives:

- Traffic conditions
- Transit operations
- Pedestrian circulation operations
- Bicycle circulation conditions
- Loading operations
- Construction-related conditions
- Parking conditions, for informational purposes

The scope of work for this transportation study is included in Appendix A.

1.1 Project Location

The Proposed Project is located at 1095 Connecticut Street in the Potrero Hill neighborhood of San Francisco, California. It is roughly bounded by $22^{\text {nd }}$ Street to the north, Pennsylvania Avenue to the east, $26^{\text {th }}$ Street to the south, and Wisconsin Street to the west. Regionally, the project site is located between the Interstate 280 (I-280) and United States Highway 101 (US 101) freeways, one-half block west of I-280 and four blocks east of US 101. The project site is 33 acres in size (38 acres including public streets) and is located on multiple Assessor's Blocks within San Francisco. The project site consists of Blocks 4220, 4220A, 4222A, 4223, and 4285B, portions of Blocks 4167 (Lots 004 and 004A), and portions of Block 4287 (Lots 001A, 007, 027, 028, 030, 031, and 032). Block 4287 is located at the southeast corner of $25^{\text {th }}$ Street and Connecticut Street, and for purposes of this transportation study, it is included as part of the Proposed Project. The project site lies in a Residential, Mixed-Use - Moderate Density (RM-2) zoning district and a 40-X height and bulk district.

The project site is located at the existing Potrero Terrace and Potrero Annex housing developments, owned by the San Francisco Housing Authority. These housing developments are anticipated to be completely rebuilt as part of the Proposed Project. Currently, there are 23 residential buildings on the Potrero Annex parcel and 38 residential buildings on the Potrero Terrace parcel, with building heights ranging from 30 to 40 feet at the project site. At full occupancy, a total of 620 affordable housing units (40 studio and one-bedroom units, 433 two-bedroom units, 110 three-bedroom units, 18 four-bedroom units, and 5 five-bedroom units) are present at the site, with 151 units located within the Potrero Annex parcel and 469 units located within the Potrero Terrace parcel. Of these 620 units, 16 units are currently occupied by 1,300 -square foot day care and 2,200 -square foot preschool facilities. The existing site has a total of 592,000 gross square feet of development, with approximately 256 off-street parking spaces, 100 on-street parking spaces, and no loading spaces.

The project site is surrounded by residential uses to the north, west and east; small commercial uses to the east and within nearby residential neighborhoods; various open spaces such as the Starr King Open Space to the west and Potrero Hill Recreation Center to the north; and industrial facilities to the east and south. Starr King Elementary School is also located in the neighborhood, immediately to the west of the project site. The Proposed Project was identified as a HOPE SF redevelopment location by the Showplace Square/Potrero Hill Area Plan, which is part of the greater Eastern Neighborhoods Area Plan.

The Proposed Project is located within Superdistrict 3, in the southeast quadrant of San Francisco. The project location is shown in Figure 1-1, while the project site is exhibited in Figure 1-2.

1.2 Project Description

The Proposed Project includes a complete redevelopment of the project site. The Proposed Project would demolish the existing 620 affordable housing units and construct up to 1,700 mixed-income housing units (up to 970 affordable, 630 market rate, and 100 senior units) along with two retail facilities (5,500 square feet and 9,500 square feet in size), a 35,000 square feet community center (including daycare and preschool facilities), several small parks and open spaces, and associated residential parking facilities. A summary of existing land uses and those proposed as part of the Proposed Project are provided in Table 1-1.

Table 1-1: Summary of Existing and Proposed Project Land Uses

Type of Use	Existing	Proposed Project
Residential	577,000 sf	up to $2,000,000$ sf
Retail	0	$15,000 \mathrm{sf}$
Community Center	0	up to 35,000 sf
Off-Street Parking	0	up to 420,000 sf
Open space	0	3.4 acres
Day Care	1,300 sf (approx.)	7,500 sf (approx.)
Preschool	2,200 sf (approx.)	3,500 sf (approx.)
Housing Units	620 units ${ }^{2}$	up to 1,700 units
\quad Senior Studio/1 Bedroom Units	0	up to 98 units
\quad Senior 2+ Bedroom Units	0	up to 2 units
\quad Affordable Studio/1 Bedroom Units	53 units	up to 148 units
\quad Affordable 2+ Bedroom Units	567 units	up to 822 units
\quad Market Rate Studio/1 Bedroom Units	0	up to 348 units
\quad Market Rate 2+ Bedroom Units	0	up to 282 units
Off-street Parking Spaces	340 (uncovered)	1,055 spaces
On-street Parking Spaces	$180-200$ spaces (approx.)	600 spaces
Off-street Loading Spaces	0	0
On-street Loading Spaces	0	At least 18 spaces, at one
Bicycle Spaces	0	per block

Source: BRIDGE Housing, 2011.
Notes:
${ }^{1}$ Provided as part of the community center.
${ }^{2}$ At full occupancy.

PROJECT LOCATION

SOURCE: POTRERO HOPE SF MASTER PLAN ADMIN DRAFT I

The site and land use plans detailing the Proposed Project are included in Figures 1-3 to 1-5.

The Proposed Project would substantially alter the existing street layout (Figure 1-2) within the project site by significantly regrading and reconstructing the existing street configuration so they are more consistent with the surrounding neighborhood grid pattern. These streets would also provide additional circulation to the project site. A detailed discussion on the modified roadway layout is provided later in Section 1.4.2 - Vehicular Access. The new residential units would be distributed across 16 newly defined street blocks (Blocks A to F, H to Q , and X1) created due to the modified roadway layout within the project site. These new blocks are shown in Figure 1-3. These buildings would be from three (3) to eight (8) stories in height. The proposed residential units would consist of a mix of townhouses and apartment flats, spread out around the project blocks. These units would comprise of 496 studio and one-bedroom units, 1,104 two or more bedroom units, and 100 senior housing units. The 1,700 residential units (970 affordable, 630 market-rate, and 100 senior units) would replace the existing 620 affordable housing units on site and provide an additional 1,080 units. A distribution of the housing units across various blocks within the project site for the Proposed Project is provided in Table 1-2.

Table 1-2: Distribution of Housing Units by Block - Proposed Project

Block	Number of Units	Residential Square Footage (in 1,000 s of sf)
A	$90-105$	85.5 to 110
B	$86-105$	81.7 to 110
C	$95-120$	90 to 125
D	$95-120$	90 to 125
E	$98-140$	105 to 150
F	$55-75$	50 to 80
H	$80-100$ Senior Housing	50 to 90
J	$100-140$	95 to 150
L	$100-160$	95 to 170
M	$100-170$	95 to 180
N	$105-140$	95 to 150
O	$55-70$	40 to 95
P	$55-70$	40 to 95
R	$40-70$	44 to 90

Source: Van Meter Williams Pollack LLP - January 2012.
Note:
No housing units are proposed for Blocks G and X1.

The Proposed Project would also include approximately 15,000 square feet of neighborhood retail space spread along two blocks of the project site, located along the north side of $24^{\text {th }}$ Street between Arkansas Street and Missouri Street (Blocks K and L). The retail space at Block L would be 9,500 square feet in size and at Block K would be 5,500 square feet in size. Retail facilities would be accessed from $24^{\text {th }}$ Street.

The proposed community center would be located on $24^{\text {th }}$ Street between Arkansas Street and Missouri Street, on Block G of the project site plan. This community center would be approximately 35,000 square feet in size and could include infant/toddler childcare facilities, a preschool, gymnasium/recreation space, and a community kitchen, in addition to management offices, a conference room, recreation and meeting rooms, one music room/recording studio, dance studio, club rooms, game room, technology center, computer room/business center, arts room, library/learning center, storage room, and restrooms. Day care (7,500 square feet) and preschool (3,500 square feet) facilities provided within the community center would be bigger in size than the present facilities (1,300 and 2,200 square feet, respectively). The community center would be accessed from $24^{\text {th }}$ Street with a possible connection on $2412^{\text {th }}$ Street ${ }^{1}$.

The Proposed Project would also develop private and public open space. Public open space would consist of a large 35,100-square-foot "Central Park" located on $24^{\text {th }}$ Street between Connecticut Street and Missouri Street, a 5,300-square-foot mini park located in the southwest are of the project site adjacent to the $25^{\text {th }}$ Street/Connecticut Street intersection, a 15,600-square-foot community garden along Texas Street between $23^{\text {rd }}$ Street and $2412^{\text {th }}$ Street, a 10,600 -square-foot "Squiggle Park" located along $24^{\text {th }}$ Street between Wisconsin Street and Arkansas Street, a 3,600-square-foot "Triangle Park" at the confluence of Missouri Street and Texas Street, and a 9,400-square-foot "Missouri Overlook" pocket park at the intersection of Missouri Street and $23^{\text {rd }}$ Street. Public and private open spaces would total approximately 3.4 acres (about 148,000 square feet). Per San Francisco Planning Code (herein referred to as the Planning Code) requirement, a minimum usable open space of eighty (80) square feet would be included within each residential unit. Open space may be provided as private or common usable open space. The $24^{\text {th }}$ Street "Central Park" is envisioned to serve as terraced open space with a flat area at $24^{\text {th }}$ Street and would include public seating areas. Children play areas may be provided at the $24^{\text {th }}$ Street "Central Park" and the mini park planned at the $25^{\text {th }}$ Street/Connecticut Street intersection. All parks and open spaces would be unfenced, open to the public, and would operate 24 hours a day, seven days a week, except for the Missouri Overlook, and the edible community garden, which would be fenced off and/or have reduced operational hours, such as from Monday to Saturday between 8 AM and 6 PM. All parks would be accessed from the adjoining sidewalks.

1.3 Project Alternatives or Variants

In addition to the Proposed Project, the following two development options are being considered for this project to comply with the National Environmental Policy Act (NEPA) requirements:

- Alternative 1 - This alternative would involve a reduced-scale of development, reducing the maximum height of the proposed buildings at the project site from 80 feet to 40 feet.
- Alternative 2 - This alternative would involve rebuilding the land uses that are present at the project site under existing conditions.

A description of the project alternatives is provided below.

[^0]
1.3.1 Alternative 1

The only difference between the Proposed Project and Alternative 1 would be in the size of proposed land uses and associated parking as well as loading spaces. All other project descriptions, including the type and location of land uses, number and location of proposed internal blocks, new vehicle as well as pedestrian connections, and other planned circulation network modifications within the project site would remain the same.

Alternative 1 would be similar in layout as the Proposed Project, but the maximum building heights in this alternative would not exceed 40 feet in height. As a result, compared to the Proposed Project, fewer housing units would be constructed as part of Alternative 1. This alternative would construct up to 1,280 mixed-income housing units (up to 796 affordable units, 404 market rate units, and 80 senior units), as compared to 1,700 total units under the Proposed Project, the same amount of retail facilities (5,500 square feet and 9,500 square feet in size), a smaller community center (25,000 square feet in size), several small parks and open spaces, and associated residential parking facilities. A summary of existing land uses and those proposed as part of Alternative 1 are provided in Table 1-3, while the land use plan for Alternative 1 is shown in Figure 1-6.

Table 1-3: Summary of Existing and Alternative 1 Land Uses

Type of Use	Existing	Proposed Project	Alternative 1
Residential	577,000 sf	up to 2,000,000 sf	up to 1,450,000 sf
Retail	0	15,000 sf	15,000 sf
Community Center	0	up to $35,000 \mathrm{sf}$	up to $25,000 \mathrm{sf}$
Off-Street Parking	0	up to 420,000 sf	up to 300,000 sf
Open space	0	3.4 acres	3.4 acres
Day Care	1,300 sf (approx.) ${ }^{1}$	7,500 sf (approx.) ${ }^{1}$	7,500 sf (approx.) ${ }^{1}$
Preschool	2,200 sf (approx.) ${ }^{1}$	3,500 sf (approx.) ${ }^{1}$	3,500 sf (approx.) ${ }^{1}$
Housing Units	620 units 2	up to 1,700 units	up to 1,280 units
Senior Studio/1 Bedroom Units	0	up to 98 units	up to 78 units
Senior 2+ Bedroom Units	0	up to 2 units	up to 2 units
Affordable Studio/1 Bedroom Units	53 units	up to 148 units	up to 122 units
Affordable 2+ Bedroom Units	567 units	up to 822 units	up to 674 units
Market Rate Studio/1 Bedroom Units	0	up to 348 units	up to 224 units
Market Rate 2+ Bedroom Units	0	up to 282 units	up to 180 units
Off-street Parking Spaces	340 (uncovered)	1,055 spaces	773 spaces
On-street Parking Spaces	180-200 spaces (approx.)	600 spaces	600 spaces
Off-street Loading Spaces	0	0	0
On-street Loading Spaces	0	At least 18 spaces, at one per block	At least 18 spaces, at one per block
Bicycle Spaces	0	450	328

Source: BRIDGE Housing, 2011.
Notes:
${ }^{1}$ Provided as part of the community center.
${ }^{2}$ At full occupancy.

SOURCE: VAN METER WILLIAMS POLLACK LLP, 2010

Similar to the Proposed Project, Alternative 1 would substantially alter the existing street layout within the project site. A detailed discussion on the modified roadway layout is provided later in Section 1.4.2Vehicular Access. The new residential units would be distributed across 16 newly defined street blocks (Blocks A to F, H to Q, and X1) created due to the modified roadway layout within the project site. The new blocks created as part of Alternative 1 and Proposed Project are the same and are shown in Figure 1-3. Alternative 1 would consist of a mix of townhouses and apartment flats, spread out around the project blocks. These units would comprise of 424 studio and one-bedroom units, 856 two or more bedroom units, and 80 senior housing units. The 1,200 residential units (796 affordable, 404 marketrate, and 80 senior units) would replace the existing 620 affordable housing units on site and provide an additional 580 units. A distribution of the housing units across various blocks within the project site for Alternative 1 is provided in Table 1-4.

Table 1-4: Distribution of Housing Units by Block - Alternative 1

Block	Number of Units	Residential Square Footage (in 1,000s of sf)
A	90	85.5
B	86	81.7
C	105	100
D	105	100
E	98	93.5
F	60	55
H Senior Housing	50	
J	100	95
K	100	95
M	100	95
N	105	97
O	45	41
R	64	41

Source: Van Meter Williams Pollack LLP - January 2012.
Notes:
No housing units are proposed for Blocks G and X1.

The size and location of retail facilities provided for Alternative 1 would be the same as for the Proposed Project, i.e., a retail facility of 9,500 square feet would be provided at Block L and another of 5,500 square feet would be provided at Block K. In addition, a community center with the same land uses as planned for the Proposed Project would be placed at Block G for Alternative 1; however, the size of the community center is proposed to be 25,000 square feet for Alternative 1 . Day care (7,500 square feet) and preschool (3,500 square feet) facilities provided within the community center would be the same as under the proposed project. All parks, open spaces, stairways, and gardens planned as part of the

Proposed Project would also be provided as part of Alternative 1. No additional parks and open space would be provided as part of this alternative.

1.3.2 Alternative 2

Under Alternative 2, all existing housing units at the project site would be demolished and rebuilt using the same building pattern currently in place. For Alternative 2 , the existing project site plan and street pattern would remain the same as under existing conditions. Therefore, this alternative would reconstruct 620 affordable housing units, a 1,300 square feet preschool center, a 2,200 square feet child day care center, and associated residential parking facilities. As such, no additional housing units would be developed as part of Alternative 2. Other amenities such as additional parks, retail facilities, and community center would also not be provided as part of Alternative 2.

1.4 Project Transportation Characteristics

1.4.1 Pedestrian Access

Proposed Project and Alternative 1 - As part of the Proposed Project and Alternative 1, sidewalks with a width of 5 feet to 14 feet would be provided along all blocks of the project site for pedestrian safety, walking comfort, and convenience. New sidewalks would be constructed along with a five-foot-wide minimum planting or permeable paving strip. Along blocks with retail facilities, such as along $24^{\text {th }}$ Street (Blocks K and L), wider sidewalks in the range of 9.5 feet to 14 feet would be provided. Planned crosssections of streets within the project site for the Proposed Project are included in Appendix B. These cross-sections are the same for the Proposed Project and Alternative 1. To ensure the visibility of pedestrians and stop signs, the placement of street trees would be prohibited on the last 25 feet on the approach to an intersection. Design of all streets within the project site would be consistent with the Planning Department's Better Streets Plan.

In addition, pedestrian bulb-outs and at least six-foot-wide crosswalks would be provided at intersections to improve the walking experience. Six-foot wide crosswalks would be provided throughout the project site; however, pedestrian bulb-outs would be provided at most intersections, but not all, depending on San Francisco Municipal Transportation Authority (SFMTA) and San Francisco Department of Public Works (SFDPW) recommendations when final intersection configurations are designed. At intersections where transit operations are proposed to occur, such as Arkansas Street/ $25^{\text {th }}$ Street, Missouri Street $/ 25^{\text {th }}$ Street, Wisconsin Street $/ 24^{\text {th }}$ Street, Arkansas Street $/ 24^{\text {th }}$ Street, and Missouri Street/Texas Street, bus bulb-outs that accommodate a 40-foot coach could be installed, pending SFMTA review and approval, to provide adequate loading and passenger shelter space for transit access. Pedestrian and transit bulb-out designs have not been developed; as such, their dimensions and curb radii cannot be provided in this report. However, bulb-out designs would be consistent with guidelines recommended by the Planning Department's Better Streets Plan, and would be subject to review and approval by the interagency Transportation Advisory Staff Committee (TASC), which includes city representatives from the SFMTA, SFDPW, San Francisco Police Department (SFPD), and San Francisco Fire Department (SFFD). Bulb-outs would similarly be designed such that large vehicles would be able to make right turns where needed. These pedestrian and transit amenities would be an improvement over existing conditions at the project site, as many portions of the project site currently do not have any sidewalk facilities, continuous pedestrian sidewalks, or transit amenities. Other small parks and open spaces, plazas, and pedestrian-only stairs would be provided around the project site to improve neighborhood connections and establish several public gathering areas.

Due to steep grades (greater than 15 percent); currently there are no accessible zones (zones with grades lower than 8.33 percent) within the project site. However, the Proposed Project and Alternative 1 are planned such that grades along Texas, $24^{\text {th }}$, and $23^{\text {rd }}$ Streets would be less than 8.33 percent for the most part. These lower grades would create three accessible zones within the project site and two new access points to the project site - along $24^{\text {th }}$ and Texas Streets. These new access points improve neighborhood connectivity of the project site. The three accessible zones created as part of the Proposed Project and Alternative 1 are shown in the Street Slope Diagram, included in Appendix B. The provision of less steep zones along Texas, $24^{\text {th }}$, and $23^{\text {rd }}$ Streets would make the project site more accessible to everyone. Also, the Proposed Project and Alternative 1 maximize accessibility by locating the neighborhood core at the center of the development on streets ($24^{\text {th }}$ Street) with less than five (5) percent slope, while providing an accessible path to important neighborhood amenities, such as Starr King Elementary School to the west and the Potrero Hill Health Center at 1050 Wisconsin Street.

Additionally, the following new pedestrian connections would be provided to link new and existing neighborhood amenities:

- Connecticut Street would be transformed into a grand series of stairways between the new $241 /{ }^{\text {th }}$ Street and $23^{\text {rd }}$ Street linking residents to the Potrero Hill Recreation Center;
- A new stairway, the $23^{\text {rd }}$ Street Stairway, would be provided between Missouri Street and Texas Street. This stairway would be aligned with $23^{\text {rd }}$ Street and would extend east of Texas Street as well and terminate into the Texas Street Overlook, an elevated platform or small plaza that is marked by a grove of trees; and
- A new stairway along $22^{\text {nd }}$ Street would be provided between Missouri Street and Texas Street. It is anticipated that this new facility would offer a pedestrian connection to the $22^{\text {nd }}$ Street Caltrain Station, the $23^{\text {rd }}$ Street T Third Street Station, and $22^{\text {nd }}$ Street mixed-use district. Even though the Project Sponsor is interested in providing this pedestrian route, it is located on private land and is not approved and is preliminary in nature. The Project Sponsor would continue to work with the City and surrounding private property owners to encourage the construction of this pathway; however, it may or may not be provided.

Planned key pedestrian connections and accessible paths are provided in the Mobility and Circulation Concept Plan, included in Appendix B.

Since atypical steepness within the project site would cause a major concern about access for disabled citizens, the Project Sponsor is working with the San Francisco Mayor's Office of Disability (MOD) and SFDPW to prepare an accessibility circulation plan to ensure a circulation strategy for disabled citizens. The goals of this plan are as follows:

- Create more pedestrian paths which would be accessible in the future;
- Concentrate accessible units along Texas and $24^{\text {th }}$ Streets, which are relatively less steeper than other streets within the project site;
- Concentrate accessible units that would have accessible parking in buildings with the most community amenities; and
- Keep Texas Street relatively flat throughout the project site.

Alternative 2 - For Alternative 2, pedestrian facilities would remain the same as under existing conditions. No improvements to pedestrian facilities would be provided as part of this alternative.

1.4.2 Vehicular Access

Roadway Network

Proposed Project and Alternative 1 - As part of the Proposed Project and Alternative 1, the existing street layout would also be modified to closely match the neighboring street layout, resulting in substantial changes to on-site traffic circulation. The planned grid street pattern would improve local access and assist pedestrian movement within the project site. Additionally, the modified street network would improve connections with the surrounding neighborhood and provide a continuous route for through traffic, especially in the north-south direction. Changes to the roadway layout, as shown in Figure 1-4 - Project Site Plan over Existing Site, include the following:

- Arkansas Street would be extended between $23^{\text {rd }}$ Street and $26^{\text {th }}$ Street;
- Missouri Street would be extended between $23^{\text {rd }}$ Street and $26^{\text {th }}$ Street;
- A continuous Texas Street would be constructed between Missouri Street and $25^{\text {th }}$ Street;
- $24^{\text {th }}$ Street would be constructed between Wisconsin Street and Texas Street;
- A new roadway, $2412^{\text {th }}$ Street would be constructed between Arkansas Street and Texas Street;
- Connecticut Street located north of $25^{\text {th }}$ Street would be reconfigured to extend until $2412^{\text {th }}$ Street. This segment would also be converted from a one-way street to a two-way street; and
- Dakota Street, Watchman Way, and Turner Terrace would be eliminated.

Even though Texas Street would be converted into north-south connected roadway, the curb bulb-out extensions and crosswalks provided at each intersection within the project site, and possible pavement material changes provided at the $23^{\text {rd }}$ Street Stairway should act as traffic calming devices and help slow down speeding traffic.

All new streets constructed within the project site would be owned and maintained by the City of San Francisco. In general, all north-south and east-west streets within the project site would, subject to City approval, be designed with a right-of-way of 69 feet and 56 feet, respectively. Exceptions include $25^{\text {th }}$ Street between Wisconsin and Connecticut Streets where a 60 -foot right-of-way would be provided, Connecticut Street between $25^{\text {th }}$ and $241 / 2^{\text {th }}$ Streets where a 75 -foot right-of-way would be provided, $24^{\text {th }}$ Street between Arkansas and Missouri Streets where a84-foot right-of-way would be provided, $24^{\text {th }}$ Street from Texas Street to Missouri Street and from Arkansas Street to Wisconsin Street where a 61.5foot right-of-way would be provided, $23^{\text {rd }}$ Street between Arkansas and Missouri Street where a 41.5foot right-of-way would be provided, Missouri Street from $23^{\text {rd }}$ Street to one block north of it where a 41.5 -foot right-of-way would be provided, Texas Street between $23^{\text {rd }}$ Street and $24^{\text {th }}$ Street where a 48foot right-of-way would be provided, and Texas Street from $23^{\text {rd }}$ Street to one and a half blocks north of it where a 69-foot right-of-way would be provided. Planned cross-sections of streets within the project site for the Proposed Project are shown in Roadway Cross-Sections, included in Appendix B. These cross-sections would be the same for Alternative 1 as well.

Modification of the roadway layout would result in two new T-intersections along Texas Street (with $24^{\text {th }}$ Street, and $241 / 2^{\text {th }}$ Street) and three new intersections along Arkansas Street (four-way intersections with $24^{\text {th }}$ Street and $25^{\text {th }}$ Street, and a T-intersection with $241 /{ }^{\text {th }}$ Street). All new intersections would have one mixed-flow lane in each direction and all of them are proposed to be stop-controlled intersections, either one-way, two-way, or four-way stop-controlled intersections. Final design of the new
intersections would be developed in coordination with the SFMTA. Additionally, the modification of roadway layout would alter two study intersections as follows:

- $25^{\text {th }}$ Street/Dakota Street/Texas Street intersection would be reconfigured and renamed to $25^{\text {th }}$ Street/Texas Street; and
- $23^{\text {rd }}$ Street/Dakota Street intersection would be renamed to $23^{\text {rd }}$ Street/Missouri Street.

The roadway layout reconfiguration planned as part of the Proposed Project and Alternative 1 is anticipated to cause changes to the traffic circulation patterns in the study area as follows:

- Approximately 25 percent of traffic traveling along Pennsylvania Avenue is anticipated to shift to Texas Street; and
- Approximately 25 percent of traffic traveling along Dakota Street is anticipated to shift to Arkansas Street.

Changes to bordering streets outside of the Project site, namely Wisconsin Street and $23^{\text {rd }}$ Street, would be limited to new connections to internal streets, with new intersections added, such as on $25^{\text {th }}$ and $26^{\text {th }}$ Street. A complete set of project design site plans, including the proposed circulation concept is included in Appendix B. Designs for circulation within the residential buildings have not been developed and were not included in this report.

Currently, streets within the project site have steep grades (greater than 15 percent), especially along Dakota Street, Connecticut Street, and parts of Missouri Street. However, accessibility within the project site would be improved as part of the Proposed Project and Alternative 1 by providing less steep grades along Texas, $24^{\text {th }}$, and $23^{\text {rd }}$ Streets. For the most part, grades along these three streets would be less than 8.33 percent. Grades along other streets would however remain similar as under existing conditions. These lower grades would create three accessible zones within the project site. Grades of streets planned as part of the Proposed Project and Alternative 1 are shown in the Street Slope Diagram, included in Appendix B.

Alternative 2 - For Alternative 2, the roadway network would remain the same as under existing conditions. No improvements to the roadway network would be provided as part of this alternative.

Bicycle Network and Facilities

Proposed Project and Alternative 1 - The Proposed Project and its alternatives would not provide any dedicated bicycle facilities within the project site. However, street and landscape design is expected to encourage bicycling opportunities as a part of roadway accommodations, with wider sidewalks, better internal connections, and more public pathways to promote multimodal use of the street network. These amenities would offer a more inviting environment for bicycle riders to utilize these lower speed roadways. In addition, the redesign of the street layout as part of the Proposed Project and Alternative 1 would provide accessible zones (zones with grades less than 8.33 percent) within the project site along Texas, $24^{\text {th }}$, and $23^{\text {rd }}$ Streets. While no bicycle routes currently traverse the project site, opportunities for bicycle connections are envisioned along those accessible zones. Opportunities for bicycle connections would be created along Texas Street in the north-south direction and $24^{\text {th }}$ Street in the east-west direction. $24^{\text {th }}$ Street would also connect Texas Street to the Starr King Open Space. The planned opportunities for key bicycle connections are provided in the Mobility and Circulation Concept Plan, included in Appendix B.

The Proposed Project and Alternative 1 would include more on-street and off-street bicycle parking than what is available at the existing facilities.

Alternative 2 - For Alternative 2, bicycle facilities would remain the same as under existing conditions. No improvements to the bicycle network would be provided as part of this alternative.

Transit Network and Facilities

Proposed Project and Alternative 1 - Due to the proposed modification of the roadway network, the Proposed Project and Alternative 1 would reroute the San Francisco Municipal Railway (Muni) route 10 Townsend within the project site - Between $23^{\text {rd }}$ and $25^{\text {th }}$ Streets, the outbound 10 Townsend would be rerouted from Dakota Street to Arkansas Street, while the inbound 10 Townsend would be rerouted from Dakota Street to Wisconsin Street. Additionally, a new planned Muni line, the $5824^{\text {th }}$ Street, would traverse through the project site along Wisconsin Street, $25^{\text {th }}$ Street, and Missouri Street. Muni routes planned as part of the Proposed Project are exhibited in Figure 1-7, while existing routes are shown in Figure 2-2.

The Proposed Project and Alternative 1 would relocate/consolidate existing bus stops and create new ones as follows:

- Bus stops serving the 19 Polk and located along northbound Connecticut Street (between $25^{\text {th }}$ and Wisconsin Streets), southbound Connecticut Street (north of $26^{\text {th }}$ Street), and southbound Wisconsin Street (south of Coral Street) would be eliminated, since the 19 Polk would not travel through the project site in the near future;
- Bus stop serving the outbound 10 Townsend and located along westbound $25^{\text {th }}$ Street (east of Connecticut Street) would be relocated to southbound Arkansas Street (north of $24^{\text {th }}$ Street);
- Bus stops serving the inbound 10 Townsend and located along northbound Dakota Street (between $25^{\text {th }}$ and $23^{\text {rd }}$ Streets, and south of $23^{\text {rd }}$ Street) and westbound $23^{\text {rd }}$ Street (east of Wisconsin Street) would be relocated and consolidated at northbound Wisconsin Street (south of $24^{\text {th }}$ Street);
- Bus stop serving the 48 Quintara- $24^{\text {th }}$ Street and located along eastbound $25^{\text {th }}$ Street (west of Dakota Street) would be relocated to eastbound $25^{\text {th }}$ Street (west of Connecticut Street);
- Bus stops serving the 10 Polk and 48 Quintara- $24^{\text {th }}$ Street located at northbound Wisconsin Street (north of $26^{\text {th }}$ Street and south of $25^{\text {th }}$ Street) would be consolidated at northbound Wisconsin Street (south of $25^{\text {th }}$ Street); and
- New bus stops would be created along westbound $25^{\text {th }}$ Street (east of Wisconsin Street), westbound $25^{\text {th }}$ Street (west of Connecticut Street), and various locations along Missouri Street in both the directions, including north of $24^{\text {th }}$ Street, between $23^{\text {rd }}$ and Texas Streets, and north of Texas Street. These new bus stops are planned to serve the new $5824^{\text {th }}$ Street line and other Muni routes.

In total, 12 bus stops would be provided as part of the Proposed Project and Alternative 1. Pole type bus stops, potentially with bus bulb-outs, would be provided for the Proposed Project and Alternative 1. The Project Sponsor would work with the SFMTA to develop bus stop and passenger shelter designs at appropriate stops. Muni stops planned as part of the Proposed Project are exhibited in Figure 1-7. These planned Muni routes are the same for Alternative 1 as well.

Alternative 2 - For Alternative 2, the transit network within the project site would remain the same as under existing conditions. No improvements to the transit network would be provided as part of this alternative.

1.4.3 Freight Loading and Unloading

Proposed Project and Alternative 1 - The Proposed Project and Alternative 1 would provide off-street loading spaces at least equal in number to those required per the Planning Code. According to the Planning Code requirements (§152), one (1) off-street freight loading space would be required for retail stores ranging from 10,001 to 60,000 square feet in size. The Proposed Project and Alternative 1 would provide two retail facilities in Blocks K and L, each less than 10,000 square feet in size. Therefore, the Proposed Project and Alternative 1 would not be required to provide any loading space for retail. Residential buildings and other facilities (under which the community center would be categorized) are expected to provide loading spaces if they exceed 100,000 square feet in gross floor area (i.e., 1 space from 100,001 to 200,000 square feet, 2 spaces from 200,001 square feet to 500,000 square feet, etc.). Residential buildings around the project site would total 2,000,000 square feet in size across 16 blocks, with some blocks having multiple residential buildings (as shown in Tables 1-2 and 1-4). It is not anticipated that any of the residential buildings would individually exceed 100,000 square feet. Also, the community center would be less than 100,000 square feet in gross floor area. Hence, no freight loading spaces are required for residential or community center land uses. In total, according to the Planning Code, no off-street freight loading spaces are required for the Proposed Project and Alternative 1. Since no off-street loading spaces are required per the Planning Code, no off-street loading spaces would be provided for the Proposed Project and Alternative 1. However, the project sponsor would seek to provide at least one on-street loading space per block for a total of approximately 18 loading spaces throughout the project site. The loading spaces would be subject to the review and approval by SFMTA to designate as yellow-curb zones for on-street loading activities. The on-street loading spaces would be provided close to retail and community center facilities, and where appropriate, such as at the senior housing facility, near residential lobbies. The exact location of on-street commercial loading areas would be subject to SFMTA review and approval. Per leasing agreements, loading and delivery for the proposed retail uses would take place during non-peak hours along $24^{\text {th }}$ Street. These on-street loading spaces would also be used for passenger pick-up/drop-off activities within the project site. Details of these spaces would be determined during the building design phase and in collaboration with the SFMTA.

Alternative 2 - For Alternative 2, five on-street freight loading spaces and no off-street spaces would be provided. Details of these spaces would be determined during the building design phase and in collaboration with the SFMTA.

1.4.4 Emergency Vehicle Access

The closest fire station in the vicinity of the project site is Fire Station \#37, located to the northwest of the project site at 798 Wisconsin Street, at the intersection with $22^{\text {nd }}$ Street. The closest police station is the Mission Police Station, located to the northwest of the project site at 630 Valencia Street, at the intersection with $17^{\text {th }}$ Street.

Proposed Project and Alternative 1 - The existing roadway layout allows for minimal cross-site connections for emergency vehicles and includes two cul-de-sacs within the Potrero Annex site. The Potrero Annex site can only be accessed using Missouri Street via $23^{\text {rd }}$ Street and Dakota Street from the south. The southern portion of the Potrero Annex is accessible using Texas Street, which near the project site is a narrow path that is barely wide enough for one car.

104402

The Proposed Project and Alternative 1 would create a grid of streets with easier cross-site access. All new streets would provide emergency vehicle access to adjacent land uses and meet the San Francisco Fire Department's access requirements. As mentioned in Section 1.4.2 - Vehicular Access, new street connections include extending Arkansas Street from $23^{\text {rd }}$ Street to $26^{\text {th }}$ Street, extending Missouri Street directly south from $23^{\text {rd }}$ Street to $25^{\text {th }}$ Street, formalizing Texas Street and connecting it to Missouri Street at the northern edge of the site, and new east/west streets connecting Wisconsin Street to Texas Street. Also, as mentioned earlier, the Proposed Project and Alternative 1 would provide less steep grades along Texas, $24^{\text {th }}$, and $23^{\text {rd }}$ Streets. For the most part, grades along these three streets would be less than 8.33 percent, while grades along other streets would remain similar as under existing conditions. These lower grades would improve accessibility to/from and within the project site. All of the buildings would be required to meet all applicable building and safety regulations.

Alternative 2 - Emergency vehicle access for Alternative 2 would remain the same as under Existing Conditions.

1.4.5 Project Parking

Proposed Project and Alternative 1 - Parking facilities would be spread out around the project site, and would include new on-street and off-street facilities. The Proposed Project would provide approximately 1,055 off-street parking spaces, primarily as underground or structured parking garages with residential units placed above them. Ten (10) of these spaces would be designated for retail use, while five (5) spaces would be set aside for the community center. Forty-two (42) of these off-street spaces would be designated for use by the disabled and handicapped. Off-street parking for the retail and community center facilities is proposed to be provided on the lower level of Block G and accessed from Arkansas Street. Below-grade residential parking could also be provided, with driveway access generally from major north-south streets. Garage access driveway locations have yet to be determined, however, access points to underground garages for various blocks are anticipated to be located on the following streets:

- Blocks A and J - Wisconsin and Arkansas Streets
- Blocks F and K - Arkansas Street
- Block G - Arkansas and $241 / 2^{\text {th }}$ Streets
- Blocks C and B - Arkansas, Connecticut, and $25^{\text {th }}$ Streets
- Block D - Connecticut, Missouri, $25^{\text {th }}$, and $2412^{\text {th }}$ Streets
- Block X - Connecticut and $25^{\text {th }}$ Streets
- Block L - Missouri and $23^{\text {rd }}$ Streets
- Block E - Texas and $241 / 2^{\text {th }}$ Streets
- Block H $~-~ M i s s o u r i, ~ T e x a s, ~ 24 ~ t h ~ a n d ~ 241 / 2 ~ t h ~ S t r e e t s ~$
- Block M - Missouri and $24^{\text {th }}$ Streets
- Block N - Missouri and Texas Streets
- Block Q - Missouri Street
- Blocks O, P and R - Texas Street

Potential access points to underground garages for various blocks are shown in the Potential Garage Entries Plan, included in Appendix B. Depending on the final building designs, fewer entries may be required than those shown in the plan. No garage entries would be located on $24^{\text {th }}$ Street between Wisconsin and Missouri Streets. Garage entries would not conflict with Muni bus stops.

For Alternative 1, 773 off-street parking spaces would be provided, of which ten (10) spaces would be designated for retail uses and five (5) spaces would be designated for community center. There would be 30 off-street spaces for disabled and handicapped use. As required by the City of San Francisco, all parking spaces for housing units would be unbundled and sold separately from the housing unit itself. Garage entrances for off-street parking spaces would be designed so as to minimize impact on pedestrian safety and the general streetscape, and would be no wider than 16 feet wide. Curb cuts would be kept to a minimum to allow maximum number of on-street parking spaces and to enhance pedestrian safety. Care would also be taken to avoid locating garage access directly across from building lobbies of adjacent properties.

In addition, approximately 600 unmetered on-street parking spaces would also be provided for the Proposed Project and Alternative 1. The Proposed Project would also provide nine (9) car-share spaces, while Alternative 1 would provide seven (7) car-share spaces within the project site. Locations of the car-share parking spaces and passenger drop-off spaces would be determined when building designs would be developed. All streets located within the project site would provide on-street parking either as perpendicular, angled, or parallel parking. On-street parking provided along $24^{\text {th }}$ Street between Missouri Street and Arkansas Street would be time-limited. On-street parking facilities planned within the project site for the Proposed Project and Alternative 1 are shown in Roadway Cross-Sections, included in Appendix B.

Alternative 2 - For Alternative 2, on-street and off-street parking facilities would remain the same as under existing conditions; i.e. approximately 256 off-street and 100 on-street parking spaces. No improvements to parking facilities would be provided as part of this alternative.

1.4.6 Trash Access

Garbage collection would be a combination of centralized and decentralized garbage, recycling, and compost collection areas to maximize efficiency depending on the type of building. For residential uses, retail facilities, and the community center, garbage bins and dumpsters would be located internally within each building including in the parking garage where present and would be taken to the street and returned to the garages by maintenance personnel on pick-up days. The exact locations of each collection area would be determined following the building design phase, but generally internal to each building, near maintenance, loading, or parking facilities.

The same trash access provisions within the project site, as discussed above, would be provided for the Proposed Project and its alternatives.

1.4.7 Bicycle Parking

Proposed Project and Alternative 1 - The Proposed Project and Alternative 1 would provide more bicycle parking facilities in the buildings than under existing conditions (zero spaces). Bicycle parking spaces, at least equal in number to those required per Planning Code, would be provided around different areas of the project site for residents and visitors in the vicinity. The Proposed Project would provide approximately 450 bicycle spaces within the project site, of which 416 spaces would be secured spaces distributed within the residential buildings; while the remaining approximately 34 spaces would be provided through on-street bicycle racks. Final design and placement of the on-street bicycle racks would be subject to review and approval by SFMTA. Alternative 1 would provide approximately 328 secured bicycle spaces and 34 on-street spaces via bicycle racks. In addition, both the Proposed Project and Alternative 1 would provide two (2) showers and four (4) lockers within the project site.

For the Proposed Project and Alternative 1, bicycle parking spaces would be distributed around the project site and secured bicycle parking would be located in each building near residential entrances and within vehicle parking facilities serving the residences. Within buildings, bicycle facilities would be located in well-lit, safely accessible areas. Each building would have a safe, secure area for bicycle parking. The design of this parking would vary for each building, but in all cases would be easily accessible and designed to minimize conflicts between bicycles, pedestrians and drivers. Bicycle spaces at the community center would be provided via a bicycle rack. Bicycle racks would be provided on most blocks with concentrations around the community center and open spaces. The distribution of on-street bicycle spaces within the project site for the Proposed Project and Alternative 1 is shown in the Transit and Bike Parking layout, included in Appendix B. Exact locations of each secured bicycle parking area within residential buildings would be determined following the building design phase, but would likely be provided either on the ground floor or within the parking garage, if parking is included.

Alternative 2 - For Alternative 2, approximately 170 bicycle parking spaces would be provided, evenly scattered across the project site. All these spaces would be secured bicycle parking spaces and would be located in each building on the ground floor, near residential building entrances.

1.5 Study Scope and Approach

This transportation study has been prepared according to the scope of work approved by the City and County of San Francisco Planning Department (shown in Appendix A). For the analysis of the Proposed Project and its alternatives, the following four scenarios were examined:

- Existing Conditions
- Existing plus Project Conditions
- 2030 Cumulative Conditions
- 2030 Cumulative plus Project Conditions

The following 13 intersections in the vicinity of or within the project site were analyzed during the weekday PM peak hour (the highest hour between 4:00 PM and 6:00 PM):

1. Cesar Chavez Street/Connecticut Street (signalized)
2. Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp (signalized)
3. Pennsylvania Avenue/Southbound I-280 Off-Ramp
4. $25^{\text {th }}$ Street/Indiana Street/Northbound I-280 On-Ramp
5. $25^{\text {th }}$ Street/Connecticut Street
6. $25^{\text {th }}$ Street/Dakota Street/Texas Street
7. $23^{\text {rd }}$ Street/Dakota Street
8. $23^{\text {rd }}$ Street/Wisconsin Street
9. $20^{\text {th }}$ Street/Arkansas Street
10. $22^{\text {nd }}$ Street/Missouri Street
11. Potrero Avenue/ $23^{\text {rd }}$ Street (signalized)
12. Cesar Chavez Street/Vermont Street/US 101 Northbound On-Ramp
13. Cesar Chavez Street/US 101 Off-Ramp

In addition, the following six (6) freeway segments were evaluated during the weekday PM peak period:

1. Northbound I-280 (south of Cesar Chavez Street Off-Ramp)
2. Southbound I-280 (south of Pennsylvania Avenue On-Ramp)
3. Northbound I-280 (north of Indiana Street On-Ramp)
4. Southbound I-280 (north of Pennsylvania Avenue Off-Ramp)
5. Northbound US 101 (north of Cesar Chavez Street On-Ramp)
6. Southbound US 101 (north of Cesar Chavez Street Off-Ramp)

Furthermore, the following four (4) ramp junctions located in the vicinity of the project site were examined during the weekday PM peak period:

1. Northbound I-280/Cesar Chavez Street Off-Ramp
2. Southbound I-280/Pennsylvania Avenue Off-Ramp
3. Northbound I-280/Indiana Street On-Ramp
4. Southbound I-280/Pennsylvania Avenue On-Ramp

As mentioned above, all circulation elements were evaluated during the weekday PM peak period. However, four (4) of the study freeway segments were analyzed during the weekday AM peak period (the highest hour between 7:00 AM and 9:00 AM) as well. They are as follows:

1. Northbound I-280 (south of Cesar Chavez Street Off-Ramp)
2. Northbound I-280 (north of Indiana Street On-Ramp)
3. Northbound US 101 (north of Cesar Chavez Street On-Ramp)
4. Southbound US 101 (north of Cesar Chavez Street Off-Ramp)

Parking conditions, both on- and off-street, were examined within an area roughly bounded by $20^{\text {th }}$ Street to the north, $26^{\text {th }}$ Street to the south, Texas Street to the east, and Carolina Street to the west (Figure 2-2). Parking analysis was conducted during the weekday PM peak period (between 4:00 PM and 6:00 PM).

Field observations were conducted to identify current pedestrian and bicycle conditions within the project site. A comprehensive evaluation of current transit, bicycle, and pedestrian facilities is included in the report. Potential operational and demand impacts of transit service serving the study area were also analyzed. In addition, a qualitative review of existing bicycle routes and paths near the Proposed Project is included in the analysis. An evaluation of the existing pedestrian facilities including sidewalks, crosswalks, and the physical condition of the pedestrian network was also conducted as part of this transportation study. Given the extensive modifications to the roadway layout within the project site, a qualitative analysis of the changes to the pedestrian network was also conducted. Additionally, project impacts related to loading, emergency access, and construction impacts were also evaluated and discussed in the report. Parking analysis is also included for informational purposes. The project study area is illustrated in Figure 1-8.

Since Alternative 2 would only reconstruct the existing land uses available at the project site and would neither add net new trips nor modify the neighboring circulation network, only a qualitative analysis of this alternative is provided in this report.

PROJECT STUDY AREA

Chapter 2: Setting

This chapter provides a description of the existing transportation conditions in the vicinity of the Proposed Project. Detailed in this chapter are the existing roadway traffic, transit, parking, pedestrian, and bicycle operating conditions within the study area.

2.1 Roadway Network

Definitions and regulatory requirements for the various San Francisco General Plan roadway classifications are included in Appendix C.

2.1.1 Regional Access

This section provides a discussion of the existing regional roadway network in the vicinity of the project site, including the location of the nearest access points.

United States Highway 101 (US 101) provides regional access to the project from the northern and southern counties. US 101 serves San Francisco, the Peninsula, the South Bay, and extends north via the Golden Gate Bridge to the North Bay. Within the northern part of San Francisco, sections of Lombard Street and Van Ness Avenue serve as US 101 along surface streets. Within the southern part of San Francisco and the Peninsula, US 101 is served via the Central Freeway and the Bayshore Freeway. In the project vicinity US 101 has four lanes in each direction. Access to the project site from US 101 is primarily provided by on- and off-ramps located at Cesar Chavez Street.

Interstate 280 ($1-280$) provides regional access from the South of Market area of downtown San Francisco to the South Bay/Peninsula. In the project vicinity I-280 has three lanes in each direction. Access to the Proposed Project from northbound $\mathrm{I}-280$ is provided via the off-ramp to Cesar Chavez Street and on-ramp from Indiana Street. From southbound I-280, access to the project site is provided by on- and off-ramps at Pennsylvania Avenue. US 101 and I-280 have an interchange approximately one and a half miles south of the project site.

Interstate $80(1-80)$ provides regional access to and from the East Bay to the project site. I-80 connects San Francisco to the East Bay and extends east via the San Francisco-Oakland Bay Bridge. I-80 begins at the Central Freeway/US 101 and I-80 interchange, approximately one mile north of the project site.

2.1.2 Local Access

This section provides a discussion of the existing local roadway network in the vicinity of the project, including roadway designation, number of travel lanes, and traffic flow directions.

Cesar Chavez Street is an east-west roadway running from Douglass Street to Maryland Street located in the Port of San Francisco North Container Terminal. It operates as a local two-way roadway between Douglass Street and Guerrero Street with some interruptions, and as a major arterial eastward from Guerrero Street to Third Street. East of Third Street, Cesar Chavez Street acts as a secondary arterial that primarily serves port and pier activities in the area. In the vicinity of the project site, Cesar Chavez Street has two lanes in either direction with on-street parking on both sides of the street. The San Francisco General Plan classifies Cesar Chavez Street as a Major Arterial in the CMP Network from Guerrero Street to Third Street, a Secondary Arterial east of Third Street, and as part of the Metropolitan Transportation System (MTS) Network. Cesar Chavez Street is part of Citywide Bicycle Route \#60 between Third Street

104402
and Sanchez Street. It is identified as a Route with Significant Truck Traffic east of US 101. On- and offramps to/from northbound and southbound US 101 can be accessed from Cesar Chavez Street. In addition, an off-ramp from northbound I-280 directly connects to Cesar Chavez Street.

Cesar Chavez Street from Hampshire to Guerrero Streets in the Mission District is currently being redesigned. As part of the Cesar Chavez Street Design Plan, widened and planted center median, bicycle lanes, corner bulb-outs, new street lighting, and drought tolerant landscaping would be provided. Construction of this new plan is currently underway.

Potrero Avenue is a north-south roadway that runs between Brannan Street and Cesar Chavez Street. Potrero Avenue operates primarily as a two-way street its entire length and has a center turn lane. In the vicinity of the project site, Potrero Avenue has two travel lanes and a five-foot wide bicycle lane in each direction, sidewalks and on-street parking on both sides of the street, and a bus/taxi-only lane in the northbound direction. North of $17^{\text {th }}$ Street, Potrero Avenue generally has three travel lanes in each direction. The San Francisco General Plan classifies Potrero Avenue as a Major Arterial in the CMP network, a MTS Network street, a Transit Preferential Street (secondary transit street), and a Neighborhood Commercial Street (from $24^{\text {th }}$ Street to $26^{\text {th }}$ Street). Potrero Avenue is part of Citywide Bicycle Route \#25 between 17 ${ }^{\text {th }}$ Street and Cesar Chavez Street. Direct access to southbound US 101 from Potrero Avenue is available through a direct on-ramp.

Pennsylvania Avenue is a north-south roadway that runs between $17^{\text {th }}$ Street and Cesar Chavez Street. In the vicinity of the project site, Pennsylvania Avenue operates as a two-way street with one lane each way and either parallel or perpendicular parking on both sides of the street. On- and off-ramps to and from southbound I-280 are provided from Pennsylvania Avenue.

Third Street is a north-south roadway that runs between Market Street and Bayshore Boulevard. North of King Street, Third Street is a one-way northbound roadway, with four to six travel lanes, of which one lane is reserved for transit vehicles. South of King Street, Third Street generally has two travel lanes in each direction. On-street parking is generally provided along both sides of the street, subject to towaway regulations. On-street parking on the east side of Third Street between King Street and Market Street and on the west side between Bryant Street and Market Street is subject to tow-away from 7 AM to 9 AM. On-street parking is also prohibited on the east side of Third Street between Townsend Street and Market Street and on the west side between Bryant Street and Market Street (except between Harrison Street and Howard Street) from 3 PM and 7 PM. In the vicinity of the project site, Third Street operates as a two-way street with two lanes in each direction and a center median reserved for light-rail transit. The San Francisco General Plan classifies Third Street as a Major Arterial in the CMP network, a MTS Network street, a Transit Preferential Street (primary transit street), a citywide Pedestrian Network Street, and a Neighborhood Commercial Street.
$\mathbf{2 0}^{\text {th }}$ Street is a discontinuous east-west roadway that runs between Douglass Street and east of Illinois Street, close to the San Francisco Bay. In the vicinity of the project site, $20^{\text {th }}$ Street operates as a twoway street with one travel lane in each direction. It has on-street parking and sidewalks on both sides of the street.
$\mathbf{2 2}^{\text {nd }}$ Street is a discontinuous east-west roadway that runs between Grand View Avenue and east of Illinois Street, near the San Francisco Bay. In the vicinity of the project site, $22^{\text {nd }}$ Street operates as a two-way street with one travel lane in each direction. It has on-street parking and sidewalks on both sides of the street.
$\mathbf{2 3}{ }^{\text {rd }}$ Street is an east-west roadway that runs between Grand View Avenue and east of Illinois Street, near the San Francisco Bay. West of I-280, it is discontinuous between Pennsylvania Avenue and Carolina Street. In the vicinity of the project site, $23^{\text {rd }}$ Street operates as a two-way street with one travel lane in each direction. It has on-street parking on both sides of the street, with discontinuous sidewalks located on one side of the street. $23^{\text {rd }}$ Street is part of the Citywide Bicycle Route \#525 between Potrero Avenue and Kansas Street.
$\mathbf{2 5}^{\text {th }}$ Street is an east-west roadway that runs between Grand View Avenue and east of Michigan Street, near the San Francisco Bay. It is discontinuous across US 101. In the vicinity of the project site, $25^{\text {th }}$ Street operates as a two-way street with one travel lane in each direction. It has on-street parking on both sides of the street, with discontinuous sidewalks located on one side of the street.
$\mathbf{2 6}^{\text {th }}$ Street is a discontinuous east-west roadway that runs from Douglass Street to Third Street. West of I-280, it is discontinuous between Pennsylvania Avenue and Connecticut Street, and between US 101 and Hampshire Street. In the vicinity of the project site, $26^{\text {th }}$ Street operates as a two-way street with one travel lane in each direction. It has on-street parking on both sides of the street, with discontinuous sidewalks located on one side of the street.

Wisconsin Street is a north-south roadway that runs between $16^{\text {th }}$ Street and $26^{\text {th }}$ Street. It is discontinuous between $17^{\text {th }}$ Street and $19^{\text {th }}$ Street. In the vicinity of the project site, Wisconsin Street operates as a two-way street with one travel lane in each direction. It has on-street parallel and perpendicular parking, along with sidewalks on both sides of the street.

Arkansas Street is a north-south roadway that runs between $16^{\text {th }}$ Street and $23^{\text {rd }}$ Street. In the vicinity of the project site, Arkansas Street operates as a two-way street with one travel lane in each direction, and on-street parking as well as sidewalks on both sides of the street.

Connecticut Street is a discontinuous local roadway that exists primarily within the vicinity of the project site. Between $16^{\text {th }}$ Street and $22^{\text {nd }}$ Street, Connecticut Street is a north-south local roadway. Near the project site, it runs as a westbound one-way east-west street between Wisconsin Street and $25^{\text {th }}$ Street before turning into a two-way north-south street between $25^{\text {th }}$ Street and Cesar Chavez Street. It has onstreet parking and sidewalks on both sides of the street.

Missouri Street is a north-south roadway that runs between $16^{\text {th }}$ Street and $23^{\text {rd }}$ Street. In the vicinity of the project site, Missouri Street operates as a two-way street with one travel lane in each direction, and on-street parking as well as sidewalks on both sides of the street.

Indiana Street is a north-south roadway that runs between Mariposa Street and Tulare Street. Indiana Street operates as a northbound one-way street between Cesar Chavez Street and $25^{\text {th }}$ Street. At other locations, it operates as a two-way street with one lane each way and on-street parking on both sides of the street. An on-ramp to northbound I-280 can be accessed from Indiana Street. Indiana Street is part of Citywide Bicycle Route \#7 between Cesar Chavez Street and Mariposa Street.

Vermont Street is a north-south roadway that runs between Division Street and Cesar Chavez Street. It is discontinuous across US 101. In the vicinity of the project site, Vermont Street operates as a two-way street with one travel lane in each direction. On-street parking and sidewalks are provided on both sides of the street. Vermont Street is part of the Citywide Bicycle Route \#525 between $26^{\text {th }}$ Street and Cesar Chavez Street.

104402

Dakota Street is a local north-south roadway within the project site that runs between $23^{\text {rd }}$ Street and $25^{\text {th }}$ Street. Dakota Street operates as a two-way street with one travel lane in each direction. It has onstreet parking and sidewalks on both sides of the street.

Texas Street is a north-south roadway that runs between $17^{\text {th }}$ Street and $25^{\text {th }}$ Street. Just north of $22^{\text {nd }}$ Street, Texas Street merges with $22^{\text {nd }}$ Street. South of $22^{\text {nd }}$ Street, it is discontinuous and begins again just north of $25^{\text {th }}$ Street North of $22^{\text {nd }}$ Street, Texas Street operates as a two-way street with one travel lane in each direction, and on-street parking as well as sidewalks on both sides of the street. South of $22^{\text {nd }}$ Street, Texas Street operates as a local two-way street with a narrow travel lane in each direction. No sidewalks are provided along this portion of Texas Street.

Turner Terrace is a north-south roadway that runs southeast of Missouri Street, just south of $22^{\text {nd }}$ Street. It is a cul-de-sac providing local access to housing units along the Potrero Annex. Turner Terrace operates as a two-way street with one travel lane in each direction and on-street parking on both sides of the street. A sidewalk runs along the west side of the street.

Watchman Way is a north-south roadway that runs southeast of Missouri Street, just south of Turner Terrace and northeast of $23^{\text {rd }}$ Street. It is a cul-de-sac providing local access to housing units along the Potrero Annex. Watchman Way operates as a two-way street with one travel lane in each direction and on-street parking on both sides of the street. A sidewalk runs along the west side of the street.

2.2 Intersection Operating Conditions

Existing intersection operating conditions were evaluated for the peak hour of the weekday PM peak period (from 4:00 PM to 6:00 PM). Intersection turning movement counts at the following study intersections were collected on Tuesday, January 4, 2011:

1. Cesar Chavez Street/Connecticut Street
2. Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp
3. Pennsylvania Avenue/Southbound I-280 Off-Ramp
4. $25^{\text {th }}$ Street/Indiana Street/Northbound I-280 On-Ramp
5. $25^{\text {th }}$ Street/Connecticut Street
6. $25^{\text {th }}$ Street/Dakota Street/Texas Street
7. $23^{\text {rd }}$ Street/Dakota Street
8. $23^{\text {rd }}$ Street/Wisconsin Street
9. $20^{\text {th }}$ Street/Arkansas Street
10. $22^{\text {nd }}$ Street/Missouri Street
11. Potrero Avenue/ $23^{\text {rd }}$ Street
12. Cesar Chavez Street/Vermont Street
13. Cesar Chavez Street/US 101 Off-Ramp

Traffic counts collected at the study intersections are included in Appendix E; the existing weekday PM peak hour turning movement volumes and geometric configurations of the study intersections are presented in Figure 2-1.

INTERSECTION VOLUMES AND GEOMETRIC CONFIGURATIONS - EXISTING PM PEAK HOUR

Within the project study area, three intersections (Cesar Chavez Street/Connecticut Street, Cesar Chavez Street/Pennsylvania Avenue/Northbound l-280 Off-Ramp, and Potrero Avenue/23 ${ }^{\text {rd }}$ Street) are signalized, five intersections (Pennsylvania Avenue/Southbound I-280 Off-Ramp, $25^{\text {th }}$ Street/Indiana Street/Northbound I-280 On-Ramp, $25^{\text {th }}$ Street/Connecticut Street, $23^{\text {rd }}$ Street/Wisconsin Street, and $20^{\text {th }}$ Street/Arkansas Street) are all-way stop-controlled, and four intersections ($25^{\text {th }}$ Street/Dakota Street/Texas Street, $23^{\text {rd }}$ Street/Dakota Street, $22^{\text {nd }}$ Street/Missouri Street, and Cesar Chavez Street/Vermont Street) are one- or two-way stop-controlled. The Cesar Chavez Street/US 101 Off-Ramp intersection is one-way yield-controlled.

The operating characteristics of signalized and unsignalized intersections are described by the concept of level of service (LOS). LOS is a qualitative description of the performance of an intersection based on the average delay per vehicle. Intersection levels of service ranges from LOS A, which indicates free flow or excellent conditions with short delays, to LOS F, which indicates congested or overloaded conditions with extremely long delays.

Both signalized and unsignalized intersections were evaluated using the Highway Capacity Manual 2000 (HCM 2000) methodology. For signalized intersections, this methodology determines the capacity of each lane group approaching the intersection. The LOS is then based on average delay (in seconds per vehicle) for the various movements within the intersection. A combined weighted average delay and LOS values are presented for the intersection. For unsignalized intersections, the average delay and LOS values are calculated by approach (e.g., northbound) and movement (e.g., northbound left-turn), for those movements that are subject to delay.

Appendix D includes the LOS definitions for signalized and unsignalized intersections. LOS A through D are generally considered satisfactory for signalized intersections, and LOS E and F are generally considered unsatisfactory. Unsignalized intersections are considered to operate under unsatisfactory conditions if the worst approach operates at LOS E or F and California Department of Transportation's (Caltrans) traffic signal warrants are met. As such, in the LOS summary tables, the operating conditions of unsignalized intersections are presented for the worst approach.

A summary of the study intersection operations during the existing weekday PM peak hour is provided in Table 2-1. During the weekday PM peak hour, all of the study intersections operate under acceptable conditions (LOS D or better). Detailed LOS calculation sheets for the study intersections are included in Appendix F.

Table 2-1: Existing Intersection Operations - Weekday PM Peak Hour

\#	Intersection	Traffic Control	Existing Conditions	
			Delay	LOS
Signalized				
1	Cesar Chavez Street/Connecticut Street	Signal	11.4	B
2	Cesar Chavez Street/Pennsylvania Avenue/NB I-280 OffRamp	Signal	38.4	D
11	Potrero Avenue/ $23{ }^{\text {rd }}$ Street	Signal	22.2	C
Unsignalized				
3	Pennsylvania Avenue/SB I-280 Off-Ramp	AWSC	15.2 (SB)	C
4	$25^{\text {th }}$ Street/Indiana Street/NB I-280 On-Ramp	AWSC	11.4 (EB)	B
5	$25^{\text {th }}$ Street/Connecticut Street	AWSC	8.0 (EB)	A
6	$25^{\text {th }}$ Street/Dakota Street/Texas Street	TWSC	9.6 (SEB)	A
7	$23^{\text {rd }}$ Street/Dakota Street	OWSC	9.2 (NB)	A
8	$23^{\text {rd }}$ Street/Wisconsin Street	AWSC	7.5 (SB)	A
9	$20^{\text {th }}$ Street/Arkansas Street	AWSC	8.5 (WB)	A
10	$22^{\text {nd }}$ Street/Missouri Street	OWSC	8.5 (EB)	A
12	Cesar Chavez Street/Vermont Street	TWSC	25.8 (SB)	D
13	Cesar Chavez Street/US 101 Off-Ramp	OWYC	13.3 (NB)	B

Notes:
Signal - traffic signal; OWSC - one-way stop-control; TWSC - two-way stop-control; AWSC - all-way stop-control; OWYC - one-way yield control.
NB - Northbound, SB - Southbound, EB - Eastbound, WB - Westbound, SEB - Southeast bound
Delay is presented in seconds per vehicle; for unsignalized intersections, delay and LOS values are presented for the worst approach, annotated in parentheses ().

2.3 Freeway and Ramp Junction Operating Conditions

Similar to intersections, study freeway segments and ramp junctions were evaluated during the weekday PM peak hour. Traffic volumes were obtained from Caltrans counts for years 2008/2009 at the following study freeway segments:

- Northbound I-280 (south of Cesar Chavez Street Off-Ramp)
- Southbound I-280 (south of Pennsylvania Avenue On-Ramp)
- Northbound I-280 (north of Indiana Street On-Ramp)
- Southbound I-280 (north of Pennsylvania Avenue Off-Ramp)
- Northbound US 101 (north of Cesar Chavez Street On-Ramp)
- Southbound US 101 (north of Cesar Chavez Street Off-Ramp)

In general, the latest available Caltrans counts for year 2010 were observed to be lower than those for years 2008/2009 within the study area. This temporary reduction in volumes is due to the economic recession. Therefore, for conservative purposes 2008/2009 traffic counts were used for analysis.

Similarly, ramp volumes were obtained from the latest available Caltrans counts for years 2008/2009 at the following ramps:

- Northbound I-280 off-ramp to Cesar Chavez Street
- Southbound I-280 off-ramp to Pennsylvania Avenue
- Northbound I-280 on-ramp from Indiana Street
- Southbound I-280 on-ramp from Pennsylvania Avenue

AM peak hour traffic volumes at the following four (4) freeway segments were observed to be either similar or higher than the PM peak hour volumes:

- Northbound I-280 (south of Cesar Chavez Street Off-Ramp)
- Northbound I-280 (north of Indiana Street On-Ramp)
- Northbound US 101 (north of Cesar Chavez Street On-Ramp)
- Southbound US 101 (north of Cesar Chavez Street Off-Ramp)

Therefore, the above four freeway segments were evaluated for traffic impacts during the AM peak period as well.

Similar to intersections, freeway segments and ramp junctions were evaluated based on the HCM 2000 methodology. Diverge and merge analysis was performed at the ramp junctions. HCM 2000 methodology identifies LOS of the freeway segments and ramp junctions using average vehicle density as the measure of effectiveness. Freeway segment LOS values are calculated based on traffic volume, lane geometry, vehicle type, free-flow speed, and other characteristics. Adjustments are typically made to the base free-flow speed to account for lane width, number of lanes, interchange density, and lateral clearance. Using the flow rates and speed data, average vehicle density of the freeway segment is computed.

For ramp junctions, HCM methodology computes demand flow rate using traffic volume and lane geometry data, while applying adjustments to account for the peak hour factor (PHF), heavy vehicle factor, and driver population factor. Flow rates are computed immediately upstream of ramp influence area for both merging and diverging ramps. Determination of LOS is then identified by comparing the computed demand flow rate and capacity of the ramp influence area.

Similar to intersections, LOS values of freeway segments and ramp junctions range from LOS A to F. LOS A to LOS D represent acceptable conditions, while LOS E and F represent unacceptable conditions. LOS definitions for freeway segments and ramp junctions are included in Appendix \mathbf{D}.

Delay and LOS values for the study freeway segments during the existing weekday AM and PM peak hours are shown in Table 2-2. During the weekday AM peak hour, all of the study freeway segments operate at LOS D or better, except for Southbound US 101 (north of the Cesar Chavez Street Off-Ramp). This freeway segment operates at LOS F.

During the existing weekday PM peak hour, all of the study freeway segments operate at LOS D or better, except for Northbound US 101 (north of the Cesar Chavez Street On-Ramp). This freeway segment operates at LOS F.

104402

Table 2-2: Existing Freeway Segment Operations - Weekday AM and PM Peak Hours

$\#$	Study Freeway Segment	Volume 1	Density	LOS
AM Peak Hour				
1	NB I-280 (south of Cesar Chavez Street Off-Ramp)	5,123	34.4	D
3	NB I-280 (north of Indiana Street On-Ramp)	4,644	22.9	C
5	NB US 101 (north of Cesar Chavez Street On-Ramp)	6,170	30.4	D
6	SB US 101 (north of Cesar Chavez Street Off-Ramp)	8,274	>45	F
PM Peak Hour				
1	NB I-280 (south of Cesar Chavez Street Off-Ramp)			
2	SB I-280 (south of Pennsylvania Avenue On-Ramp)	2,394	16.0	B
3	NB I-280 (north of Indiana Street On-Ramp)	4,375	29.3	D
4	SB I-280 (north of Pennsylvania Avenue Off-Ramp)	2,669	13.1	B
5	NB US 101 (north of Cesar Chavez Street On-Ramp)	4,877	32.6	D
6	SB US 101 (north of Cesar Chavez Street Off-Ramp)	8,426	>45	F

Notes:
${ }^{1}$ Source: Latest available Caltrans traffic counts (years 2008/2009).
Density is reported in passenger cars per mile per lane ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$).
Bold indicates unacceptable conditions (LOS E or F).
The study ramp junction operations during the existing weekday PM peak hour are shown in Table 2-3. During the existing weekday PM peak hour, all of the study ramp junctions operate under acceptable conditions (LOS D or better).

Table 2-3: Existing Ramp Junction Operations - Weekday PM Peak Hour

$\#$	Study Ramp Junction	Volume 1		Density	LOS
1	NB I-280/Cesar Chavez Street Off-Ramp	731	2,394		A
2	SB I-280/Pennsylvania Avenue Off-Ramp	482	4,877	29.4	D
3	NB I-280/Indiana Street On-Ramp	366	2,303	17.0	B
4	SB I-280/Pennsylvania Avenue On-Ramp	770	3,605	26.9	C

Notes:
${ }^{1}$ Source: Latest available Caltrans traffic counts (years 2008/2009).
Density is reported in passenger cars per mile per lane ($\mathrm{pc} / \mathrm{mi} / \mathrm{In}$).
Detailed LOS calculation sheets for the study freeway segments and ramp junctions are included in Appendix F .

2.4 Transit Network

The project site is located in the southeast portion of San Francisco and is served by both local and regional public transit. Muni provides local transit service in the area via diesel buses and light rail vehicles. Service to and from the East Bay is provided by Bay Area Rapid Transit (BART), Alameda-Contra Costa Transit (AC Transit), and ferries; service to and from the South Bay/Peninsula is provided by BART,

San Mateo Transit District (SamTrans), and Caltrain; service to and from the North Bay is provided by Golden Gate Transit buses and ferries.

At or near the project site there are approximately 15 Muni bus stops located along Arkansas Street, Wisconsin Street, $20^{\text {th }}$ Street, $23^{\text {rd }}$ Street, Dakota Street, $25^{\text {th }}$ Street, $26^{\text {th }}$ Street, and Connecticut Street as well as two Muni light rail stations located at the Third Street/ $20^{\text {th }}$ Street and Third Street $/ 23^{\text {rd }}$ Street intersections (shown in Figure 2-2). Within the project site, there are 10 bus stops serving the 10 Townsend, 19 Polk, and 48 Quintara- $24^{\text {th }}$ Street routes. These bus stops are located at the following locations:

- Northbound Wisconsin Street - south of $25^{\text {th }}$ Street
- Northbound Wisconsin Street - north of $26^{\text {th }}$ Street
- Southbound Wisconsin Street - south of Coral Street
- Southbound Connecticut Street - north of $26^{\text {th }}$ Street
- Northbound Connecticut Street - between $25^{\text {th }}$ and Wisconsin Streets
- Westbound $25^{\text {th }}$ Street - east of Connecticut Street
- Eastbound $25^{\text {th }}$ Street - west of Dakota Street
- Westbound $23^{\text {rd }}$ Street - east of Wisconsin Street
- Dakota Street - between $25^{\text {th }}$ and $23^{\text {rd }}$ Streets
- Dakota Street - south of $23^{\text {rd }}$ Street

All bus stops are either pole-type bus stops with or without on-road signage or bus stops marked only by paint on the roadway.

2.4.1 Local Transit Providers

Muni provides transit service within the City and County of San Francisco, including bus (diesel motor coaches and electric trolley), light rail (Metro), cable car and electric streetcar lines. The motor coach fleet used by Muni is comprised of 30 -foot small, 40 -foot standard, and 60 -foot articulated vehicles.

Muni operates four bus lines (Routes 10, 19, 22, and 48) and one light rail line (Line T) that directly serve the project site and its immediate vicinity. The majority of these routes pass by the project site. Routes 10,19 , and 48 are operated by Motor Coach Standard (MCS) vehicles, while the 22 Fillmore is operated by Trolley Coach Standard (TCS) vehicles.

The existing transit network in the vicinity of the project site is illustrated in Figure 2-2. Muni routes that travel along US 101 and I-280 are shown in the figure, but were omitted from analysis as these lines do not directly serve the project study area.

EXISTING TRANSIT NETWORK

WilburSmith

2.4.2 Existing Muni Corridor Analysis

The weekday service frequencies and the nearest stop locations for the Muni lines that serve the project site are shown in Table 2-4. Service frequency and hours of operation reflect the latest changes in Muni service that were implemented in September 2010.

Table 2-4: Nearby Muni Service - Weekday Conditions

| Route | Vehicle
 Type 3 | Hours of
 Operation | Minimum Frequency
 (per hour) | | Nearest Stop |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Source: San Francisco Municipal Transportation Agency (SFMTA)
Notes:
${ }^{1}$ Due to the size of the project site, multiple transit stops for these routes are located in the vicinity of the project site. The nearest stop indicated is the most central transit stop relative to the project site location.
${ }^{2}$ Weekday time periods: AM (7:00 AM - 9:00 AM), Midday (9:00 AM - 4:00 PM), and PM (4:00 PM - 6:00 PM).
${ }^{3}$ TCS - Trolley Coach Standard; MCS - Motor Coach Standard; LRV- Light Rail Vehicle (1 or 2 cars).
Muni routes that run on Potrero Avenue and US 101 were not included as part of this analysis as they do not have stops within the vicinity of the project site.

Capacity utilization relates the number of passengers per transit vehicle to the design capacity of the vehicle. The capacity per vehicle includes both seated and standing capacity, where standing capacity is somewhere between 30 to 80 percent of seated capacity (depending upon the specific transit vehicle configuration). For example, the capacity of a light rail is 119 passengers, the capacity of historic streetcar is 70 passengers, and the capacity of a standard bus is 63 passengers. Muni's standard for capacity utilization is 85 percent.

Based on the most recent (2007) Muni ridership data from the Transit Effectiveness Project (TEP) along with the 2011 Automatic Passenger Counter (APC) data, capacity utilization was determined for each route during the weekday PM peak hour. For the 10 Townsend, 19 Polk, and 48 Quintara- $24^{\text {th }}$ Street lines, 2011 APC data was used; whereas, for the 22 Fillmore and T Third Street lines 2007 TEP data was used to conduct line-by-line analysis.

The capacity utilization at the maximum load point (MLP) for the nearby Muni lines is presented in Table 2-5. The maximum load point for each route is not necessarily the nearest or closest stop to the project site, but rather the stop along the route with the highest ridership, regardless of the location of the stop. For example, the inbound 10 Townsend line has its MLP at the Sansome/Filbert stop, located in downtown San Francisco. As shown in Table 2-5, the inbound T Third Street Muni line has a load during the weekday PM peak hour at the Embarcadero/Folsom stop that exceeds Muni's standard of 85 percent capacity utilization. In addition, the 10 Townsend route exceeds the 85 percent utilization standard in both the directions at MLPs located at the Sansome/Filbert stop for inbound travel and Sansome/California for outbound travel. All other study Muni lines operate with a capacity utilization of less than 85 percent.

Table 2-5: Muni Route Analysis - Existing Weekday PM Peak Hour

Route	Direction of Travel	Ridership	Capacity Utilization	Maximum Load Point (MLP)
10 Townsend 1	Inbound	186	98%	Sansome/Filbert
	Outbound	171	90%	Sansome/California
19 Polk 1	Inbound	172	68%	$7^{\text {th }} /$ Howard
	Outbound	124	49%	Polk/Sutter
22 Fillmore 2	Inbound	328	58%	$16^{\text {th }} /$ Folsom
	Outbound	327	58%	Fillmore/Hayes
48 Quintara-24 $^{\text {th }}$ Street 1	Inbound	175	46%	$24^{\text {th } / F o l s o m ~}$
T Third Street ${ }^{2}$	Outbound	180	48%	$24^{\text {th } / \text { Mission }}$

Source: SFMTA TEP Data - 2007, SFMTA APC Data - 2011, CDM Smith - January 2012
Notes:
${ }^{1}$ Data for the 10 Townsend, 19 Polk, and 48 Quintara- $24^{\text {th }}$ Street lines include SFMTA APC data from 2011.
${ }^{2}$ Data included most recent TEP data (SFMTA Fall 2006 - Spring 2007 TEP Monitoring data).
${ }^{3}$ Ridership for peak hour of PM peak period; obtained from Muni TEP data. Ridership includes total riders at Maximum Load Point (MLP) of route during the weekday PM peak hour.
Bold indicates load exceeding Muni's capacity utilization standard.

Existing Muni Screenline Analysis

Muni service capacity is also defined by a set of screenlines surrounding the greater downtown San Francisco area. Muni screenlines defined in the San Francisco Planning Department's 2002 Transportation Impact Analysis Guidelines for Environmental Review (SF Guidelines) were used for this analysis. These screenlines are located near the maximum load points of Muni lines crossing the screenlines. Each screenline contains several transit corridors where the majority of transit travel occurs. Four screenlines (Northeast, Northwest, Southeast, and Southwest) are roughly located around the peak travel points going to and from downtown San Francisco and relatively define travel to and from Superdistrict 1 to Superdistricts 2, 3, and 4. The map showing locations of Muni screenlines is included in Appendix H. Muni screenline analysis was conducted for the PM peak period using the ridership along peak direction of travel, which is the outbound direction from downtown San Francisco during the PM peak period. For purposes of this study, only the Southeast screenline was analyzed, since it is the only screenline that is crossed by the Muni routes serving the project site. The results of the Muni screenline analysis during the existing weekday PM peak hour are provided in Table 2-6. During the existing PM peak hour, the Southeast screenline in the outbound direction operates with a capacity utilization of 66 percent, below Muni's 85 percent capacity utilization standard.

Table 2-6: Muni Screenline Analysis - Existing Weekday PM Peak Hour

Screenline/Corridor	Ridership	Peak Hour Capacity	Capacity Utilization
Southeast Screenline			
Third Street Corridor	554	714	78%
Mission Street Corridor	1,254	2,350	53%
San Bruno/Bayshore Corridor	1,671	2,256	74%
All Other Lines	1,189	1,708	70%
Total	$\mathbf{4 , 6 6 8}$	$\mathbf{7 , 0 2 8}$	$\mathbf{6 6 \%}$

Source: SFMTA TEP - 2008, SF Planning Department - 2009, CDM Smith - June 2011.

2.4.3 Muni Transit Effectiveness Project (TEP) Recommendations

The Transit Effectiveness Project (TEP) was a review of the Muni public transportation system conducted by the San Francisco Municipal Transportation Agency (SFMTA) in collaboration with the City Controller's Office to improve reliability, reduce travel times, and provide for improved Muni service based on increasing frequencies and updating bus routes and rail lines to match with changing travel patterns throughout San Francisco, via proposed recommendations for Muni. SFMTA recently published a TEP Implementation Strategy in April 2011. The TEP Improvement Strategy anticipates that many of the service improvements would be implemented sometime between the end of Fiscal Year (FY) 2013 and FY 2015. The remainder of service improvements would occur in FY 2016. ${ }^{2}$ Within the project study area, the following changes were recommended by the TEP ${ }^{3}$:

- The one-car K Ingleside would continue to be through-routed with the T Third Street.
- The 10 Townsend would be renamed to become the 10 Sansome. Short-line service would operate between Van Ness Avenue and Market Street to provide additional capacity, replacing the to-be-discontinued 12 Pacific service. Existing service during peak periods within the project study area would be reduced from 10 minute headways to 15 minute headways.
- The 19 Polk would be rerouted to operate between Van Ness Avenue/North Point and San Francisco General Hospital, modifying existing routing in the Civic Center area. Segments south of $24^{\text {th }}$ Street would be replaced by a revised 48 Quintara- $24^{\text {th }}$ Street.
- The 22 Fillmore would be rerouted to continue along $16^{\text {th }}$ Street to Third Street, creating new connections to Mission Bay. The segment on $17^{\text {th }}$ Street, Connecticut Street, and $18^{\text {th }}$ Street would be replaced by a revised 33 Stanyan and more frequent peak service would be provided to reduce crowding (service every six minutes during the weekday PM peak period).
- Service on the 48 Quintara- $24^{\text {th }}$ Street would run all day from $48^{\text {th }}$ Avenue to the Navy Yard, connecting to Hunters Point, currently served by the 19 Polk, complemented by a new $5824^{\text {th }}$ Street service connecting Diamond Street with the $22^{\text {nd }}$ Street Caltrain station. Segments along Douglass Street and Hoffman Street would be served by a revised 35 Eureka. Existing segments in Potrero Hill would be supplemented by the new $5824^{\text {th }}$ Street line, while service along Arkansas Street, $20^{\text {th }}$ Street, and Texas Street would be eliminated.

[^1]
2.4.4 Regional Transit Providers

BART operates regional rail transit service connecting the East Bay (from Pittsburg/Bay Point, Richmond, Dublin/Pleasanton and Fremont) and San Mateo County with San Francisco. Within San Francisco, BART operates along Market and Mission Streets. The nearest BART station is the $24^{\text {th }}$ Street/Mission Station located about 1.3 miles west of the project site.

Caltrain provides rail passenger service on the Peninsula between Gilroy and San Francisco. The San Francisco terminal is located at Fourth and Townsend streets, in the South of Market area. The closest Caltrain station is the $22^{\text {nd }}$ Street Station, located approximately 0.3 miles northeast of the project site. This station is served by local, limited, and "baby bullet" express train service. Currently, Caltrain operates 88 trains each weekday, with a combination of express and local service.

SamTrans provides bus service between San Mateo County and San Francisco. It operates four bus lines that serve San Francisco, including one express route. In general, SamTrans service to downtown San Francisco operates along Mission Street and Potrero Avenue. The nearest SamTrans terminal is located at the Temporary Transbay Terminal located on Howard Street between Main and Beale Streets, approximately 2.5 miles north of the project site.

AC Transit is the primary bus operator for the East Bay, including Alameda and western Contra Costa Counties. AC Transit operates 27 routes between the East Bay and San Francisco, all of which terminate at the Temporary Transbay Terminal, located 2.5 miles north of the project site.

Golden Gate Transit (GGT) is operated by the Golden Gate Bridge Highway and Transportation District and provides transit service between the North Bay (Marin and Sonoma counties) and San Francisco. GGT operates 23 commuter bus routes, and five basic bus routes. The nearest stops are located on Market Street at $7^{\text {th }}$ and $8^{\text {th }}$ Streets, about two miles north of the project site. Golden Gate Transit also operates ferry service between the North Bay and San Francisco. During the morning and evening commute periods, ferries run between Larkspur and San Francisco, and between Sausalito and San Francisco. The San Francisco terminal is located at the Ferry Building, about 2.8 miles north of the project site.

The existing transit network in the vicinity of the project site is illustrated in Figure 2-2. Regional routes that travel along US 101 and I-280 are shown in the figure, but were omitted from analysis as these lines do not directly serve the project study area.

2.4.5 Existing Regional Transit Screenline Analysis

A corridor analysis was conducted for regional transit providers that operate in the vicinity of the project site. Regional transit screenlines defined in the SF Guidelines were used for this analysis. For the East Bay, the screenline is defined by the San Francisco Bay and the Bay Bridge. This screenline accommodates AC Transit, BART, and the ferry service from Alameda and Contra Costa Counties. The North Bay screenline is defined by the San Francisco Bay as well as the Golden Gate Bridge. Golden Gate Transit buses and ferries provide service to and from the North Bay. The South Bay screenline is defined by the San Francisco and San Mateo County border. Transit services serving the South Bay include BART, Caltrain, and SamTrans.

All regional transit providers have a 100 percent capacity utilization standard.

Based on ridership data obtained from the San Francisco Planning Department, capacity utilization was determined for each regional transit screenline during the weekday PM peak hour and presented in Table 2-7. During the existing PM peak hour, no regional transit provider exceeds its capacity utilization standard.

Table 2-7: Regional Transit Screenline Analysis - Existing Weekday PM Peak Hour

Region	Regional Transit Operator	Ridership	Peak Hour Capacity	Capacity Utilization
	BART	20,067	24,150	83%
	AC Transit	2,517	4,193	60%
North Bay	Ferries	702	1,519	46%
	Subtotal	23,286	29,862	78%
	GGT Buses	1,397	2,205	63%
	GGT Ferries	906	1,700	53%
	Subtotal	2,303	3,905	59%
	BART	10,202	16,800	61%
	Caltrain	1,986	3,250	61%
	SamTrans	575	940	61%
	Subtotal	12,763	20,990	61

Source: SF Planning Department - 2009, 2012; CDM Smith - 2012

2.5 Pedestrian Conditions

In the vicinity of the study area, five to six-foot-wide sidewalks are available along most roadways. Sidewalks are typically provided along both sides of the street, except in areas where topography constrains sidewalk availability to one side of the street, such as along the north side of $23^{\text {rd }}$ Street between Arkansas Street and Dakota Street, as well as the south side of $25^{\text {th }}$ Street between Connecticut Street and Mississippi Street. On some streets where perpendicular parking is the main type of off-street parking, directly adjacent to the street and with wide curb cuts, such as at Dakota Street and Connecticut Street, vehicles must cross the sidewalk to access this perpendicular parking.

About half of the crosswalks within the study area are striped and/or marked. At the Connecticut Street/Wisconsin Street, $25^{\text {th }}$ Street/Wisconsin Street, $25^{\text {th }}$ Street/Connecticut Street, $23^{\text {rd }}$ Street/Wisconsin Street, and $23^{\text {rd }}$ Street/Dakota Street intersections, crosswalks are marked for pedestrian crossings. Crosswalks are not marked at the Turner Terrace/Missouri Street, $22^{\text {nd }}$ Street/Missouri Street, $23^{\text {rd }}$ Street/Arkansas Street, $25^{\text {th }}$ Street/Dakota Street/Texas Street, $26^{\text {th }}$ Street/Wisconsin Street, and $26^{\text {th }}$ Street/Connecticut Street intersections. In addition, there is one pedestrian stairway along $23^{\text {rd }}$ Street at Wisconsin Street.

In general, pedestrian activity within and around the project site under Existing Conditions was observed to be low.

2.6 Bicycle Conditions

The bicycle route network in the project study area is shown in Figure 2-3. Bikeways are typically classified as Class I, Class II, or Class III facilities. ${ }^{4}$ Class I bikeways are bike paths with exclusive right-ofway for use by bicyclists or pedestrians. Class II bikeways are bike lanes striped with the paved areas of roadways and established for preferential use of bicycles, while Class III bikeways are signed bike routes that allow bicycles to share streets with vehicles.

There are four primary bicycle routes in the vicinity of the project site, including the following:

- Route \#25 on Potrero Avenue between $20^{\text {th }}$ Street and $25^{\text {th }}$ Street (Class II facility)
- Route \#525 on $23^{\text {rd }}$ Street between Potrero Avenue and Kansas Street, and on Kansas Street between Potrero Avenue and Cesar Chavez Street (Class III facility)
- Route \#60 on Cesar Chavez Street between Vermont Street and $3^{\text {rd }}$ Street (Class III facility)
- Route \#7 on Indiana Street between $20^{\text {th }}$ Street and Cesar Chavez Street (Class III facility)

Route \#25 Class II bicycle facility along Potrero Avenue is a continuous, striped, five-foot-wide bicycle lane in both the northbound and southbound directions; however, at intersections along Potrero Avenue, the exclusive bicycle lanes become a shared-use facility for vehicles and bicyclists approximately 200 feet prior to the intersections. Route \#525 is a Class III wide curb lane bicycle route along $23^{\text {rd }}$ Street and Kansas Street, and is a shared-use facility with no specific bicycle lane or sharrow treatment (a painted shared-use arrow). Route \#60 is a Class III bicycle route along Cesar Chavez Street. It does not include any demarcations signifying a designated bicycle route and is also treated as a shared-use facility. Route \#7 is a Class III wide curb lane bicycle route along Indiana Street, and is also a shared-use facility with no specific bicycle lane or sharrow treatment.

Current access to the project site by bicycle is minimal. Portions of $23^{\text {rd }}$ Street, $25^{\text {th }}$ Street, Dakota Street, and Connecticut Street are the flattest and most accessible streets for bicycles at the project site. Given the topography of the project site, bicycle activity in its vicinity is low. The aforementioned bicycle routes provide connections to other neighborhoods in San Francisco. In addition, no bicycle parking spaces are available on-site currently.

According to SFMTA, none of the study intersections experienced a significant amount of bicycle injury collisions from 2000 to $2008 .{ }^{5}$

[^2]

EXISTING BICYCLE NETWORK
Figure 2-3

The San Francisco Bicycle Plan, certified in June 2009 by the San Francisco Planning Department, began implementing projects around the city beginning in summer 2010. As part of this plan, a total of 84 bicycle-related (60 near-term and 24 long-term) street projects were proposed to be implemented to encourage bicycle ridership and improve bicycle safety throughout the City of San Francisco. ${ }^{6}$ Within the project study area, several bicycle-related projects are expected to be implemented as part of the Bicycle Plan. Table 2-8 shows these anticipated San Francisco Bicycle Plan projects.

All anticipated San Francisco Bicycle Plan projects in the vicinity of the project site are expected to improve existing bicycle routes and would not directly impact the project site. In relation to the project study area, no new bicycle routes, lanes, or improvements are expected to directly affect the actual project site. This is in large part due to the natural topography of the study area.

Table 2-8: San Francisco Bicycle Plan Projects near the Project Site

Project Number ${ }^{1}$	Bicycle Project	Bicycle Route Number	Range of Implementation	Description of Project
5-1	$23^{\text {rd }}$ Street Bicycle Lanes, Kansas Street to Potrero Avenue	\#525	Near-Term	Conversion of existing wide curb lane bicycle route to sharrows and/or full bicycle lanes in both directions
5-5	Cesar Chavez Street Bicycle Lanes, I-280 to US 101 Freeways	\#60	Near-Term	Conversion of existing shared-lane bicycle route to sharrows and/or full bicycle lanes in both directions
5-8	Kansas Street Bicycle Lanes, $23^{\text {rd }}$ Street to $26^{\text {th }}$ Street	\#525	Near-Term	Conversion of existing wide curb lane bicycle route to sharrows and/or full bicycle lanes in both directions

Source: SFMTA - 2009, CDM Smith - December 2011
Near-term improvement project descriptions accessed at http://www.sfmta.com/cms/bproj/Bicycle Plan Projects 000.htm Note:
${ }^{1}$ The first number in the project number indicates the cluster number, an assigned number, to determine the closest geographic bicycle projects that would potentially have transportation impacts associated with implementation.

2.7 Retail and Freight Loading Conditions

The existing project site does not have any retail land uses. Therefore, under Existing Conditions, freight loading operations do not occur within the project site, nor does the project site have any on- or offstreet loading spaces.

2.8 Parking Conditions

Parking Study Area

The existing on- and off-street parking conditions were examined within and surrounding the project site, bounded by $20^{\text {th }}$ Street to the north, $26^{\text {th }}$ Street to the south, Carolina Street to the west, and Texas Street to the east. Parking inventory and occupancy data were collected for the parking study area located outside of the project site. Since existing on-site parking facilities would be removed to

[^3]construct new parking facilities and a new street pattern would be developed as part of this redevelopment project, only general observations of parking within the existing project site were conducted. The parking study area is exhibited in Figure 2-4.

Data Collection Summary

The parking supply and hourly occupancy rates of on-street and off-street parking facilities within the parking study area were determined for the PM peak period (between 4:00 PM and 6:00 PM) of a typical weekday (January 4, 2011) using field surveys.

Study Area Parking Regulations

The majority of the parking study area is comprised of unmetered, no-time limit on-street parking, with street cleaning restrictions. Due to the nature of the terrain of the study area, many blocks require perpendicular street parking. A small portion of the parking study area, bounded by $20^{\text {th }}$ Street to the north, Texas Street to the east, $22^{\text {nd }}$ Street to the south, and Connecticut Street to the west, lies within the " X " Residential Parking Permit (RPP) area. However, this portion of the study area does not lie within the actual project site. Vehicles displaying a RPP within this area are not subject to posted parking time limits. Current restrictions include a two-hour limit parking for vehicles not displaying a RPP sticker; these restrictions are enforced Monday through Friday, from 8:00 AM to 6:00 PM. All vehicles, including those with RPP stickers, are subject to current street cleaning restrictions.

Field observations indicate that there are approximately 1,301 on-street parking spaces and 64 offstreet parking spaces within the study area, not including parking spaces within the project site itself.

2.8.1 On-Street Parking Conditions

The study area on-street parking occupancy rate was 50 percent during the evening peak period (4:00 PM to 6:00 PM). Since only a small portion of the study area lies within the " X " RPP, no observations were made regarding the number of vehicles parked in that area with RPP stickers.

On-street parking supply and calculated occupancy rates are provided in Table 2-9.

2.8.2 Off-Street Parking Conditions

The study area's off-street parking occupancy rate was approximately 80 percent during the evening peak period (4:00 PM to 6:00 PM). Even though off-street parking occupancy rate is high, current parking conditions within the project study area in general are sufficient due to the availability of ample on-street parking.

No public off-street parking facility is located within the parking study area. The closest public parking facility in the vicinity of the project site is the San Francisco General Hospital parking garage, located approximately four blocks west of the project site at $23^{\text {rd }}$ Street and Utah Street.

PARKING STUDY AREA

WilburSmith

SETTING
Table 2-9: Existing Study Area On-Street Parking Supply and Occupancy - Weekday PM Peak Period

Block Face	Street	Location		Parking Supply		Parking Occupancy	
		From	To	On-Street	Off-Street	On-Street	Off-Street
N	20th St.	Carolina St.	Wisconsin St.	8	0	25\%	-
N	20th St.	Wisconsin St.	Arkansas St.	10	0	30\%	-
N	20th St.	Arkansas St.	Connecticut St.	10	0	80\%	-
N	20th St.	Connecticut St.	Missouri St.	10	0	70\%	-
N	20th St.	Missouri St.	Texas St.	14	0	29\%	-
N	22nd St.	Carolina St.	Wisconsin St.	8	0	38\%	-
N	22nd St.	east of Wiscons	St.	0	0	0	-
N	23rd St.	Carolina St.	Wisconsin St.	5	0	60\%	-
N	Sierra St.	Missouri St.	Texas St.	10	0	30\%	-
N	25th St.	Connecticut St.	Texas St.	1	12	100\%	92\%
N	26th St.	Wisconsin St.	Connecticut St.	16	20	69\%	90\%
N	Coral Rd.	Carolina St.	Wisconsin St.	12	0	25\%	-
N	Caire Terrace			0	5	-	60\%
E	Carolina St.	Caire Terrace	Coral Rd.	0	0	-	-
E	Carolina St.	Coral Rd.	Coral Rd.	12	0	92\%	-
E	Carolina St.	Coral Rd.	23rd St.	7	0	43\%	-
E	Carolina St.	23rd St.	22nd St.	25	0	68\%	-
E	Carolina St.	22nd St.	20th St.	60	0	50\%	-
E	Wisconsin St.	26th St.	Blaire Terrace	3	0	33\%	-
E	Wisconsin St.	Blaire Terrace	25th St.	18	0	39\%	-
E	Wisconsin St.	25th St.	Coral Rd.	6	0	0\%	-
E	Wisconsin St.	Coral Rd.	Carolina St.	48	0	33\%	-
E	Wisconsin St.	Carolina St.	23rd St.	12	0	67\%	-
E	Wisconsin St.	23rd St.	Madera St.	12	0	33\%	-
E	Wisconsin St.	Madera St.	22nd St.	18	0	67\%	-
E	Wisconsin St.	22nd St.	20th St.	32	0	47\%	-
E	Arkansas St.	22nd St.	20th St.	70	0	43\%	-
E	Connecticut St.	26th St.	25th St.	20	0	20\%	-
E	Connecticut St.	22nd St.	20th St.	75	0	57\%	-
E	Missouri St.	Turner Terrace	Sierra St.	14	0	21\%	-
E	Missouri St.	Sierra St.	20th St.	40	0	63\%	-
E	Texas St.	Sierra St.	20th St.	80	0	45\%	-
S	20th St.	Carolina St.	Wisconsin St.	10	0	20\%	-
S	20th St.	Wisconsin St.	Arkansas St.	10	0	60\%	-
S	20th St.	Arkansas St.	Connecticut St.	10	0	90\%	-
S	20th St.	Connecticut St.	Missouri St.	10	0	70\%	-
S	20th St.	Missouri St.	Texas St.	10	0	30\%	-
S	22nd St	Carolina St.	Wisconsin St.	10	0	30\%	-
S	22nd St.	east of Wiscons	St.	0	0	0	-
S	23rd St.	Carolina St.	Wisconsin St.	5	7	20\%	100\%
S	Sierra St.	Missouri St.	Texas St.	10	0	70\%	-
S	25th St.	Connecticut St.	Texas St.	5	0	60\%	-
S	26th St.	Wisconsin St.	Connecticut St.	30	0	23\%	-
S	Coral Rd.	Carolina St.	Wisconsin St.	12	0	0\%	-
S	Caire Terrace			0	12	-	58\%
W	Carolina St.	Caire Terrace	Coral Rd.	17	0	12\%	-
W	Carolina St.	Coral Rd.	Coral Rd.	12	0	83\%	-

Table 2-9: Existing Study Area On-Street Parking Supply and Occupancy - Weekday PM Peak Period

Block Face	Street	Location		Parking Supply		Parking Occupancy	
		From	To	On-Street	Off-Street	On-Street	Off-Street
W	Carolina St.	Coral Rd.	23rd St.	0	6	-	100\%
W	Carolina St.	23rd St.	22nd St.	36	0	53\%	-
W	Carolina St.	22nd St.	20th St.	60	0	65\%	-
W	Wisconsin St.	26th St.	Blaire Terrace	2	0	100\%	-
W	Wisconsin St.	Blaire Terrace	25th St.	10	0	0\%	-
W	Wisconsin St.	25th St.	Coral Rd.	4	0	0\%	-
W	Wisconsin St.	Coral Rd.	Carolina St.	10	0	80\%	-
W	Wisconsin St.	Carolina St.	23rd St.	12	0	58\%	-
W	Wisconsin St.	23rd St.	Madera St.	25	0	48\%	-
W	Wisconsin St.	Madera St.	22nd St.	48	0	50\%	-
W	Wisconsin St.	22nd St.	20th St.	62	0	85\%	-
W	Arkansas St.	22nd St.	20th St.	32	0	53\%	-
W	Connecticut St.	26th St.	25th St.	37	0	65\%	-
W	Connecticut St.	22nd St.	20th St.	75	0	60\%	-
W	Missouri St.	Turner Terrace	Sierra St.	1	2	0\%	0\%
W	Missouri St.	Sierra St.	20th St.	20	0	50\%	-
W	Texas St.	Sierra St.	20th St.	60	0	23\%	-
Total				1,301	64	50\%	81\%

2.8.3 On-Site Parking Conditions

The Proposed Project would substantially reconfigure and alter the project site's layout. Subsequently, all on-street parking, including on-site perpendicular parking, would be demolished. Construction of new parking facilities would include both redesigned and new on-street as well as off-street parking facilities as specified by the Project Sponsor. Therefore, no existing parking counts were conducted for the study area. However, details provided by the Project Sponsor indicate that approximately 256 off-street and approximately 100 on-street parking spaces are located within the existing project site boundaries.

Approximate parking occupancy rates for the actual project site are shown in Table 2-10. These were developed based on general observations, not by actual counts. Overall, parking occupancy within the project site was observed to be less than 50 percent for both on- and off-street facilities during the weekday PM peak period.

Table 2-10: Existing Project Site Parking Occupancy - Weekday PM Peak Period

Block Face	Street	Location		Parking Occupancy	
		From	To	On-Street	Off-Street
E	Missouri St.	22nd St.	Turner Terrace	10\%	0\%
E	Missouri St.	Turner Terrace	Watchman Way	50\%	80\%
E	Missouri St.	Watchman Way	Dakota St.	50\%	80\%
E	Texas St.	north of Dakota St.		90\%	0\%
E	Connecticut St.	25th St.	Wisconsin St.	25\%	80\%
N	Turner Terrace	east of Missouri St.		80\%	80\%
N	Watchman Way	east of Missouri St.		0\%	90\%
N	23rd St.	Wisconsin St.	Arkansas St.	0\%	0\%
N	23rd St.	Arkansas St.	Missouri St.	10\%	0\%
N	Dakota St.	Missouri St.	Texas St.	60\%	80\%
W	Missouri St.	22nd St.	Turner Terrace	0\%	0\%
W	Missouri St.	Turner Terrace	Watchman Way	50\%	0\%
W	Missouri St.	Watchman Way	Dakota St.	50\%	0\%
W	Texas St.	north of Dakota St.		0\%	0\%
W	Connecticut St.	25th St.	Wisconsin St.	50\%	75\%
S	Turner Terrace	east of Missouri St.		80\%	0\%
S	Watchman Way	east of Missouri St.		0\%	80\%
S	23rd St.	Wisconsin St.	Arkansas St.	0\%	0\%
S	23rd St.	Arkansas St.	Missouri St.	0\%	0\%
S	Dakota St.	Missouri St.	Texas St.	60\%	80\%
Average				<50\%	<50\%

Chapter 3: Travel Demand Analysis

Travel demand refers to the new vehicle, transit, pedestrian and other trips that would be generated by the Proposed Project and other project alternatives. This chapter details an estimate of the trips that would be generated by the Proposed Project and Alternative 1, while accounting for trip credits due to the removal of the existing housing units from the project site. In addition, the Proposed Project's parking demand, number of delivery/service vehicle trips, and loading space demand are also discussed in this chapter. As mentioned in Chapter 1, the Proposed Project consists of 1,600 affordable and market-rate housing units, 100 senior housing units, along with 15,000 square feet of neighborhood retail shops, and a 35,000 square foot community center; while, Alternative 1 would consist of 1,200 affordable and market-rate housing units, 80 senior housing units, along with 15,000 square feet of neighborhood retail shops, and a 25,000 square foot community center. Alternative 2 would only reconstruct the existing land uses available at the project site and would not result in any net new trips; therefore, travel demand estimation for this alternative is not discussed.

The travel demand, parking demand, and loading demand estimates are based on information contained in the 2002 San Francisco Planning Department's Transportation Impact Analysis Guidelines (SF Guidelines); Institute of Transportation Engineers (ITE) Trip Generation Manual, $8^{\text {th }}$ Edition; ITE Parking Generation Manual, $4^{\text {th }}$ Edition; and square footage and housing unit information provided by the Project Sponsor. Appendix I includes the travel demand calculations and Appendix J includes the parking and loading demand calculations for the Proposed Project.

3.1 Trip Generation

The person-trip generation for the Proposed Project and Alternative 1 includes trips made by residents, visitors, and employees, and is based upon daily and PM peak hour trip generation rates obtained from SF Guidelines and the ITE Trip Generation Manual. Based on SF Guidelines, residential trip generation rates were determined to be 7.5 daily person trips per unit for 1 bedroom or studio residences, 10 daily person trips per unit for 2 or more bedroom housing units, 5 daily person trips per unit for senior housing residences, and 150 daily person trips per 1,000 square feet of retail development. Pursuant to SF Guidelines, residential trip generation rates were assumed to be the same for both market-rate and affordable housing units. For the proposed community center, since a similar land use is not available in the SF Guidelines, trip generation rates of 1.45 PM peak hour person trips per 1,000 square feet and 22.8 daily person trips per 1,000 square feet were obtained from the ITE Trip Generation Manual, $8^{\text {th }}$ Edition, Land Use \#495. Parks proposed within the project site would not generate trips, since they would mainly serve as open space for surrounding land uses. The Proposed Project is primarily a residential development, with small portions of retail and community center developments, which would result in negligible internal trips. Therefore, to be conservative, no internal trip capture was assumed as part of this analysis.

The existing project site does not have specific driveways for vehicles to access each block; therefore, traffic counts to estimate the trip credits for the existing housing units was not collected. Instead, trip credits for the existing housing units were estimated using the trip generation rates provided in SF

Guidelines. To estimate trip credits of existing housing units, all housing units are assumed to be at full occupancy ${ }^{7}$.

The weekday daily and PM peak hour trip generation rates used for the Proposed Project and Alternative 1 are shown in Table 3-1.

Table 3-1: Weekday Trip Generation Rates

Land Use	PM Peak Hour Trip Rate	PM Peak Hour Percent of Daily	Daily Trip Rate
Residential - 1 Bedroom/Studio ${ }^{1}$	1.30 person-trips per unit	17.3 percent of daily rate	7.5 person-trips per unit
Residential - 2 Bedrooms or more ${ }^{1}$	1.73 person-trips per unit	17.3 percent of daily rate	10.0 person-trips per unit
Residential - Senior Housing ${ }^{1}$	0.30 person-trips per unit	6.0 percent of daily rate	5.0 person-trips per unit
General Retail ${ }^{1}$	13.5 person-trips per 1,000 sf	9.0 percent of daily rate	150 person-trips per $1,000 \mathrm{sf}$
Community Center ${ }^{2}$	1.45 person-trips per $1,000 \mathrm{sf}^{3}$	-	22.8 person-trips per $1,000 \mathrm{sf}^{3}$

Notes:
${ }^{1}$ Source: SF Guidelines, October 2002
${ }^{2}$ Source: ITE Trip Generation Manual, $8^{\text {th }}$ Edition
${ }^{3}$ Since the community center would primarily serve the Potrero HOPE, development, these values are assumed to be person-trip rates to develop a reasonable number of vehicle trips accessing the community center. This approach is consistent with the Sunnydale-Velasco Housing Development Traffic Study.

The weekday trip generation of the Proposed Project and Alternative 1 are shown in Table 3-2. The Proposed Project would generate approximately 12,243 net person-trips (inbound and outbound) on a weekday daily basis and 1,787 net person-trips during the PM peak hour (from 4:00 PM to 6:00 PM). While, Alternative 1 would generate approximately 8,290 net person-trips (inbound and outbound) on a weekday daily basis and 1,139 net person-trips during the PM peak hour (from 4:00 PM to 6:00 PM).

[^4]Table 3-2: Weekday Person-Trip Generation - Proposed Project

Land Use	Proposed Project		Alternative 1	
	Size	Person-Trips PM Peak Hour	Size	Person-Trips DM Peak Hour

Proposed Development						
Residential 1 Bedroom/Studio	496 units	3,720	644	346 units	2,595	449
2+ Bedroom	1,104 units	11,060	1,913	854 units	8,540	1,477
Senior Housing	100 units	500	30	80 units	400	24
Retail	15,000 sf	2,250	203	15,000 sf	2,250	203
Community Center	35,000 sf	801	51	25,000 sf	572	36
Total	-	18,311	2,837	-	14,357	2,189

Trip Credits for Existing Development						
Residential						
1 Bedroom/Studio	-53 units	-398	-69	-53 units	-398	-69
2+ Bedroom	-567 units	-5,670	-981	-567 units	-5,670	-981
Net New Trips	-	12,243	1,787	-	8,290	1,139

Source: SF Guidelines, ITE Trip Generation Manual, $8^{\text {th }}$ Edition, CDM Smith - January 2012

3.2 Mode Split

The project-generated net person-trips were assigned to travel modes in order to determine the number of auto, transit, walk, and other trips; other trips include trips made by bicycle, motorcycle, and additional modes. Mode split information for the Proposed Project and Alternative 1 was obtained from SF Guidelines for work and non-work related trips to and from Superdistrict 3 and 2000 U.S. Census data for residential land uses (Census Tract 227.03). For the proposed community center, mode split of nonwork related trips was developed using the updated trip distribution, which in-turn was developed assuming that all visitor trips would be from within San Francisco. According to SF Guidelines, 19 percent of the visitor trips to a community center would be from outside of San Francisco. The community center proposed as part of this redevelopment project is anticipated to primarily serve the neighborhood and is not expected to generate any visitor trips to/from outside of San Francisco. Therefore, instead of using SF Guidelines to identify distribution of visitor trips to/from the community center, visitor trips were distributed based on the assumption that all trips would originate/terminate within San Francisco, with the majority originating/terminating within Superdistrict 3, where the project site is located. As such, it is assumed that 85 percent of visitor trips to the community center would be from/to Superdistrict 3 and five percent of trips from/to each of the remaining superdistricts. The mode split percentages used for the analysis are shown in Table 3-3.

Table 3-3: Mode Split of Project-Related Trips

Mode	Residential		General Retail		Community Center	
	Work	Non-Work	Work	Non-Work	Work	Non-Work $^{\mathbf{2}}$
Auto	59.7%	59.7%	71.1%	64.1%	71.1%	45.7%
Transit	20.2%	20.2%	20.2%	11.7%	20.2%	20.8%
Walk	4.9%	4.9%	5.8%	22.4%	5.8%	23.7%
Other 1	15.3%	15.3%	2.9%	1.8%	2.9%	9.8%
Total	$\mathbf{1 0 0 \%}$					

Source: SF Guidelines, 2000 U.S. Census Data, CDM Smith - January 2012
Notes:
${ }^{1}$ Other mode includes bicycles, motorcycles, taxis, and additional modes.
${ }^{2}$ Mode split was not obtained from SF Guidelines, but developed based on the updated trip distribution assumed for community center's visitor trips.

These mode split percentages were applied to the trips generated by the Proposed Project and Alternative 1 to identify trips by mode, while the average vehicle occupancy rate calculated from the 2000 U.S. Census Data for residential land use (Census Tract 227.03) and that was provided in SF Guidelines for other land uses was applied to determine the number of vehicle-trips generated by the Proposed Project and Alternative 1.

The trips by mode for the net project-related trips during the weekday PM peak hour for the Proposed Project and Alternative 1 are presented in Table 3-4.

Table 3-4: Trip Generation by Mode - Weekday PM Peak Hour

Land Use	Person-Trips					Vehicle Trips
	Auto	Transit	Walk	Other 1	Total	
Proposed Project						
Residential	1,524	515	124	390	2,553	1,348
Retail	130	24	44	4	203	70
Community Center	24	11	12	5	51	11
Trip Credits	-626	-212	-51	-160	$-1,050$	-554
Total	$\mathbf{1 , 0 6 9}$	$\mathbf{3 4 4}$	$\mathbf{1 3 0}$	$\mathbf{2 4 3}$	$\mathbf{1 , 7 8 7}$	$\mathbf{8 9 1}$
Alternative 1						
Residential	1,149	389	94	294	1,926	1,017
Retail	130	24	44	4	203	70
Community Center	17	8	8	3	36	8
Trip Credits	-626	-212	-51	-160	$-1,050$	-554
Total	$\mathbf{6 8 5}$	$\mathbf{2 1 4}$	$\mathbf{9 6}$	$\mathbf{1 4 5}$	$\mathbf{1 , 1 3 9}$	$\mathbf{5 5 3}$

Source: SF Guidelines, 2000 U.S. Census Data, CDM Smith - January 2012
Notes:
${ }^{1}$ Other mode includes bicycles, motorcycles, taxis, and additional modes.

Approximately 60 percent (1,069 trips) of the person-trips generated by the Proposed Project would be auto-based, 19 percent (344 trips) transit-based and 21 percent (373 trips) would occur by walk/other modes. In total, the Proposed Project would result in 891 new vehicle trips during the weekday PM peak hour, of which 575 would be inbound and 316 would be outbound.

Similarly, for Alternative 1, approximately 60 percent (685 trips) of the person-trips would be autobased, 19 percent (214 trips) would be transit-based, and the remaining 21 percent (241 trips) would occur by walk/other modes. In total, the Proposed Project would result in 553 new vehicle trips during the weekday PM peak hour, of which 351 would be inbound and 202 would be outbound.

For the AM peak hour analysis, it was assumed that the number of trips generated by the project during the AM peak hour would remain the same as under the PM peak hour, but opposite in direction. Therefore, during the AM peak hour, the Proposed Project and Alternative 1 are anticipated to generate 891 (316 inbound and 575 outbound) and 553 (202 inbound and 351 outbound) new vehicle trips.

3.3 Trip Distribution/Assignment

Similar to mode split estimation, trip distribution for the Proposed Project and Alternative 1 was based on the information obtained from SF Guidelines for work and visitor trips to retail land uses located in Superdistrict 3, in addition to 1990 U.S. Census data for residential land uses (Census Tract 227). Trip distribution is based on the origin/destination of a specific trip, and is separated into the four quadrants of San Francisco (Superdistricts 1 through 4), East Bay, North Bay, South Bay, and outside the region. As mentioned earlier, trip distribution of community center's visitor trips was not obtained from SF Guidelines, but was developed assuming that those trips would be to/from within San Francisco, i.e. 85 percent of visitor trips to the community center would be from/to Superdistrict 3 and five percent of trips from each of the remaining superdistricts. Trip distribution patterns for the project-generated traffic are shown in Table 3-5.

Table 3-5: Trip Distribution Patterns

Place of Trip Origin	Residential		General Retail		Community Center	
	Work	Visitor	Work	Visitor	Work	Visitor ${ }^{1}$
San Francisco						
Superdistrict 1	47.4%	47.4%	8.3%	6%	8.3%	5%
Superdistrict 2	10.5%	10.5%	10.6%	9%	10.6%	5%
Superdistrict 3	10.5%	10.5%	23.9%	61%	23.9%	85%
Superdistrict 4	10.5%	10.5%	7.9%	5%	7.9%	5%
East Bay	7.8%	7.8%	14.3%	3%	14.3%	0%
North Bay	1.7%	1.7%	5.6%	2%	5.6%	0%
South Bay	10.9%	10.9%	26.9%	9%	26.9%	0%
Out of Region	0.7%	0.7%	2.5%	5%	2.5%	0%
Total	$\mathbf{1 0 0 \%}$					

[^5]As indicated in Table 3-5, the highest percentage of the trips generated by the Proposed Project and Alternative 1 would come to and from areas within San Francisco. These distribution patterns were used as the basis for assigning project-related vehicle-trips to nearby local streets in the study area, and transit-trips to local and regional transit operators. The trip distribution for project-related inbound and outbound trips during the PM peak hour is exhibited in Figures 3-1 and 3-2. Project trip distribution would be the same for the Proposed Project and Alternative 1.

For the AM peak hour analysis, it was assumed that the project trip distribution during the AM peak hour would remain the same as under the PM peak hour, but opposite in direction, i.e., the AM peak hour's inbound trip distribution would be the same as the PM peak hour's outbound trip distribution and the AM peak hour's outbound trip distribution would be the same as the PM peak hour's inbound trip distribution.

The distribution of project-related PM peak hour trips to study intersections is exhibited in Table 3-6.

Table 3-6: Project Trip Distribution to Study Intersections - PM Peak Hour

\#	Study Intersection	Traffic Control	Distribution of Project-Related Trips	
			Inbound Trips	Outbound Trips
Signalized				
1	Cesar Chavez Street/Connecticut Street	Signal	47\%	25\%
2	Cesar Chavez Street/Pennsylvania Avenue/NB I-280 Off-Ramp	Signal	13\%	3\%
11	Potrero Avenue/ $23{ }^{\text {rd }}$ Street	Signal	11\%	11\%
Unsignalized				
3	Pennsylvania Avenue/SB I-280 Off-Ramp	AWSC	27\%	0\%
4	$25^{\text {th }}$ Street/Indiana Street/NB I-280 On-Ramp	AWSC	2\%	28\%
5	$25^{\text {th }}$ Street/Connecticut Street	AWSC	38\%	43\%
6	$25^{\text {th }}$ Street/Dakota Street/Texas Street	TWSC	43\%	57\%
7	23 ${ }^{\text {rd }}$ Street/Dakota Street	OWSC	8\%	27\%
8	$23^{\text {rd }}$ Street/Wisconsin Street	AWSC	6\%	6\%
9	20 ${ }^{\text {th }}$ Street/Arkansas Street	AWSC	3\%	4\%
10	$22^{\text {nd }}$ Street/Missouri Street	OWSC	5\%	5\%
12	Cesar Chavez Street/Vermont Street	TWSC	18\%	14\%
13	Cesar Chavez Street/US 101 Off-Ramp	OWYC	42\%	24\%

Figure 3-1

WilburSmith

3.4 Freight Delivery and Service Vehicle Demand

Loading demand consists of the number of delivery and service vehicle-trips generated by the project, plus the number of loading spaces that would be required to accommodate the demand. The number of daily delivery/service vehicle trips is estimated based on the size of each land use and a truck trip generation rate (specific to each land use). The number of loading spaces necessary to accommodate this demand is based on the anticipated hours of operation, turnover of loading spaces, and an hourly distribution of trips. The information and rates used in the loading demand analysis was obtained from SF Guidelines for the proposed retail land use. For the proposed community center, the loading rate for an institutional use from SF Guidelines was used.

The daily delivery/service vehicle trips and loading space demand for the Proposed Project and Alternative 1 are shown in Table 3-7. For Alternative 2, since land uses would not change, no new loading demand would be expected as a result of reconstruction.

The Proposed Project would generate approximately 67 delivery/service vehicle-trips per day, which would result in a demand of three loading spaces during the average hour and four spaces during the peak hour of loading demand. Comparatively, Alternative 1 would generate a total of 41 loading trips approximately, and have a demand for two loading spaces during both the average and peak hours. The majority of anticipated loading trips would result due to residential land uses spread throughout the project site.

Table 3-7: Delivery/Service Vehicle Trips and Loading Space Demand

Project/Land Use	Delivery/Service Vehicle Trips	Loading Space Demand	
		Average Hour	Peak Hour
Proposed Project	60.0		
Residential	3.3	0.8	3.5
Retail	3.5	0.2	0.2
Community Center	66.8	$\mathbf{3 . 2}$	0.2
Total			$\mathbf{3 . 9}$
Alternative 1	34.9	1.6	
Residential	3.3	0.2	2.0
Retail	2.5	0.1	0.2
Community Center	$\mathbf{4 0 . 7}$	$\mathbf{1 . 9}$	0.1
Total			$\mathbf{2 . 3}$

Source: SF Guidelines, CDM Smith - January 2012

3.5 Parking Demand

Parking demand consists of both long-term demand (residents and retail as well as community center employees) and short-term demand (typically retail as well as community center visitors and services). For residential land uses, the parking demand was derived by determining both the mix of 1 bedroom/studio and 2 bedrooms-and-more housing units, along with the corresponding number of expected affordable housing and market-rate housing units within the Proposed Project. Table 3-8 shows the expected housing mix for the Proposed Project and Alternative 1.

Table 3-8: Proposed Project and Alternative 1 Housing Mix

Land Use	Proposed Project	Alternative 1
Affordable Housing Units		
1 Bedroom/Studio	148 units	122 units
2+ Bedrooms	822 units	674 units
Market-Rate Housing Units	348 units	224 units
1 Bedroom/Studio	282 units	180 units
2+ Bedrooms		
Senior Housing Units	28 units	78 units
1 Bedroom/Studio	2 units	2 units

Source: BRIDGE Housing - January 2012

Long-term parking demand for retail facilities was determined by estimating the number of anticipated employees and applying the percentage of people who drive as well as average vehicle occupancy from the trip generation calculations; while long-term parking demand for the community center was estimated using the total daily work-related vehicle trips. The short-term parking for both the retail and community center land uses was estimated based on the total daily visitor trips and an average turnover rate from SF Guidelines of 5.5 vehicles per space.

While the retail uses and community center may not have their peak parking demand during the weekday PM peak period, the overall project would have its peak parking demand during the weekday PM peak period. This is because residential land uses, which are the major contributor of this project's parking demand, have their peak parking demand during the weekday PM peak period. Therefore, the project-generated parking demand was determined for the weekday PM peak period. Parking demands for the Proposed Project and Alternative 1 are shown in Table 3-9.

The Proposed Project would have a total parking demand for about 1,764 spaces during the evening peak period, with 81 spaces for short-term demand and 1,683 spaces for long-term demand. Alternative 1 would have a total parking demand for about 1,315 spaces during the evening peak period, with 77 spaces for short-term demand and 1,238 spaces for long-term demand.

Table 3-9: Parking Demand - Weekday Evening Peak Period

Land Use	Parking Demand		
	Short Term	Long Term	Total
Proposed Project			
Residential			
Affordable	0	823	823
Market-Rate	0	806	806
Senior Housing	0	20	20
Retail	67	25	92
Community Center	14	9^{1}	23
Total	81	1,683	1,764
Alternative 1			
Residential			
Affordable	0	675	675
Market-Rate	0	516	516
Senior Housing	0	16	16
Retail	67	25	92
Community Center	10	$6{ }^{1}$	16
Total	77	1,238	1,315

Source: SF Guidelines, CDM Smith - January 2012
Notes:
${ }^{1}$ Estimated from daily work-related vehicle trips.
(This page intentionally left blank)

Chapter 4: Impact Analysis

This chapter presents the assessment of neighboring circulation network operations under Existing plus Project, 2030 Cumulative, and 2030 Cumulative plus Project Conditions. Traffic, transit, pedestrian, bicycle, loading, and construction operations are discussed in this chapter. Parking information is also provided. As mentioned in Chapter 1, since Alternative 2 would only reconstruct the existing land uses available at the project site and would neither add net new trips nor modify the neighboring circulation network to result in any transportation-related impacts, only a qualitative analysis of this alternative is provided in this report.

4.1 Significance Criteria

The following are the significance criteria used by the Planning Department for the determination of impacts associated with a proposed project:

- The operational impact on signalized intersections is considered significant when project-related traffic causes the intersection level of service to deteriorate from LOS D or better to LOS E or F, or from LOS E to LOS F. The operational impacts on unsignalized intersections are considered potentially significant if project-related traffic causes the level of service at the worst approach to deteriorate from LOS D or better to LOS E or F and Caltrans signal warrants would be met, or would cause Caltrans signal warrants to be met when the worst approach is already operating at LOS E or F. The project may result in significant adverse impacts at intersections that operate at LOS E or F under existing conditions depending upon the magnitude of the project's contribution to the worsening of the average delay per vehicle. In addition, the project would have a significant adverse impact if it would cause major traffic hazards or contribute considerably to cumulative traffic increases that would cause deterioration in levels of service to unacceptable levels;
- The operational impacts on freeway mainline segments and freeway on-ramp merge and offramp diverge operations are considered significant when project-related traffic causes the level of service to deteriorate from LOS D or better to LOS E or LOS F, or from LOS E to LOS F. In addition, a project would have a significant effect on the environment if it would contribute substantially to freeway segment or ramp congestion operating at unacceptable levels (LOS E or LOS F);
- The project would have a significant effect on the environment if it would cause a substantial increase in transit demand that could not be accommodated by adjacent transit capacity, resulting in unacceptable levels of transit service; or cause a substantial increase in delays or operating costs such that significant adverse impacts in transit service levels could result. With the Muni and regional transit screenlines analyses, the project would have a significant effect on the transit provider if project-related transit trips would cause the capacity utilization standard to be exceeded during the PM peak hour;
- The project would have a significant effect on the environment if it would result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility to the site and adjoining areas;
- The project would have a significant effect on the environment if it would create potentially hazardous conditions for bicyclists or otherwise substantially interfere with bicycle accessibility to the site and adjoining areas;
- A project would have a significant effect on the environment if it would result in a loading demand during the peak hour of loading activities that could not be accommodated within proposed on-site loading facilities or within convenient on-street loading zones, and created potentially hazardous conditions or significant delays affecting traffic, transit, bicycles or pedestrians;
- The project would have a significant effect on the environment if it would result in inadequate emergency access; and
- Construction-related impacts generally would not be considered significant due to their temporary and limited duration.

4.2 Existing plus Project Conditions

4.2.1 Traffic Impacts

Intersection Impacts

The Proposed Project would generate 891 project-related vehicle trips (575 inbound and 316 outbound) during the weekday PM peak hour, while Alternative 1 would generate 553 project-related vehicle trips (351 inbound and 202 outbound) during the weekday PM peak hour. Since Alternative 2 would reconstruct the existing land uses, it would not result in any additional project-related trips. Therefore, all transportation operations under this scenario would remain identical to Existing Conditions.

The above mentioned project trips have been distributed within the study area using the trip distribution and assignment discussed in Section 3.3 - Trip Distribution/Assignment. Additionally, relevant traffic circulation adjustments as mentioned in Section 1.4.2 - Vehicular Access (shifting approximately 25 percent of traffic traveling along Pennsylvania Avenue to Texas Street and approximately 25 percent of traffic traveling along Dakota Street to Arkansas Street), were applied to reflect changes in the circulation pattern due to the roadway layout reconfiguration planned as part of the Proposed Project and Alternative 1. The resulting traffic volumes and proposed geometric configurations at the study intersections under Existing plus Project Conditions for the Proposed Project and Alternative 1 during the weekday PM peak hour are illustrated in Figures 4-1 and 4-2.

INTERSECTION VOLUMES AND GEOMETRIC CONFIGURATIONS - EXISTING PLUS PROJECT PM PEAK HOUR (PROPOSED PROJECT)

INTERSECTION VOLUMES AND GEOMETRIC CONFIGURATIONS - EXISTING PLUS PROJECT PM PEAK HOUR (ALTERNATIVE 1)

Figure 4-2

A comparison of the intersection operations under Existing and Existing plus Project conditions during the weekday PM peak hour is provided in Table 4-1.

Proposed Project - Under Existing plus Project Conditions, vehicle delays at intersections would increase such that nine of the 13 study intersections would continue to operate at the same operating conditions (LOS) as under Existing Conditions during the weekday PM peak hour, while the Proposed Project traffic would alter the remaining four intersections LOS weekday PM peak hour conditions ($25^{\text {th }}$ Street/Connecticut Street would worsen from LOS A to LOS B, $25^{\text {th }}$ Street/Dakota Street/Texas Street would worsen from LOS A to LOS C, $23^{\text {rd }}$ Street/Dakota Street would worsen from LOS A to LOS B, and Cesar Chavez Street/US 101 Off-Ramp would worsen from LOS B to LOS C). However, all the study intersections would continue to operate at an acceptable LOS (LOS D or better) as under Existing Conditions. Hence, the Proposed Project would not result in any significant traffic impacts at the study intersections under Existing plus Project Conditions. Traffic impacts related to site access and circulation are discussed in Subsection Site Access and On-Site Circulation Impacts on Page 4-10.

Alternative 1 - Under Existing plus Alternative 1 Conditions, 10 of the 13 study intersections would continue to operate at the same weekday PM peak hour LOS operating conditions as under Existing Conditions, while the Proposed Project traffic would alter the remaining three intersections LOS weekday PM peak hour conditions ($25^{\text {th }}$ Street/Dakota Street/Texas Street would worsen from LOS A to LOS B, $23^{\text {rd }}$ Street/Dakota Street would worsen from LOS A to LOS B, and Cesar Chavez Street/US 101 Off-Ramp would worsen from LOS B to LOS C). However, similar to the Proposed Project, all the study intersections would during the weekday PM peak hour, continue to operate at an acceptable LOS (LOS D or better) operating condition, as under Existing Conditions. Hence, similar to the Proposed Project, Alternative 1 would not result in any significant traffic impacts at the study intersections under Existing plus Alternative 1 Conditions.

Alternative 2 - Alternative 2 would neither add net new trips nor modify the neighboring circulation network; and as such, all study intersections would continue to operate at the same LOS operating as under Existing Conditions (LOS D or better) under weekday PM peak hour conditions. Therefore, Alternative 2 would not result in any significant traffic impacts at the study intersections under Existing plus Alternative 2 Conditions.

Detailed LOS calculation sheets are included in Appendix F.

Table 4-1: PM Peak Hour Intersection Operations - Existing vs. Existing plus Project Conditions

\#	Intersection	Existing		Existing plus Project			
				Proposed Project		Alternative 1	
		Delay	LOS	Delay	LOS	Delay	LOS
Signalized							
1	Cesar Chavez Street/Connecticut Street	11.4	B	13.5	B	12.5	B
2	Cesar Chavez Street/Pennsylvania Avenue/NB I-280 Off-Ramp	38.4	D	38.5	D	38.4	D
11	Potrero Avenue/ $23{ }^{\text {rd }}$ Street	22.2	C	24.3	C	23.4	C
Unsignalized							
3	Pennsylvania Avenue/SB I-280 Off-Ramp	15.2 (SB)	C	17.0 (WB)	C	15.5 (WB)	C
4	$25^{\text {th }}$ Street/Indiana Street/NB I-280 On-Ramp	11.4 (EB)	B	14.2 (EB)	B	13.1 (EB)	B
5	$25^{\text {th }}$ Street/Connecticut Street	8.0 (EB)	A	12.5 (NB)	B	10.0 (NB)	A
6	$25^{\text {th }}$ Street/Dakota Street/Texas Street ${ }^{1}$	9.6 (SB)	A	17.0 (SB)	C	13.6 (SB)	B
7	$23^{\text {rd }}$ Street/Dakota Street ${ }^{2}$	9.2 (NB)	A	10.6 (NB)	B	10.1 (NB)	B
8	$23^{\text {rd }}$ Street/Wisconsin Street	7.5 (SB)	A	7.8 (SB)	A	7.7 (SB)	A
9	$20^{\text {th }}$ Street/Arkansas Street	8.5 (WB)	A	8.6 (WB)	A	8.6 (WB)	A
10	$22^{\text {nd }}$ Street/Missouri Street	8.5 (EB)	A	8.5 (EB)	A	8.5 (EB)	A
12	Cesar Chavez Street/Vermont Street	25.8 (SB)	D	34.5 (SB)	D	31.0 (SB)	D
13	Cesar Chavez Street/US 101 Off-Ramp	13.3 (NB)	B	22.4 (NB)	C	17.6 (NB)	C

Notes:
${ }^{1}$ This intersection is $25^{\text {th }} /$ Dakota/Texas under No Project Conditions and $25^{\text {th }} /$ Texas under With Project Conditions.
${ }^{2}$ This intersection is $23^{\text {rd }} /$ Dakota under No Project Conditions and $23^{\text {rd }} /$ Missouri under With Project Conditions.
Alternative 2, where no net new project trips would be added would operate similar to Existing Conditions.
EB - Eastbound, NB - Northbound, SB - Southbound, WB - Westbound
Delay presented in seconds per vehicle; for unsignalized intersections delay and LOS is presented for the worst approach, annotated in parentheses ().
Bold indicates intersection operates at an unacceptable LOS.
Alternative 2 , where no net new project trips would be added would operate similar to Existing Conditions.

Freeway Segment Impacts

A comparison of the freeway segment operations under Existing and Existing plus Project conditions for the Proposed Project and Alternative 1 during the weekday AM and PM peak hours is presented in Table 4-2. The addition of project-generated traffic would result in slight increases in traffic density along all freeway segments for both the Proposed Project and Alternative 1.

Proposed Project - Under Existing plus Project weekday AM peak period conditions, three of the four study freeway segments would continue to operate at acceptable operating conditions (LOS D or better). Southbound US 101 (north of the Cesar Chavez Street off-ramp) would continue to operate at LOS F operating conditions under Existing and Existing plus Project Conditions. The Proposed Project would increase traffic on this freeway segment by approximately 77 vehicles [from 8,274 vehicles per hour (vph) to 8,351 vph], resulting in less than one (1) percent traffic increase during the AM peak hour. Since the Proposed Project would not contribute considerable amounts of traffic to this freeway segment, the Proposed Project's contribution to the existing LOS F operating conditions on this freeway segment would not be considered a significant impact during the AM peak hour.

Under Existing plus Project weekday PM peak hour conditions, five (5) of the six (6) study freeway segments would continue to operate at acceptable operating conditions (LOS D or better). The remaining freeway segment, Northbound US 101 (north of the Cesar Chavez Street off-ramp) would continue to operate at LOS F under Existing and Existing plus Project Conditions. The Proposed Project would increase traffic on this freeway segment by approximately 77 vehicles (from 8,426 vph to 8,503 vph), resulting in less than one (1) percent traffic increase during the PM peak hour. Since the Proposed Project would not contribute considerable amounts of traffic to this freeway segment, the Proposed Project's contribution to the existing LOS F operating conditions on this freeway segment would not be considered a significant impact during the PM peak hour.

Therefore, the Proposed Project would not result in significant impacts at any of the study freeway segments during the AM or PM peak hours under Existing plus Project Conditions.

Alternative 1 - Similar to the Proposed Project, Alternative 1 would result in three of the four study freeway segments continuing to operate at acceptable operating conditions (LOS D or better) under Existing as well as Existing plus Alternative 1 AM peak hour conditions. Even though Southbound US 101 (north of the Cesar Chavez Street off-ramp) would continue to operate at LOS F under Existing and Existing plus Alternative 1 Conditions, Alternative 1 would increase traffic on this freeway segment by 48 vehicles (from $8,274 \mathrm{vph}$ to $8,322 \mathrm{vph}$), less than the Proposed Project, resulting in a less than 1 percent traffic increase during the PM peak hour. Since Alternative 1 would not contribute cumulatively considerable amounts of traffic to this freeway segment, the contribution of Alternative 1 to the LOS F operating conditions for this segment during the AM peak hour would not be considered a significant impact.

Table 4-2: Existing vs. Existing plus Project Freeway Segment Operations - Weekday AM and PM Peak Hours

\#	Study Freeway Segment	Existing		Existing plus Project			
				Proposed Project		Alternative 1	
		Density	LOS	Density	LOS	Density	LOS
AM Peak Hour							
1	NB I-280 (south of Cesar Chavez Street Off-Ramp)	34.4	D	34.9	D	34.7	D
3	NB I-280 (north of Indiana Street On-Ramp)	22.9	C	23.6	C	23.3	C
5	NB US 101 (north of Cesar Chavez Street On-Ramp)	30.4	D	31.1	D	30.8	D
6	SB US 101 (north of Cesar Chavez Street Off-Ramp)	>45	F	>45	F	>45	F
PM Peak Hour							
1	NB I-280 (south of Cesar Chavez Street Off-Ramp)	16.0	B	16.5	B	16.3	B
2	SB I-280 (south of Pennsylvania Avenue On-Ramp)	29.3	D	29.7	D	29.6	D
3	NB I-280 (north of Indiana Street On-Ramp)	13.1	B	13.5	B	13.4	B
4	SB I-280 (north of Pennsylvania Avenue Off-Ramp)	32.6	D	33.6	D	33.2	D
5	NB US 101 (north of Cesar Chavez Street On-Ramp)	>45	F	>45	F	>45	F
6	SB US 101 (north of Cesar Chavez Street Off-Ramp)	33.4	D	34.2	D	33.9	D

Density is reported in passenger cars per mile per lane ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)
Bold indicates unacceptable conditions (LOS E or F).
Table 4-3: Existing vs. Existing plus Project Ramp Junction Operations - Weekday PM Peak Hour

\#	Study Ramp Junction	Existing		Existing plus Project			
				Proposed Project		Alternative 1	
		Density	LOS	Density	LOS	Density	LOS
1	NB I-280/Cesar Chavez Street Off-Ramp	4.8	A	5.5	A	5.2	A
2	SB I-280/Pennsylvania Avenue Off-Ramp	29.4	D	30.3	D	29.9	D
3	NB I-280/Indiana Street On-Ramp	17.0	B	17.6	B	17.4	B
4	SB I-280/Pennsylvania Avenue On-Ramp	26.9	C	27.5	C	27.3	C

Notes
Density is reported in passenger cars per mile per lane (pc/mi/ln)

Similar to the Proposed Project, during the PM peak hour, Alternative 1 would result in five of the six study freeway segments continuing to operate at LOS D or better operating conditions under Existing as well as Existing plus Alternative 1 Conditions. The remaining freeway segment, Northbound US 101 (north of the Cesar Chavez Street off-ramp) would continue to operate at LOS F under Existing and Existing plus Alternative 1 Conditions. Alternative 1 would increase traffic on this freeway segment by 48 vehicles (from $8,426 \mathrm{vph}$ to $8,474 \mathrm{vph}$), less than the Proposed Project, and resulting in less than 1 percent traffic increase during the PM peak hour. Since Alternative 1 would not contribute considerable amounts of traffic to this freeway segment, the contribution of Alternative 1 to the LOS F operating conditions during the PM peak hour on this freeway segment would not be considered a significant impact.

Therefore, similar to the Proposed Project, Alternative 1 would not result in significant impacts at any of the study freeway segments during the AM or PM peak hours under Existing plus Alternative 1 Conditions.

Alternative 2 - Alternative 2 would not add any new trips; as such, all study freeway segments would continue to operate with the same LOS and density values as under Existing Conditions. Therefore, Alternative 2 would not result in any significant traffic impacts at the study freeway segments under Existing plus Alternative 2 Conditions.

Detailed LOS calculation sheets for the study freeway segments are included in Appendix F.

Ramp Junction Impacts

A comparison of the ramp junction operations under Existing and Existing plus Project conditions is provided in Table 4-3.

Proposed Project - Under Existing plus Project conditions, all of the study ramp junctions would continue to operate at the same acceptable LOS (LOS D or better) operating conditions during the weekday PM peak hour as under Existing Conditions. Hence, the Proposed Project would result in less-than-significant impacts at these ramp junctions during the weekday PM peak hour under Existing plus Project Conditions.

Alternative 1 - Similar to the Proposed Project, under Alternative 1, all of the study ramp junctions would continue to operate at the same acceptable LOS (LOS D or better) operating conditions as under Existing Conditions. Hence, Alternative 1 would also result in less-than-significant impacts at these ramp junctions under Existing plus Alternative 1 Conditions.

Alternative 2 - Alternative 2 would not add any new trips; as such, all study ramp junctions would continue to operate with the same acceptable LOS operating conditions and density values as under Existing Conditions. Therefore, Alternative 2 would not result in any significant traffic impacts at the study ramp junctions under Existing plus Alternative 2 Conditions.

Detailed LOS calculation sheets for the study ramp junctions are included in Appendix F.

Site Access and On-Site Circulation Impacts

As mentioned in Section 1.4 .2 - Vehicular Access, roadway reconfigurations and modifications are planned within the project site as part of the Proposed Project and Alternative 1. With the reconfigured roadway layout, the project site would be directly accessed via several local streets, including Connecticut Street, $25^{\text {th }}$ Street, $26^{\text {th }}$ Street, Arkansas Street, Wisconsin Street, and Missouri Street. This would allow for multiple local access points within the project site. Circulation within the project site would occur via new internal streets, along with modified and reconstructed roadways.

The following roadways would be either constructed or modified as part of the Proposed Project and Alternative 1:

- $\mathbf{2 3}^{\text {rd }}$ Street would have its intersection with Dakota Street eliminated. Additionally, it would be straightened and extended eastward to meet the newly constructed Missouri Street. Between Arkansas Street and Missouri Street it is proposed to have a 41.5 -foot-wide right-of-way, due to limited street width as a result of local topography;
- $\quad \mathbf{2 4}^{\text {th }}$ Street would be a newly constructed east-west street between Wisconsin Street and Texas Street. However, it would be disconnected from other sections of $24^{\text {th }}$ Street. As it serves as the main retail and community street for the Proposed Project, $24^{\text {th }}$ Street is proposed to have a 84-foot-wide right-of-way with extra wide sidewalks and diagonal parking between Arkansas Street and Missouri Street. West of Arkansas Street and east of Missouri Street, $24^{\text {th }}$ Street is proposed to have a 61.5-foot-wide right-of-way;
- $\mathbf{2 4} 12^{\text {th }}$ Street would be a newly constructed east-west street between Arkansas Street and Texas Street. It is proposed to have a 56-foot-wide right-of-way through the project site. It would front the proposed community center and central park between Arkansas Street and Missouri Street;
- $\mathbf{2 5}^{\text {th }}$ Street would have its intersection with Dakota Street eliminated. Minor sidewalk, crosswalk, and bulb-out improvements are also planned along $25^{\text {th }}$ Street as well. Between Wisconsin Street and Connecticut Street it is proposed to have a 60 -foot-wide right-of-way. Between Connecticut Street and Missouri Street it is proposed to have a 56 -foot-wide right-ofway. Between Missouri Street and Texas Street it is proposed to have a 61-foot-wide right-ofway. Access to Pennsylvania Avenue to the east would be maintained;
- $\mathbf{2 6}^{\text {th }}$ Street is expected to retain its existing roadway alignment, with minor sidewalk, crosswalk, and bulb-out improvements. Between Wisconsin Street and Connecticut Street it is proposed to have a 54 -foot-wide right-of-way. Existing access to the west along $26^{\text {th }}$ Street would be maintained;
- Wisconsin Street is expected to retain its existing roadway alignment and right-of-way, with minor sidewalk, crosswalk, and bulb-out improvements. Existing access to the north along Wisconsin Street would be maintained;
- Arkansas Street is proposed to have a 69-foot-wide right-of-way through the project site. It would be extended from its existing $23^{\text {rd }}$ Street terminus south to $26^{\text {th }}$ Street, providing multiple internal street connections. Existing access to the north along Arkansas Street would be maintained;
- Connecticut Street would retain its existing roadway alignment from $26^{\text {th }}$ Street to $25^{\text {th }}$ Street. North of $25^{\text {th }}$ Street, it would be straightened and modified to connect to 24 and $1 / 2^{\text {th }}$ Street. Between $241_{2}{ }^{\text {th }}$ Street and $25^{\text {th }}$ Street, Connecticut Street is proposed to have a 75 -foot-wide right-of-way. This section would be converted from a one-way street to a two-way street. Existing access to the south along Connecticut Street would be maintained;
- Missouri Street would be extended from its existing $23^{\text {rd }}$ Street terminus south to $25^{\text {th }}$ Street, providing multiple internal street connections. North of the Missouri Overlook park the street would have a 56 -foot-wide right-of-way. Between the Missouri Overlook park and $23^{\text {rd }}$ Street the street is proposed to have a 41.5 -foot-wide right-of-way. Between $23^{\text {rd }}$ Street and $25^{\text {th }}$ Street the street would have a 69 -foot-wide right-of-way. The existing Missouri Street roadway alignment and access north of $23^{\text {rd }}$ Street would be maintained; and
- Texas Street would be widened and extended from $25^{\text {th }}$ Street northward to meet Missouri Street near the north end of the project site. Turner Terrace south of Missouri Street would be converted to Texas Street. The northernmost section of Texas Street near Missouri Street would have a 56 -foot-wide right-of-way. Between this section and $23^{\text {rd }}$ Street it is proposed to have a 69 -foot-wide right-of-way. Between $23^{\text {rd }}$ Street and $2412^{\text {th }}$ Street, Texas Street is proposed to have a 48 -foot-wide right-of-way. Even though Texas Street would convert into a long straight road, the curb extensions and crosswalks provided at each intersection within the project site, and possible pavement material changes provided at the $23^{\text {rd }}$ Street Stair should act as traffic calming devices and help slow down speeding traffic.

All the streets within the project site would be designed with one travel lane in each direction, and landscaping and sidewalks on both sides of the street. As part of the Proposed Project and Alternative 1, on-street parking would generally be provided on both sides of the streets located within the project site, except at the following locations:

- Missouri Street from $23^{\text {rd }}$ Street to Missouri Overlook and $23^{\text {rd }}$ Street from Arkansas Street to Missouri Street - No on-street parking would be provided; and
- Texas Street from $23^{\text {rd }}$ Street Stairway to $241 /{ }^{\text {th }}$ Street, $26^{\text {th }}$ Street from Wisconsin Street to Connecticut Street, and $25^{\text {th }}$ Street from Missouri Street to Texas Street - on-street parking would be provided on one side of the street.

Watchman Way, Dakota Street, Turner Terrace, and portions of Connecticut Street would be eliminated as part of the Proposed Project and Alternative 1. Modification of roadway layout would alter two study intersections as follows:

- $25^{\text {th }}$ Street/Dakota Street/Texas Street intersection would be reconfigured and renamed to $25^{\text {th }}$ Street/Texas Street; and
- $23^{\text {rd }}$ Street/Dakota Street intersection would be renamed to $23^{\text {rd }}$ Street/Missouri Street.

Additionally, modification of roadway layout would result in two new T-intersections along Texas Street (with $24^{\text {th }}$ Street, and $241_{2}^{\text {th }}$ Street) and three new intersections along Arkansas Street (four-way intersections with $24^{\text {th }}$ Street and $25^{\text {th }}$ Street, and a T-intersection with $241_{2}^{\text {th }}$ Street). All new intersections would have one mixed-flow lane in each direction and all of them are assumed to be stopcontrolled intersections, either one-way, two-way, or four-way stop-controlled intersections. Final intersection designs, including designs of intersection bulb-outs and parking garage driveways would be developed in coordination with the SFMTA as part of the overall infrastructure design and permitting that would occur prior to the construction of each phase.

Bulb-outs are planned to be provided at most intersections, depending on DPW and SFMTA recommendations when final intersection configurations are designed. In general, it is anticipated that pedestrian bulb-outs would be provided along streets where high pedestrian activity is expected, such
as streets along the planned neighborhood center ($24^{\text {th }}$ Street), streets leading to and from the planned park areas and possibly streets with transit service (Arkansas, Wisconsin, and Missouri Streets). Bulbouts could also be provided wherever possible along other streets serving residential uses. Driveways to underground garages for various blocks are anticipated to be located on the following streets:

- Blocks A and J - Wisconsin and Arkansas Streets
- Blocks F and K - Arkansas Street
- Block G - Arkansas and $241 / 2^{\text {th }}$ Streets
- Blocks C and B - Arkansas, Connecticut, and $25^{\text {th }}$ Streets
- Block D - Connecticut, Missouri, $25^{\text {th }}$, and $241 / 2^{\text {th }}$ Streets
- Block X - Connecticut and $25^{\text {th }}$ Streets
- Block L - Missouri and $23^{\text {rd }}$ Streets
- Block E - Texas and $2411_{2}^{\text {th }}$ Streets
- Block H - Missouri, Texas, $24^{\text {th }}$, and $2412^{\text {th }}$ Streets
- Block M - Missouri and $24^{\text {th }}$ Streets
- Block N - Missouri and Texas Streets
- Block Q - Missouri Street
- Blocks O, P and R - Texas Street

Potential access points to underground garages for various blocks are shown in the Potential Garage Entries Plan (included in Appendix B), the proposed internal circulation plan is included in Appendix B, and new vehicle connections planned with the Proposed Project and Alternative 1 are shown in Figure 4-3.

It is anticipated that the newly constructed roadway grid would better connect locally with other nearby streets. Vehicular site circulation is anticipated to consist primarily of localized traffic and transit service accessing the residential units, parks, and community center on the project site. Intersections located within the project site that were evaluated in this study $\left(25^{\text {th }}\right.$ Street/Connecticut Street, $23^{\text {rd }}$ Street/Missouri Street, $23^{\text {rd }}$ Street/Wisconsin Street, and $25^{\text {th }}$ Street/Texas Street) experience LOS D or better operating conditions after implementing either the Proposed Project or Alternative 1. Due to the anticipated localized traffic patterns for the Proposed Project and Alternative 1, and the acceptable internal study intersection operating conditions, it is not expected that the project site would experience any significant circulation or site access issues as a result of project implementation. However, since the specific street designs, including locations of intersection bulb-outs and driveways connecting to the parking garages are not developed, the Proposed Project and Alternative 1 would be considered to result in a significant impact to traffic circulation.

Transportation Mitigation Measure 1 - During the design of each phase of the project, the Project Sponsor shall develop designs for intersection bulb-outs and driveways connecting to parking garages incorporating the guidelines and design controls provided below. These design recommendations were identified from Better Streets Plan and guidelines provided by SFMTA, and the Planning Department.

Bulb-out Design (Source - Better Streets Plan)

- All streets within the project site shall adhere to standards contained in the Better Streets Plan by the San Francisco Planning Department, including the following:

SOURCE: VAN METER WILLIAMS POLLACK LLP, 2010
o Streets and bulb-outs shall be designed to accommodate emergency vehicle (WB-40) turns; and
0 Streets and bulb-outs along Muni routes shall be designed to accommodate a 40-foot (B-40) bus.

- Bulb-outs shall be designed consistent with the SFDPW and other City agency specifications to accommodate use of mechanical street sweepers, and shall be consistent with San Francisco Fire Department and SFMTA regulations. All bulb-outs require the approval of the interagency TASC committee.

Driveway Design (Source - Better Streets Plan, Planning Department, and SFMTA)

- All driveways leading to parking garages shall be designed in accordance with the San Francisco Planning Code Sections 145.1 and 155 standards applicable in RM zoning districts and the Planning Department's Guidelines for Adding Garages and Curb Cuts;
- Garages with more than 20 parking spaces would be subject to the Planning Department's Queue Abatement Condition of Approval, requiring the project sponsor to design for and prevent through monitoring the potential for vehicle queues in the public right-of-way;
- Garage entrances and curb cuts shall be designed to minimize their impact on other modes of travel, including pedestrian circulation;
- Garage entrances shall be no wider than 16 feet, 12 feet being the preferred width;
- Garage entrances located along streets with transit service (Missouri, Arkansas, and Wisconsin Streets) shall not encumber any bus stop and not be located directly before a bus stop; and
- The minimum clearance distance between any garage driveway and neighboring intersections would be identified coordinating with the SFMTA.

The intersection bulb-out and driveway designs for each phase of construction would be finalized after review and approval by the Planning Department, SFDPW, and SFMTA to assure compliance with these standards. With the implementation of Transportation Mitigation Measure 1, the circulation impacts of the Proposed Project and its alternatives would be considered less-than-significant with mitigation.

4.2.2 Transit Impacts

The Proposed Project would generate 344 weekday PM peak hour transit trips (221 inbound and 123 outbound) and Alternative 1 would generate 214 weekday PM peak hour transit trips (135 inbound and 79 outbound). This demand is expected to comprise approximately 19 percent of the Proposed Project's trips during the PM peak hour. These transit trips to and from the project site would utilize nearby Muni lines and regional transit lines, and may include transfers to other Muni bus lines and light rail lines, or other regional transit providers.

Due to the proposed modification of the roadway network, the Proposed Project and Alternative 1 would reroute 10 Townsend within the project site - between $23^{\text {rd }}$ and $25^{\text {th }}$ Streets, the outbound 10 Townsend will be rerouted from Dakota Street to Arkansas Street, while the inbound 10 Townsend will be rerouted from Dakota Street to Wisconsin Street. Additionally, as part of the Muni TEP
recommendations ${ }^{8}$, a new planned local Muni line, the $5824^{\text {th }}$ Street, would traverse through the project site along Wisconsin Street, $25^{\text {th }}$ Street, and Missouri Street.

Based on the trip distribution patterns presented in Section 3.3 - Trip Distribution/Assignment, the project-related weekday PM peak hour transit demand would be distributed to the study area as shown in Table 4-4.

Table 4-4: Distribution of Transit Trips - Weekday PM Peak Hour

Place of Trip Origin	Total Transit Trips			
	Proposed Project		Alternative 1	
	Inbound	Outbound	Inbound	Outbound
San Francisco				
Superdistrict 1	99	50	59	31
Superdistrict 2	23	13	14	8
Superdistrict 3	31	23	21	17
Superdistrict 4	22	12	13	7
East Bay	17	9	10	6
North Bay	4	2	14	1
South Bay	23	2	2	8
Out of Region	2	$\mathbf{1 2 3}$	135	1
				79

Source: SF Guidelines, CDM Smith - January 2012

For the Proposed Project, it is estimated that 175 inbound and 98 outbound trips would be served by Muni lines, while 46 inbound and 25 outbound trips would be served by regional transit providers. In comparison, for Alternative 1, 107 inbound and 63 outbound trips would be served by Muni lines, while 28 inbound and 16 outbound trips would be served by regional transit providers.

Alternative 2 would not result in any additional transit trips to/from the project site. Hence, transit operations of all transit routes serving the project site would remain the same under Existing and Existing plus Project Conditions for this alternative. Therefore, Alternative 2 would not cause any significant transit impacts.

Existing plus Project Muni Line-by-Line Analysis

Since the 10 Townsend, 19 Polk, and 48 Quintara- $24^{\text {th }}$ Street Muni routes provide direct service to the project site, line-by-line analysis was conducted for these three routes under Existing plus Project Conditions. This analysis is followed by the Muni Screenline analysis.

[^6]As mentioned above, the Proposed Project and Alternative 1 would result in transit route changes. In addition, the Project and Alternative 1 would relocate/consolidate existing bus stops and create new ones as follows:

- Bus stops serving the 19 Polk and located along northbound Connecticut Street (between $25^{\text {th }}$ and Wisconsin Streets), southbound Connecticut Street (north of $26^{\text {th }}$ Street), and southbound Wisconsin Street (south of Coral Street) would be eliminated, since the 19 Polk would not travel through the project site in the near future;
- Bus stop serving the outbound 10 Townsend and located along westbound $25^{\text {th }}$ Street (east of Connecticut Street) would be relocated to southbound Arkansas Street (north of $24^{\text {th }}$ Street);
- Bus stops serving the inbound 10 Townsend and located along northbound Dakota Street (between $25^{\text {th }}$ and $23^{\text {rd }}$ Streets, and south of $23^{\text {rd }}$ Street) and westbound $23^{\text {rd }}$ Street (east of Wisconsin Street) would be relocated and consolidated at northbound Wisconsin Street (south of $24^{\text {th }}$ Street);
- Bus stop serving the 48 Quintara- $24^{\text {th }}$ Street and located along eastbound $25^{\text {th }}$ Street (west of Dakota Street) would be relocated to eastbound $25^{\text {th }}$ Street (west of Connecticut Street);
- Bus stops serving the 10 Polk and 48 Quintara-24 ${ }^{\text {th }}$ Street located at northbound Wisconsin Street (north of $26^{\text {th }}$ Street and south of $25^{\text {th }}$ Street) would be consolidated at northbound Wisconsin Street (south of $25^{\text {th }}$ Street); and
- New bus stops would be created along westbound $25^{\text {th }}$ Street (east of Wisconsin Street), westbound $25^{\text {th }}$ Street (west of Connecticut Street), and various locations along Missouri Street in both the directions, including north of $24^{\text {th }}$ Street, between $23^{\text {rd }}$ and Texas Streets, and north of Texas Street. These new bus stops are planned to serve the new $5824^{\text {th }}$ Street line and other Muni routes.

In total, 12 bus stops would be created or affected as part of the Proposed Project and Alternative 1.
Project-related transit trip demand for each line was calculated using the number of transit trips accessing each superdistrict (shown in Table 4-4) and then assigning those trips to the study Muni lines serving those superdistricts. For the Proposed Project, 119 of the 175 inbound trips to the project site and 66 of the 98 outbound transit trips would be served by the 10 Townsend, 19 Polk, and 48 Quintara$24^{\text {th }}$ Street lines (because of transit line orientation, an inbound trip to the project site for the 10 Townsend and 19 Polk routes would constitute an outbound trip as defined by Muni's operational direction). While for Alternative 1, 72 of the 107 inbound trips and 42 of the 63 outbound trips would be served by these three Muni lines.

Table 4-5 shows a comparison of the line-by-line analysis for the 10 Townsend, 19 Polk, and 48 Quintara-24 ${ }^{\text {th }}$ Street lines under Existing and Existing plus Project Conditions.

Proposed Project - The Proposed Project is expected to generate a maximum of 52 transit trips per direction along any study transit line. Under Existing plus Project Conditions, the Proposed Project would increase the capacity utilizations of all three Muni lines. The Proposed Project related transit trips would worsen the capacity utilization of the 10 Townsend at its Major Load Point (MLP) from 98 percent to 113 percent in the inbound direction and from 90 percent to 118 percent in the outbound direction. However, the 19 Polk and 48 Quintara- $24^{\text {th }}$ Street lines would continue to operate under Muni's 85 percent utilization threshold (77 percent for the 19 Polk and 54 percent for the 48 Quintara- $24^{\text {th }}$ Street).

The Proposed Project would add 52 additional riders to the outbound 10 Townsend line (about 17 riders per bus during the peak hour) and 27 additional riders to the inbound 10 Townsend line (about 9 riders per bus during the peak hour). This would constitute nearly an additional standard busload of transit trips in the outbound direction and half a busload of transit trips in the inbound direction. As such, the Proposed Project would cause a substantial increase in the transit ridership of the 10 Townsend and deteriorate its capacity utilization. Therefore, the Proposed Project is expected to cause a significant impact to the 10 Townsend line, primarily outbound, and less-than-significant impacts to the 19 Polk and 48 Quintara-24 ${ }^{\text {th }}$ Street lines under Existing plus Project Conditions.

Table 4-5: Muni Line-by-Line Analysis - Existing plus Project Weekday PM Peak Hour

Route	Direction of Travel	Existing		Project Trips	Existing plus Project	
		Ridership ${ }^{1}$	Capacity Utilization		Ridership	Capacity Utilization
Proposed Project						
10 Townsend	Inbound	186	98\%	27	213	113\%
	Outbound	171	90\%	52	223	118\%
19 Polk	Inbound	172	68\%	22	194	77\%
	Outbound	124	49\%	39	163	65\%
48 Quintara-24 ${ }^{\text {th }}$ Street	Inbound	175	46\%	28	203	54\%
	Outbound	180	48\%	17	197	52\%
Alternative 1						
10 Townsend	Inbound	186	98\%	18	204	108\%
	Outbound	171	90\%	32	203	107\%
19 Polk	Inbound	172	68\%	13	185	73\%
	Outbound	124	49\%	24	148	59\%
48 Quintara-24 ${ }^{\text {th }}$ Street	Inbound	175	46\%	16	191	51\%
	Outbound	180	48\%	11	191	51\%

Source: SFMTA APC Data - 2011, CDM Smith - January 2012
Notes:
${ }^{1}$ Ridership for peak hour of PM peak period; obtained from Muni APC data. Ridership includes total riders at Maximum Load Point (MLP) of route during the weekday PM peak hour.
The discontinued 53 Southern Heights' ridership was not included in this analysis.
Bold indicates load exceeding Muni's 85 percent capacity utilization standard.

10 Townsend

The 10 Townsend would operate with capacity utilization exceeding Muni's 85 percent threshold under Existing and Existing plus Project Conditions. Since the Proposed Project would increase ridership of this line by a maximum of 52 trips (28 percent), the Proposed Project is considered to cause a significant transit impact to this Muni line under Existing plus Project Conditions.

Transportation Mitigation Measure 2 - The Project Sponsor shall work with the SFMTA to ensure that the transit capacity impact to the 10 Townsend related to the Proposed Project is reduced to a less-than-significant level by financially compensating the SFMTA for the cost of providing the service needed to accommodate the project at proposed levels of service. The
financial contribution shall be calculated and applied in a manner that is consistent with the SFMTA cost/scheduling model. The amount and schedule of payment and commitment to application of service needs shall be set forth in a Transit Mitigation Agreement between the Project Sponsor and SFMTA.

The payment of the fee identified in this mitigation measure would serve to reduce the Proposed Project's impact on the operations of 10 Townsend to a less-than-significant level. However, because the ability of SFMTA, as another City agency, to provide the additional service on local lines needed to accommodate this project is uncertain, the feasibility of the mitigation measure is unknown. Therefore, the Proposed Project's impact to the operations of 10 Townsend would be considered significant and unavoidable.

Alternative 1 - This alternative is expected to generate a maximum of 32 transit trips per direction along any study transit line. Similar to the Proposed Project, Alternative 1 would increase the capacity utilizations of all three Muni lines under Existing plus Project Conditions. Transit trip associated with Alternative 1 would worsen the capacity utilization of the 10 Townsend from 98 percent to 108 percent in the inbound direction and from 90 percent to 107 percent in the outbound direction. However, the 19 Polk and 48 Quintara- $24^{\text {th }}$ Street lines would continue to operate with maximum capacity utilization values (68 percent for 19 Polk and 48 percent for 48 Quintara- $24^{\text {th }}$ Street) lower than Muni's 85 percent utilization standard under Existing plus Project Conditions.

Alternative 1 would worsen capacity utilization of the 10 Townsend line by adding approximately 30 riders in the outbound direction. Hence, Alternative 1 would cause a substantial increase in the transit ridership of the 10 Townsend line, particularly in the outbound direction during the PM peak hour. Therefore, similar to the Proposed Project, Alternative 1 is expected to cause significant impact to the 10 Townsend line and less-than-significant impacts to the 19 Polk and 48 Quintara-24 ${ }^{\text {th }}$ Street lines under Existing plus Project Conditions.

10 Townsend

The 10 Townsend would operate with capacity utilization exceeding the Muni's 85 percent threshold under Existing and Existing plus Project Conditions. Since, Alternative 1 would increase ridership of this line by a maximum of 32 trips (17 percent), Alternative 1 is considered to cause a significant impact to this Muni line under Existing plus Project Conditions. Transportation Mitigation Measure 2, identified for the Proposed Project above, would also apply to Project Alternative 1. Similar to the Proposed Project, the feasibility of implementing this mitigation measure by SFMTA is uncertain; therefore, the impact would remain significant and unavoidable under Existing plus Alternative 1 Conditions.

Alternative 2 - Alternative 2 would not add any new transit-related trips; as such, all study Muni lines would continue to operate with the same capacity utilization as under Existing Conditions. Therefore, Alternative 2 would not result in any significant transit impacts to specific Muni lines under Existing plus Project Conditions.

Existing plus Project Muni Screenline Analysis

Based on the most recent Muni screenline data obtained from the Transit Center District Plan Transportation Study (AECOM, 2010) and the project-generated transit trips shown above, capacity utilization under Existing plus Project conditions were determined for Muni screenlines that serve the project site, particularly the corridors within the Southeast screenline, during the weekday PM peak

104402
hour. The project-generated transit trips for the Proposed Project and Alternative 1 were distributed to these screenlines based on the distribution shown in Table 4-6.

As mentioned earlier, 275 transit trips (176 inbound and 99 outbound) for the Proposed Project and 170 transit trips (107 inbound and 63 outbound) for Alternative 1 would use Muni to access the project site. As mentioned in Section 2.4.2 - Existing Muni Corridor Analysis, only the Southeast screenline was considered for analysis purposes. This screenline includes ridership traveling in the peak direction during the PM peak hour, i.e. away from downtown San Francisco. Since the 99 Muni-based trips for the Proposed Project and 63 Muni-based trips for Alternative 1 would be traveling in the non-peak screenline direction, these trips were not included in the screenline analysis. Of the 176 and 103 Munibased trips in the peak direction for the Proposed Project and Alternative 1, approximately 130 and 80 trips would cross the Southeast screenline using the 10 Townsend, 19 Polk, and T Third Street Muni lines. As such, these were included in the screenline analysis. The remaining Muni-based trips in the peak direction would use the 22 Fillmore and 48 Quintara- $24^{\text {th }}$ Street lines to access the project site; these two Muni routes do not cross any of the four screenlines identified for Muni.

The estimated number of project-generated transit riders for Muni's Southeast screenline and the Muni capacity utilization under Existing as well as Existing plus Project conditions during the weekday PM peak hour are shown in Table 4-6.

Proposed Project - Overall, the addition of project-generated transit trips to the Muni routes that serve the study area would not substantially increase the peak hour capacity utilization. As shown in Table 4-6, the Southeast screenline would not exceed Muni's standard of 85 percent capacity utilization under Existing plus Project Conditions. However, the Third Street corridor's capacity utilization increases and closely approaches the 85 percent threshold due to the addition of project-related trips. Additionally, since the 99 outbound Muni trips would occur in the non-peak direction of travel (i.e. inbound to downtown or not across any transit screenline), these trips would not be expected to cause significant impact to Muni's operations. Therefore, the Proposed Project would be considered to result in less-than-significant transit demand impacts to the Muni's Southeast screenline under Existing plus Project Conditions.

Screenline/Corridor	Existing			Existing plus Project					
				Proposed Project			Alternative 1		
	Ridership	Peak Hour Capacity	Capacity Utilization	Project Trips	Ridership	Capacity Utilization	Project Trips	Ridership	Capacity Utilization
Southeast Screenline									
Third Street	554	714	78\%	39	593	83\%	24	578	81\%
Mission Street	1,254	2,350	53\%	0	1,254	53\%	0	1,254	53\%
San Bruno/Bayshore	1,671	2,256	74\%	0	1,671	74\%	0	1,671	74\%
All Other Lines	1,189	1,708	70\%	91	1,280	75\%	56	1,245	73\%
Total	4,668	7,028	66\%	130	4,798	68\%	80	4,748	68\%

Source: AECOM, 2010; CDM Smith - January 2012.
Notes:
Screenline analysis was conducted only in the peak direction from downtown San Francisco toward the project site.

Alternative 1 - Similar to the Proposed Project, transit trips related to Alternative 1 would not substantially increase the peak hour capacity utilization of the Southeast Screenline or corridors within the Screenline, as shown in Table 4-6. Under Existing plus Project Conditions, the Southeast screenline would increase to have a capacity utilization of 68 percent and would not exceed Muni's standard of 85 percent. The Third Street corridor capacity utilization would increase to 81 percent (less than the Proposed Project's 83 percent capacity utilization). Similar to the Proposed Project, since the 63 outbound Muni trips would occur in the non-peak direction of travel (i.e. inbound to downtown or not across any transit screenline), these trips would not be expected to cause significant impact to Muni's operations. Therefore, similar to the Proposed Project, Alternative 1 would result in less-than-significant impacts to Muni's Southeast screenline under Existing plus Project Conditions.

Alternative 2 - Alternative 2 would not add any new transit-related trips; as such, the Southeast screenline would continue to operate with the same capacity utilization as under Existing Conditions. Therefore, Alternative 2 would not result in any significant traffic impacts to the Southeast screenline under Existing plus Project Conditions.

Existing plus Project Regional Transit Screenline Analysis

Using screenlines previously described in Section 2.4.5 - Existing Regional Transit Screenline Analysis, project-related regional transit trips were added to East Bay, North Bay, and South Bay screenlines.

During the PM peak hour, 71 transit trips (46 inbound and 25 outbound) for the Proposed Project and 44 transit trips (28 inbound and 16 outbound) for Alternative 1 would use regional transit providers. Since the peak direction of travel during the PM peak hour for regional screenlines would be from San Francisco County to the East Bay, North Bay, and South Bay, only the outbound regional transit trips (25 for the Proposed Project and 16 for Alternative 1) were included in the screenline analysis. The inbound regional transit trips (46 for the Proposed Project and 28 for Alternative 1) would occur in the non-peak direction of travel; as such, they would not be expected to cause significant impact to regional transit operations.

The number of estimated project-generated transit riders for regional screenlines and the expected capacity utilization under Existing as well as Existing plus Project conditions for the Proposed Project and Alternative 1 during the weekday PM peak hour are shown in Table 4-7.

Proposed Project - Even with the addition of 25 outbound transit trips associated with the Proposed Project, the capacity utilizations of all regional transit providers serving the project site would remain the same under Existing and Existing plus Project Conditions, and would not exceed their designated capacity utilization standards. Therefore, the Proposed Project is considered to result in less-thansignificant impacts to regional transit operations under Existing plus Project Conditions.

Alternative 1 - Similar to the Proposed Project, Alternative 1 would not worsen capacity utilization of any study regional transit provider under Existing plus Project Conditions. Also, none of the regional transit providers serving the project site would exceed their designated capacity utilization standards for Alternative 1 as well. Therefore, Alternative 1 is, similar to the Proposed Project, considered to result in less-than-significant impacts to regional transit operations under Existing plus Project Conditions.

Table 4-7: Existing plus Project Regional Screenline Analysis - Weekday PM Peak Hour

Region	Regional Transit Operator	Existing			Existing plus Project					
					Proposed Project			Alternative 1		
		Ridership	Peak Hour Capacity	Capacity Utilization	Project Trips	Ridership	Capacity Utilization	Project Trips	Ridership	Capacity Utilization
East Bay	BART	20,067	24,150	83\%	7	20,074	83\%	5	20,072	83\%
	AC Transit	2,517	4,193	60\%	2	2,519	60\%	2	2,519	60\%
	Ferries	702	1,519	46\%	0	702	46\%	0	702	46\%
	Subtotal	23,286	29,862	78\%	9	23,295	78\%	7	23,293	78\%
North Bay	GGT Buses	1,397	2,205	63\%	1	1,398	63\%	1	1,398	63\%
	GGT Ferries	906	1,700	53\%	1	907	53\%	1	907	53\%
	Subtotal	2,303	3,905	59\%	2	2,305	59\%	2	2,305	59\%
South Bay	BART	10,202	16,800	61\%	9	10,211	61\%	5	10,207	61\%
	Caltrain	1,986	3,250	61\%	4	1,990	61\%	2	1,988	61\%
	SamTrans	575	940	61\%	1	576	61\%	0	575	61\%
	Subtotal	12,763	20,990	61\%	14	12,777	61\%	7	12,770	61\%
Total		38,352	54,757	70\%	25	38,377	70\%	16	38,368	70\%

Source: SF Planning Department - 2009, 2012; CDM Smith - January 2012.

Alternative 2 - Alternative 2 would not add any new transit-related trips; as such, all study regional transit services would continue to operate with the same capacity utilization as under Existing Conditions. Therefore, Alternative 2 would not result in any significant traffic impacts to regional transit service under Existing plus Project Conditions.

Project Transit Operations Analysis

Driveway Placement - The provision of underground parking beneath residential buildings would create multiple driveways along streets located within the project site to access those garages. As mentioned in Section 4.2.1 - Traffic Impacts, as part of Transportation Mitigation Measure 1, all garage entrances that would be located along streets with transit service (Missouri, Arkansas, and Wisconsin Streets) would be required to have additional review by SFMTA Transit Operations to ensure the driveway would not encumber any bus stop or bus operations. Additionally, minimum clearance distance will be provided between any garage driveway and neighboring intersections as well as Muni stops. These clearance distances would be identified coordinating with SFMTA. Similarly, any bulb-outs along streets located within the project site, including transit streets, would require the review of the TASC, which includes SFMTA, DPW and other city agencies, and would be required to meet the following standards contained in the Better Streets Plan by the San Francisco Planning Department:

- Streets and bulb-outs shall be designed to accommodate emergency vehicle (WB-40) turns; and
- Streets and bulb-outs along Muni routes shall be designed to accommodate a 40-foot (B-40) bus.

Therefore, driveways and bulb-outs provided as part of the Proposed Project and its alternatives are not expected to result in any significant impacts to Muni operations under Existing plus Project Conditions.

Bus Routing - Current Muni lines directly serving the project site (10 Townsend, 19 Polk, and 48 Quintara- $24^{\text {th }}$ Street) would continue to serve the project site under Existing plus Project Conditions as well. However, as mentioned in Section 1.4.2 - Vehicular Access, the existing street network within the project site would be modified to a grid system to better match the neighboring street layout as part of the Proposed Project and Alternative 1. This modification in roadway layout would realign all diagonally aligned streets into streets running in the north-south and east-west directions, thereby rerouting the Muni lines as mentioned in Section 1.4.2 - Vehicular Access. Project design plans, including relocations of bus stops were reviewed by Muni and bus reroutes as well as potential stop locations were approved. ${ }^{9}$ The planned modification to the roadway layout might increase walking distance for some bus riders by one to two blocks, but it would reduce travel distance for the Muni lines and generally improve their operations. Therefore, the Proposed Project and Alternative 1 are not expected to result in any significant impacts to on-site Muni operations under Existing plus Project Conditions.

For Alternative 2, the roadway layout within the project site would not be modified. As such, there would not be any modifications to Muni bus routing within the project site. Hence, Alternative 2 would not result in any significant impacts to on-site Muni operations under Existing plus Project Conditions.

Bus Stop Relocation - Due to street realignment and grid reconnections to the surrounding neighborhood under Existing plus Project Conditions, the Proposed Project and Alternative 1 would

[^7]104402
POTRERO HOPE TRANSPORTATION STUDY
FINAL REPORT
result in the relocation of existing bus stops within the project site. In addition, the following changes to the Muni lines directly serving the project site are planned as part of the TEP by 2016:

- The 10 Townsend would be renamed to become the 10 Sansome;
- The 19 Polk would be rerouted to operate between Van Ness Avenue/North Point and San Francisco General Hospital, and would not serve the project site directly;
- The 48 Quintara- $24^{\text {th }}$ Street would be rerouted so that segments south of $24^{\text {th }}$ Street would be served by the 48 Quintara- $24^{\text {th }}$ Street, instead of the 19 Polk. Service on the 48 Quintara- $24^{\text {th }}$ Street would run all day from $48^{\text {th }}$ Avenue to the Navy Yard, connecting to Hunters Point, currently served by the 19 Polk; and
- A new $5824^{\text {th }}$ Street service connecting Diamond Street with the $22^{\text {nd }}$ Street Caltrain station would serve the project site directly.

The following discussion identifies the impact of bus stop relocations on Muni's operations under two scenarios - with and without implementation of TEP recommendations before the project development is completed (anticipated by 2025).

With TEP Implementation - In coordination with SFMTA, the Project Sponsor has developed bus routing and stops through the project site to best align with the expected TEP transit route alignments and connect properly with the remainder of the transit lines external to the project study area. The Proposed Project and Alternative 1 would relocate/consolidate existing bus stops and create new ones accounting for the planned changes to Muni lines serving the project site as part of the TEP. Final bus stop location and design would be subject to SFMTA review and approval. As mentioned in Section 1.4.2 - Vehicular Access, proposed changes to the bus stops include the following:

- Bus stops serving the 19 Polk and located along northbound Connecticut Street (between $25^{\text {th }}$ and Wisconsin Streets), southbound Connecticut Street (north of $26^{\text {th }}$ Street), and southbound Wisconsin Street (south of Coral Street) would be eliminated, since the 19 Polk would not travel through the project site in the near future;
- The bus stop serving the outbound 10 Townsend/Sansome and located along westbound $25^{\text {th }}$ Street (east of Connecticut Street) would be relocated to southbound Arkansas Street (north of $24^{\text {th }}$ Street);
- Bus stops serving the inbound 10 Townsend and located along northbound Dakota Street (between $25^{\text {th }}$ and $23^{\text {rd }}$ Streets, and south of $23^{\text {rd }}$ Street) and westbound $23^{\text {rd }}$ Street (east of Wisconsin Street) would be relocated and consolidated at northbound Wisconsin Street (south of $24^{\text {th }}$ Street);
- The bus stop serving the 48 Quintara- $24^{\text {th }}$ Street and located along eastbound $25^{\text {th }}$ Street (west of Dakota Street) would be relocated to eastbound $25^{\text {th }}$ Street (west of Connecticut Street);
- Bus stops serving the 10 Polk and 48 Quintara-24 ${ }^{\text {th }}$ Street and located at northbound Wisconsin Street (north of $26^{\text {th }}$ Street and south of $25^{\text {th }}$ Street) would be consolidated at northbound Wisconsin Street (south of $25^{\text {th }}$ Street); and
- New bus stops would be created along westbound $25^{\text {th }}$ Street (east of Wisconsin Street), westbound $25^{\text {th }}$ Street (west of Connecticut Street), and various locations along Missouri Street in both the directions, including north of $24^{\text {th }}$ Street, between $23^{\text {rd }}$ and Texas Streets, and north of Texas Street. These new bus stops are planned to serve the new $5824^{\text {th }}$ Street line and other Muni routes.

The proposed bus routing and relocated bus stops are exhibited in Figure 1-7.
In total, 12 bus stops would be provided within the project site, compared to 10 bus stops under Existing Conditions. The elimination of two (2) bus stops serving the 19 Polk on Connecticut and Wisconsin Streets would not affect Muni's operations, since the 19 Polk would not access the project site in the near future. Even though three bus stops serving the inbound 10 Townsend/Sansome would be consolidated to one bus stop along northbound Wisconsin Street, it would not worsen Muni's operations. The consolidation is planned to enhance Muni operations by reducing bus travel distance and travel time. However, consolidation of bus stops would increase walking distance for some of the transit riders by one to two blocks. The Proposed Project and Alternative 1 would not modify the number of bus stops within the project site that would serve the outbound 10 Townsend/ Sansome and 48 Quintara-24 ${ }^{\text {th }}$ Street lines. Therefore, the planned relocation and consolidation of bus stops as part of the Proposed Project and Alternative 1 would not have a significant impact on Muni's operations with the implementation of TEP recommendations.

Alternative 2 would not modify any of the bus stops located within the project site. Therefore, Alternative 2 is not expected to have a significant impact on Muni operations with the implementation of TEP recommendations.

Without TEP Implementation - In the event that TEP recommendations are not implemented before the project development is completed, it is anticipated that the locations of bus stops within the project site would remain the same, except the following:

- Bus stop serving the 19 Polk and located along northbound Connecticut Street (between $25^{\text {th }}$ and Wisconsin Streets) would be relocated to westbound $25^{\text {th }}$ Street (west of Connecticut Street);
- Bus stop serving the 19 Polk and located along southbound Wisconsin Street (south of Coral Street) would be relocated to westbound $25^{\text {th }}$ Street (east of Wisconsin Street); and
- Bus stops serving the inbound 10 Townsend and located along northbound Dakota Street (between $25^{\text {th }}$ and $23^{\text {rd }}$ Streets, and south of $23^{\text {rd }}$ Street) and westbound $23^{\text {rd }}$ Street (east of Wisconsin Street) would be relocated and consolidated at northbound Wisconsin Street (south of $24^{\text {th }}$ Street).

In total, eight (8) bus stops would be provided within the project site, compared to 10 bus stops under Existing Conditions. The relocation of bus stops serving the 19 Polk and the consolidation of bus stops serving the inbound 10 Townsend would not be anticipated to worsen Muni's operations. The consolidation is planned to enhance Muni's operations by reducing bus travel distance and travel time. Consolidation and relocations of bus stops would, however, increase walking distance for some transit riders by one to two blocks. Therefore, the planned relocation and consolidation of bus stops as part of the Proposed Project and Alternative 1 would not have a significant impact on Muni's operations without the implementation of TEP recommendations.

Similar to under the With TEP Implementation scenario, Alternative 2 would not modify any of the bus stops located within the project site under Without TEP Implementation scenario. Therefore, Alternative 2 is not expected to have a significant impact on Muni operations without the implementation of TEP recommendations.

4.2.3 Pedestrian Impacts

Proposed Project and Alternative 1 - During the weekday PM peak hour, the Proposed Project would generate an estimated 476 pedestrian trips, including 130 trips based on 'walk' mode and 346 trips by public transit that would walk between the transit stop and the project site (see Appendix I for full Travel Demand Analysis/Mode Split information). Alternative 1 would generate 310 pedestrian trips, consisting of 96 walk-only trips and 214 trips to/from transit stops.

As mentioned in Section 1.4.1 - Pedestrian Access, the Proposed Project and Alternative 1 would provide pedestrian bulb-outs, wherever feasible and crosswalks at all intersections located within the project site. This would increase the number of these elements as compared to existing conditions. Bulb-outs provide widened sidewalks for pedestrians, shortened crossing distances, and also traffic calming. Bulb-out designs at each intersection have not been developed; as such, their dimensions and curb radii cannot be provided in this report. However, they would be required to be designed such that large vehicles, in particular buses, would be able to make right turns where needed. The Project Sponsor would be required to work with the SFMTA, DPW and the San Francisco Fire Department to make sure intersections are designed to meet their specifications. In addition, sidewalks that are 5 feet to 14 feet wide would be provided along all streets within the project site. Wider sidewalks, about 9.5 feet to 14 feet wide would be provided along blocks with retail facilities and community center (Blocks K and L). All sidewalks and corner bulb-outs would be compliant with the American Disability Act (ADA). The planned pedestrian amenities provided as part of the Proposed Project and Alternative 1 would be an improvement over existing conditions, as many portions of the project site currently do not have any sidewalk facilities, such as continuous pedestrian sidewalks or crosswalks, and pedestrian bulb-outs at intersections.

New pedestrian connections would be provided as part of the Proposed Project and Alternative 1 within and along the periphery of the project site. These new pedestrian connections are exhibited in Figure 4-3. Additionally, the Proposed Project and Alternative 1 would provide new pedestrian paths to link new and existing neighborhood amenities, including the following:

- Connecticut Street would be transformed into a grand series of stairways between the new $2412^{\text {th }}$ Street and $23^{\text {rd }}$ Street linking residents to the Potrero Hill Recreation Center;
- A new stairway connecting $23^{\text {rd }}$ Street from Missouri Street to Texas Street would be provided;
- A new stairway along $22^{\text {nd }}$ Street would be provided between Missouri Street and Texas Street. It is anticipated that this new facility could begin the pedestrian connection to the $22^{\text {nd }}$ Street Caltrain Station, the $23^{\text {rd }}$ Street T Third Street Station, and the $22^{\text {nd }}$ Street mixed-use district; and
- A pedestrian-accessible path would be provided to important neighborhood amenities, including Starr King Elementary School and the health clinic located at the Coral Street/Wisconsin Street intersection.

These new pedestrian connections would improve pedestrian circulation within and in the vicinity of the project site. The Proposed project attempts to maximize accessibility by locating the neighborhood core (consisting of retail facilities, community center, and the $24^{\text {th }}$ Street Central Park) at the center of the development on streets with less than 5 percent slope. The project would also provide pedestrian amenities on the street network such as street lights and plantings on every block. These improvements are consistent with the City's Better Streets Plan.

Additionally, the Project Sponsor is working with the MOD (Mayor's Office on Disability) and SFDPW to prepare an accessibility circulation plan to ensure a circulation strategy for disabled citizens. This plan would be developed to create more pedestrian paths which would be accessible in the future, concentrate accessible units along Texas and $24^{\text {th }}$ Streets, which are relatively less steeper than other streets within the project site, concentrate accessible units that would have accessible parking in buildings with the most community amenities, and keep Texas Street relatively flat throughout. This plan would ensure a circulation strategy for disabled citizens within the project site and reduce the need to access streets with steep grades.

The provision of below-grade residential parking would increase the potential for vehicle-pedestrian conflicts at driveway access locations. Therefore, to minimize these conflicts and to enhance pedestrian safety, the following guidelines would be adopted as part of Transportation Mitigation Measure 1 for the design of driveways and curb cuts:

- Driveways would generally be provided along major north-south streets to restrict the majority of the vehicular traffic to these roads and minimize vehicle traffic along minor east-west streets;
- Garage entrances shall have a preferred width of 12 feet and a maximum width of 16 feet;
- Garages with more than 20 parking spaces would be subject to the Planning Department's Queue Abatement Condition of Approval, requiring the project sponsor to design for and prevent through monitoring the potential for vehicle queues in the public right-of-way, including sidewalks;
- Curb-cuts would be kept to a minimum; and
- At driveways for larger garages, warning signals or vehicle alert system shall be deployed to improve vehicle, pedestrian, and bicycle circulation near the garage entrance.

As mentioned in Section 2.5 - Pedestrian Conditions, pedestrian activity within the study area under Existing Conditions was observed to be low, despite having an elementary school, a health clinic, and a recreation center in the neighborhood. Even with the construction of the project, pedestrian trips accessing Starr King Elementary School, the health clinic, and the Potrero Hill Recreation Center are expected to be low-to-moderate. However, since the Proposed Project and Alternative 1 would provide pedestrian accessible paths to these facilities along with improve pedestrian features, including wide sidewalks, crosswalks, and pedestrian bulb-outs, potential pedestrian and vehicular conflicts are expected to be low.

Even though the Proposed Project and Alternative 1, with the addition of land uses such as a community center and a denser residential unit layout, would increase pedestrian activity and conflicts with project vehicles within and in the vicinity of the project site, the pedestrian improvements planned as part of this project would generally improve conditions and be able to accommodate the increased pedestrian activity. Therefore, the Proposed Project and Alternative 1 are expected to cause less-than-significant impacts to pedestrian operations within and adjacent to the project site under Existing plus Project Conditions.

Alternative 2 -For Alternative 2 pedestrian facilities would remain the same as under existing conditions and no improvements would be provided Alternative 2 would not add any new pedestrian trips to the study area and pedestrian activity within the study area under Existing plus Project Conditions would continue to be similar to Existing Conditions. Therefore similar to Existing Conditions, pedestrian
facilities currently available at the project site would remain to accommodate existing pedestrian activity and Alternative 2 would have less-than-significant pedestrian impacts.

4.2.4 Bicycle Impacts

Planning Code Requirements and Standards

Planning Code Requirements - Based on the Planning Code Section 155.5, 25 Class 1 bicycle parking spaces for the first 50 dwelling units and an additional Class 1 space for every 4 additional dwelling units are required for residential developments over 50 dwelling units in size, excluding senior dwelling units. The Proposed Project and Alternative 1 would include 1,700 dwelling units (with 1,600 non-seniorhousing units) and 1,280 units (with 1,200 units non-senior-housing units), while Alternative 2 would rebuild the existing land uses on-site, including 620 affordable units (with no senior housing units). As such, 412 bicycle parking spaces, 312 spaces, and 167 spaces would be required to be provided by the Proposed Project, Alternative 1, and Alternative 2, respectively for residential use.

Additionally, based on the Planning Code Section 155.4, retail buildings in excess of 25,000 square feet in gross floor area would be required to provide bicycle parking spaces. Neither of the retail spaces proposed as part of the Proposed Project and Alternative 1 would exceed this square footage threshold. Alternative 2 would not provide any retail facilities. Therefore, no bicycle parking spaces for retail facilities would be required for the Proposed Project and its alternatives. For the proposed community center, the Planning Code Section 155.4 states that for new commercial professional services buildings, if the square footage is between 20,000 and 50,000 square feet, six (6) Class 1 or Class 2 bicycle parking spaces are required. Therefore, the Proposed Project and Alternative 1 would both require six Class 1 or Class 2 bicycle parking spaces for the planned community center. Alternative 2 would not provide any community center. Hence, no bicycle parking spaces for community center would be required for Alternative 2. Therefore, per the Planning Code requirements, a total of 418 bicycle spaces, 318 spaces, and 167 spaces are required to be provided for the Proposed Project, Alternative 1, and Alternative 2.

Based on the Planning Code Section 155 (j), for each 20 off-street parking spaces provided, one space shall be provided for bicycle parking. Since the Proposed Project, Alternative 1, and Alternative 2 would provide $1,055,773$, and 256 off-street parking spaces, a total of 53,38 , and 12 bicycle spaces would have to be provided for each of the project alternatives, respectively. These bicycle space requirements are lower than those obtained using Planning Code Sections 155.4 and 155.5. Therefore, to be conservative, Planning Code requirements of 418 bicycle spaces, 318 spaces, and 167 spaces for the Proposed Project, Alternative 1, and Alternative 2 are used for this study.

In addition to bicycle parking, the community center within the Proposed Project and Alternative 1 would be required to provide shower and clothes locker facilities. According to the Planning Code (Section 155.3), for facilities between 20,000 and 50,000 square feet in size, two (2) showers and four (4) lockers are required. The residential development portion of the project would be exempt from the shower and locker facilities requirement.

Proposed Project Supply - Based on current designs, the Proposed Project would provide 450 bicycle spaces within the project site, of which 416 spaces would be secured spaces distributed within the residential buildings; while the remaining 34 spaces would be, subject to SFMTA review and approval, provided on-street as bicycle racks. Alternative 1 would provide 328 secured bicycle spaces and 34 onstreet spaces via bicycle racks. Six (6) of the on-street bicycle spaces would be provided at the
community center. The proposed distribution of on-street bicycle spaces within the project site for the Proposed Project and Alternative 1 is shown in the Transit and Bike Parking layout, included in Appendix B. Exact locations of secured bicycle parking spaces would be determined following the building design phase and review and approval by SFMTA. In addition, the Proposed Project and Alternative 1, based on current designs, would provide at least two (2) showers and four (4) locker facilities in the Community Center. For Alternative 2, approximately 170 secured off-street bicycle parking spaces would be provided in the ground floor of each residential building.

Bicycle parking spaces would be distributed around the project site, with secured bicycle parking within each residential building and on-street bicycle racks provided near the commercial, recreational and community center facilities, subject to SFMTA review and approval. As shown in Appendix B, concentrations of bicycle racks would be provided around community center and open space areas. The design of residential bicycle parking would vary for each building, but in all cases would be easily accessible and designed to minimize conflicts between bicycles, pedestrians and drivers. Within buildings, bicycle facilities would be located in well-lit, safely accessible areas. As the Proposed Project and its alternatives are anticipated to be built in several phases over time, adequate bicycle facilities would be provided in accordance with the number of residential units being constructed during each phase, and coordination with SFMTA for the on-street bicycle parking would occur as streets were completed. Therefore, the Proposed Project and its alternatives would meet the Planning Code requirements for bicycle parking, showers, and lockers.

Bicycle Circulation

The Proposed Project and its alternatives would not provide any dedicated bicycle facilities within the project site. However, the redesign of the street layout as part of the Proposed Project and Alternative 1 would provide streets with grades less than 8.33 percent within the project site along Texas, $24^{\text {th }}$, and $23^{\text {rd }}$ Streets. While no bicycle routes currently traverse the project site, opportunities for bicycle connections are envisioned along these less steep streets provided as part of the Proposed Project and Alternative 1. Opportunities for key bicycle connections are created along the following streets:

- Texas Street in the north-south direction between $25^{\text {th }}$ and $22^{\text {nd }}$ Streets;
- $24^{\text {th }}$ Street in the east-west direction between Wisconsin and Texas Streets;
- $25^{\text {th }}$ Street in the east-west direction between Connecticut and Indiana Streets; and
- Connecticut Street in the north-south direction between $25^{\text {th }}$ and Cesar Chavez Streets.

These planned opportunities for key bicycle connections are shown in the Mobility and Circulation Concept Plan, included in Appendix B. Also, street and landscape design with wider sidewalks, 11-to-12foot travel ways, better internal connections, and more public pathways is expected to encourage bicycling opportunities as part of roadway accommodations. Back-in vehicle parking would be provided on $24^{\text {th }}$ Street between Arkansas and Missouri Streets to increase safety for bicyclists. Head-in parking would be limited to Texas Street. Bicycle racks are planned, subject to SFMTA review and approval, for all public open spaces, the community center, and along retail facilities as designated in the Transit and Bike Parking layout, included in Appendix B.

With an increased residential density, an increase in bicycle activity within the study area is anticipated due to the Proposed Project and Alternative 1. During the PM peak hour, 243 and 145 net projectrelated trips for the Proposed Project and Alternative 1 would be performed using modes other than automobile, transit, and walking. It is anticipated that a majority of these "other" trips would be by

104402
bicycle. Even though there are no bicycle facilities (bicycle routes) at or near the project site under Existing Conditions, as mentioned above, the redesign of the street layout and design as part of the Proposed Project and Alternative 1 would likely encourage bicycle travel and connections along relatively flat streets within the project site, including Texas Street, $24^{\text {th }}$ Street, $25^{\text {th }}$ Street, and Connecticut Street. With an increase in residential density, parking and parking garage driveways, conflicts between new vehicles and bicyclists would also increase. Vehicles and bicyclists would share project roadways, and bicyclists would conflict with parking and parking garage driveways. However, street design would generally improve bicycle conditions, and bicycle travel was observed to be relatively low in the project area. Therefore, the Proposed Project and Alternative 1 would result in less-than-significant impacts to the study area bicycle operations under Existing plus Project Conditions.
Alternative 2 would not generate any new bicycle-related trips as compared to Existing Conditions. Therefore, Alternative 2 would not result in any significant impacts to bicycle operations under Existing plus Project Conditions. Also, since Alternative 2 would not increase the overall bicycle trips accessing the project site, it is not expected to result in an increase in potential bicycle conflicts with other modes of transportation.

4.2.5 Loading Impacts

Planning Code Requirements and Standards

Planning Code Requirements - According to the Planning Code requirements (§152), one (1) off-street freight loading space would be required for retail stores ranging from 10,001 to 60,000 square feet in size. The Proposed Project and Alternative 1 would provide two retail facilities in Blocks K and L, each less than 10,000 square feet in size. Therefore, the Proposed Project and Alternative 1 would not be required to provide any loading space for retail. Since no retail facilities are proposed as part of Alternative 2, no off-street loading spaces for retail are required for this alternative too.

Residential buildings and other facilities (under which the community center would be categorized) are expected to provide loading spaces if they exceed 100,000 square feet in gross floor area (i.e., 1 space from 100,001 to 200,000 square feet, 2 spaces from 200,001 square feet to 500,000 square feet, etc.). Residential buildings around the project site would total $2,000,000$ square feet in size across 16 blocks, with some blocks having multiple residential buildings (as shown in Tables 1-2 and 1-4). It is not anticipated that any of the residential buildings would individually exceed 100,000 square feet. Also, the community center would be less than 100,000 square feet in gross floor area. Hence, no freight loading spaces are required for residential or community center land uses. In total, according to the Planning Code, no off-street freight loading spaces are required for the Proposed Project and Alternative 1.

Similar to Existing Conditions, Alternative 2 would have a total square footage of 577,000 square feet for residential uses distributed across 61 buildings (38 in the Potrero Terrace parcel and 23 in the Potrero Annex parcel). It is not anticipated that any of the residential buildings would individually exceed 100,000 square feet. Hence, no freight loading spaces are required for residential uses. Alternative 2 would not develop any retail facilities or a community center as part of it. Therefore, according to the Planning Code, no off-street freight loading spaces are required for Alternative 2 as well.

Proposed Project Supply - The Proposed Project and its alternatives are not required to provide offstreet loading and, therefore, would not provide any off-street loading spaces. However, the project sponsor would seek to provide at least 18 on-street loading spaces by providing generally at least one on-street loading space per block for the Proposed Project and Alternative 1 and five on-street loading
spaces for Alternative 2. These yellow-marked loading spaces are subject to review and approval by SFMTA at a public hearing. The on-street loading spaces would be provided close to retail and community center facilities, and where appropriate, such as at the senior housing facility and near residential lobbies. Their exact location would be determined when the buildings are designed.

Loading Conditions

As stated in Section 3.8 - Freight Delivery and Service Vehicle Demand, the Proposed Project would generate a loading demand of approximately three (3) spaces and four (4) spaces during the average and peak loading hours; whereas, Alternative 1 would generate a loading demand of approximately two (2) spaces during both the average and peak loading hours. The provision of at least 18 on-street loading spaces distributed across the project site would meet the average and peak hour loading demands for the Proposed Project and Alternative 1. As mentioned earlier, exact locations of the on-street loading spaces would be determined during the building design phase. Also, per leasing agreements, loading and delivery for the proposed retail uses would take place during non-peak hours along $24^{\text {th }}$ Street. Therefore, with the provision of 18 on-street loading spaces, the Proposed Project and Alternative 1 would result in less-than-significant impacts to loading operations under Existing plus Project Conditions.

Alternative 2 with about 620 residential units and no retail and community center uses would have a loading demand for zero (0) spaces. However, as mentioned in Section 1.4.3, five off-street loading spaces would be provided as part of Alternative 2. These off-street loading spaces would be distributed across the project site and would meet the loading demand for Alternative 2 . Therefore, with the provision of five on-street loading spaces, Alternative 2 would result in less-than-significant impacts to loading operations under Existing plus Project Conditions.

Passenger Drop-off/Pick-up Activities

The same on-street loading spaces that could be provided for the Proposed Project and its alternatives could also be used for passenger pick-up/drop-off activities within the project site. The Project Sponsor may also seek a white passenger zone for the senior housing use. As mentioned earlier, these on-street loading spaces would be provided close to community center, senior housing facility, and residential lobbies. Their exact location would be determined when the buildings are designed. However, streets located in the vicinity of the buildings have sufficient street frontages to accommodate these on-street passenger loading spaces. Therefore, the Proposed Project and its alternatives are not expected to result in any significant impacts to passenger loading activities under Existing plus Project Conditions.

Garbage Storage and Access

Garbage collection would be a combination of centralized and decentralized garbage, recycling, and compost collection areas to maximize efficiency depending on the type of building. For all projectrelated land uses, including residential, retail, and community center, garbage bins and dumpsters would be located internally within each building including in the parking garage where present. The exact locations of each collection area would be determined following the building design phase, but generally internal to each building, near maintenance, loading, or parking facilities. Garbage bins and dumpsters would be taken to the street and returned to the garages by maintenance personnel on pick up days. The Project Sponsor would coordinate with the San Francisco Department of the Environment (SF Environment) and the SFMTA's Sustainable Streets Division to ensure that the garbage facilities
would remain on the street for the shortest time and would not result in any impacts to pedestrian and traffic circulation. Since neither garbage storage nor garbage access are expected to interfere with pedestrian and traffic circulation, the Proposed Project and its alternatives would result in less-thansignificant loading impacts due to garbage access under Existing plus Project Conditions.

4.2.6 Emergency Vehicle Access Operations

The closest fire station in the vicinity of the project site is San Francisco Fire Department Station \#37, located at 798 Wisconsin Street, near the intersection of $22^{\text {nd }}$ Street and Wisconsin Street. It is located approximately 0.25 miles northwest of the project site. The closest police station is Mission Police Station, located at 630 Valencia Street, near the intersection of $17^{\text {th }}$ and Valencia Streets. It is located approximately two (2) miles northwest of the project site. The Proposed Project and its alternatives would not be expected to impact the access of emergency vehicles, including fire trucks.

The street configuration planned as part of the Proposed Project and Alternative 1 would create a grid of streets with easier cross-site access. All new streets would provide emergency vehicle access and meet the San Francisco Fire Department's access requirements. New connections include extending Arkansas Street from $23^{\text {rd }}$ Street to $26^{\text {th }}$ Street, extending Missouri Street directly south from $23^{\text {rd }}$ Street directly to $25^{\text {th }}$ Street, formalizing Texas Street and connecting it to Missouri Street on the northern edge of the site, and new east-west streets connecting Wisconsin Street and Coral Street to Texas Street (refer to Section 1.4.2 - Vehicular Access for more detail on the planned roadway connections). All buildings would be required to meet all applicable building and life safety regulations. Considering the above information, the Proposed Project and its alternatives would provide adequate emergency access to all project facilities, therefore, would not result in significant emergency access-related impacts.

4.2.7 Construction Impacts

Detailed plans for construction activities have not been finalized. The following analysis is based on information provided by the project sponsor and professional knowledge of similar construction projects throughout city. Project construction would occur in three non-overlapping phases, spanning from 2015 to 2025 , lasting approximately 10 years. For the Proposed Project and its alternatives, Phase 1 would likely include the redevelopment of Potrero Terrace portion of the project site that is located south of $25^{\text {th }}$ Street, while Phase 2 would include development of remaining portions of the Potrero Terrace site. Phase 3 would include redevelopment of the entire Potrero Annex portion of the project site. For the Proposed Project and Alternative 1, the above mentioned construction phasing would represent construction of Blocks A, B, and X1 during Phase 1; Blocks C, D, E, F, G, H, J, and K during Phase 2; and Blocks L, M, N, O, P, Q, and R during Phase 3 . All street layout improvements would be performed as and when neighboring blocks are constructed. This construction phasing is preliminary; however, for the Proposed Project and Alternative 1, Phase 1 is expected to last about 26 months, while Phases 2 and 3 would last about 48 months. For Alternative 2, Phases 1, 2, and 3 are expected to last about 18, 27, and 23 months, respectively. The three phases of constructions for the Proposed Project and Alternative 1 are exhibited in Figure 4-4, while that for Alternative 2 are shown in Figure 4-5.

Each construction phase would include demolition of existing facilities, followed by grading and construction of new facilities. Wherever possible, the project would accommodate on-site relocation of existing residents. Residents would be able to move into the new housing units as they become available. The Project Sponsor would develop an access plan for pedestrians and transit during each phase of construction coordinating with the residents, SFMTA, SFDPW, and other utility agencies and City departments.

PHASE I

PHASE 2

Like other similar construction projects within the City, construction activity is expected to occur on Monday through Saturday from 7 AM to 5 PM 10. The hours of construction would be consistent with the Department of Building Inspection requirements, and the contractor would need to comply with the San Francisco Noise Ordinance. Construction staging and worker parking would not be provided, but would occupy the on-street parking spaces available within the project site. All construction work would be performed using the Regulations for Working in San Francisco Streets (the Blue Book ${ }^{11}$). Similarly, any construction-related lane closures (travel, parking, sidewalk) requires the review at a public hearing of the interagency TASC, consisting of agencies such as SFMTA, DPW, SFFD, and SFPD.

Impacts to Site Access and Traffic Circulation due to Street Closure

Proposed Project and Alternative 1 - The redevelopment of the project site would involve temporary street closures in each phase for the demolition, regrading, modification of site layout, and construction activities. These street closures are expected to last for about eight (8) months, but not the whole duration of each phase. During Phase 1, portions of $25^{\text {th }}$ and $26^{\text {th }}$ Streets located between Wisconsin and Connecticut Streets would be closed for all traffic, except for construction and emergency vehicles. However, to minimize disruption to east-west traffic, these streets would be closed in two nonoverlapping periods, each period lasting about four (4) to five (5) months. During the period when $26^{\text {th }}$ Street is closed, traffic would be detoured to $25^{\text {th }}$ Street via Wisconsin Street; while during the period when $25^{\text {th }}$ Street is closed, traffic would be detoured to $26^{\text {th }}$ Street via Connecticut Street. As such, travel distance for traffic would increase by about one to two blocks during both the periods. The closure of portions of $25^{\text {th }}$ and $26^{\text {th }}$ Streets would add about 100 to 150 detour trips during the PM peak hour to $26^{\text {th }}$, Connecticut, $25^{\text {th }}$, and Wisconsin Streets in either direction for a period of 10-14 months. Currently, these streets carry about 100 to 200 vehicles in each direction during the PM peak hour. With the detour traffic, the overall traffic on these streets would increase to about 300 to 350 vehicles per hour in each direction. Since the typical capacity of a local roadway is about 800 vehicles per hour per lane, even with the addition of detour traffic $26^{\text {th }}$, Connecticut, $25^{\text {th }}$, and Wisconsin Streets would continue to operate at levels lower than their capacities.

During Phase 2, the portion of Connecticut Street located from $25^{\text {th }}$ Street to Wisconsin Street and that of Dakota Street from $24^{\text {th }}$ Street to $25^{\text {th }}$ Street would be closed for about 12 months. The majority of the north-south traffic would be detoured to Wisconsin Street via $23^{\text {rd }}$ Street during this phase. Residents of the Potrero Annex portion of the project site would have to access neighboring circulation network via $23^{\text {rd }}$ and Wisconsin Streets, resulting in an increase in travel distance by about 0.3 miles. It is expected that detour traffic of about 150 vehicles would be added to Wisconsin Street (from $23^{\text {rd }}$ to $25^{\text {th }}$ Streets), $23^{\text {rd }}$ Street (from Wisconsin Street to Dakota Street), and $25^{\text {th }}$ Street (from Wisconsin Street to Dakota Street) in each direction during the PM peak hour. All three streets (Wisconsin, $23^{\text {rd }}$, and $25^{\text {th }}$ Streets) currently operate well below their capacities of about 800 vehicles per hour per lane (they carry about 200 to 250 vehicles in each direction); hence, even with the addition of detour traffic these streets would continue to operate at levels lower than their capacities.

The student drop-off/pick-up facilities for the Starr King Elementary School are located along Wisconsin Street between Coral Road and Carolina Street. As such, the increase in traffic along Wisconsin Street (from $23^{\text {rd }}$ to $25^{\text {th }}$ Streets) during Phase 2 due to detour traffic would delay the school's pick-up and

[^8]drop-off activities during the morning and evening peak hours. However, as mentioned above, even with the addition of detour traffic, Wisconsin Street is expected to continue to operate at levels lower than their capacities. Therefore, significant delays to drop-off and pick-up activities at the school are not expected.

During Phase 3, the portion of $23^{\text {rd }}$ Street located east of Dakota Street and that of Dakota Street from $24^{\text {th }}$ to $23^{\text {rd }}$ Streets would be closed for about 12 months. Due to the street closures, traffic from the Potrero Terrace portion of the project site would be detoured to extended Arkansas Street via $23^{\text {rd }}$ Street and newly built portion of $24^{\text {th }}$ Street within the project site, resulting in an increase in travel distance by about one to two blocks. Similar to Phase 2, detour traffic of about 50 to 100 vehicles would be added to $24^{\text {th }}$ Street (from Arkansas Street to Dakota Street) and $23^{\text {rd }}$ Street (between Dakota Street and Arkansas Street), while about 150 vehicles would be added to Arkansas Street (between $23^{\text {rd }}$ and $24^{\text {th }}$ Streets) in each direction during the PM peak hour. Traffic volumes along streets located within the project site are in general low and operate well below their capacities. Therefore, even with an increase of about 100 to 150 vehicles during the PM peak hour due to the detour traffic, these streets are expected to operate at levels lower than their capacities.

During construction work, local access to any homes/businesses located on adjacent streets would be maintained, as required. None of the street closures planned as part of the three phases would block direct access to Starr King Elementary School, Starr King Open Space, or the Potrero Hill Recreation Center. A portion of the traffic accessing these facilities using $25^{\text {th }}, 26^{\text {th }}$, Connecticut, Dakota, and $23^{\text {rd }}$ Streets would have to detour using the routes discussed above during each construction phase when those streets are closed. Also, as mentioned above, the increase in traffic along Wisconsin Street (from $23^{\text {rd }}$ to $25^{\text {th }}$ Streets) during Phase 2 due to detour traffic would delay the school's drop-off and pick-up activities during the morning and evening peak hours, though significant delays are not expected due to less-than-capacity traffic on Wisconsin Street.

No Ramp and freeway lane closures are anticipated during the construction of the Proposed Project and Alternative 1. All lane closures would be within or adjacent to the project site; therefore, the potential street closures during the construction of the Proposed Project and Alternative 1 would not affect traffic on the state highway system.

Although each street closure would not cause a significant impact individually, considered together and over the length of time required would be considered a significant construction-related impact on traffic circulation in the project area. Transportation Mitigation Measure 2, discussed in detail at the end of this section, would serve to reduce this impact by providing traffic detours and temporary pedestrian facilities during street closures; however, given the magnitude of the project, the duration of the construction period, and the potential that street closures over long periods could affect traffic operations, the impact would remain significant and unavoidable.

Alternative 2 - During Phases 1 and 3 of Alternative 2, no streets would be closed. Hence, there would be no site-access related impacts during these two phases. However, during Phase 2, the portion of Connecticut Street located north of $25^{\text {th }}$ Street would be closed for about 27 months. Since this segment of Connecticut Street would only serve the Potrero Terrace portion of the project site located north of $25^{\text {th }}$ Street, which would be under construction during Phase 2, the planned street closures during Phase 2 would not affect access to/from the remaining portions of the project site. All other traffic would be detoured to $25^{\text {th }}$ Street to access Wisconsin Street. As mentioned earlier, currently $25^{\text {th }}$ Street carries about 100 to 200 vehicles in each direction during the PM peak hour. With the detour traffic, the overall
traffic on these streets is expected to increase to about 300 vehicles per hour in each direction. Therefore, even with the addition of detour traffic $25^{\text {th }}$ Street would continue to operate at levels lower than its capacity (about 800 vehicles per hour per lane).

Similar to the Proposed Project and Alternative 1, no Ramp and freeway lane closures are anticipated during the construction of Alternative 2. All lane closures would be within or adjacent to the project site; therefore, the potential street closures during the construction of Alternative 2 would not affect traffic on the state highway system.

Even though the construction of Alternative 2 would cause the temporary closure of one roadway segment (Connecticut Street located north of $25^{\text {th }}$ Street), it is anticipated to last for about 27 months, which is five (5) months shorter in duration of overall street closures anticipated during the construction of the Proposed Project and Alternative 1 (32 months). Considering the duration of street closure, Alternative 2 is expected to result in a significant construction-related impact on traffic circulation. Similar to the Proposed Project and Alternative 1, Transportation Mitigation Measure 2 discussed at the end of this section would serve to reduce this impact by providing traffic detours and temporary pedestrian facilities during street closures; however, given the magnitude of the project, the duration of the construction period, and the potential that street closures over long periods could affect traffic operations, the impact would remain significant and unavoidable.

Fencing, grading, and street closures would be planned so as to maintain access to the existing occupied units at all times during the construction period. Temporary pedestrian facilities would be provided to facilitate pedestrian movement within and to the project site. It is anticipated that demolition and construction during each phase would be planned such as to maintain pedestrian and bicycle access to the project site. As mentioned earlier, the Project Sponsor would develop an access plan for pedestrians and transit during each phase of construction coordinating with the residents, SFMTA, SFDPW, and other utility agencies and the City departments. In the event of emergency, emergency vehicles would be able to access the occupied portion of the project site at all times. A discussion on the emergency vehicle access plan during the construction period is provided later in this section.

Impacts to On-Site Transit Operations due to Street Closure

As mentioned above, the redevelopment of the project site would involve temporary street closures during each construction phase, which could in-turn cause rerouting of Muni lines and relocation of bus stops within the project site. Potential bus rerouting and bus stop relocation could be as follows.

Proposed Project and Alternative 1 - During Phase 1 of the Proposed Project and Alternative 1, Muni lines traveling along $25^{\text {th }}$ Street might be rerouted to $26^{\text {th }}$ Street via Connecticut Street when $25^{\text {th }}$ Street between Connecticut and Wisconsin Streets is closed for approximately eight (8) months. Also, due to the closure of $25^{\text {th }}$ and $26^{\text {th }}$ Streets in Phase 1, bus stops located at the Wisconsin Street/ $25^{\text {th }}$ Street and Connecticut Street/ $26^{\text {th }}$ Street intersections might be closed or relocated. However, since both $25^{\text {th }}$ Street and $26^{\text {th }}$ Street would not be closed at the same, the above mentioned bus stops are not expected to close at the same time. So riders can access Muni buses from the other bus stop when one is closed. Additionally, Muni riders can access two other neighboring bus stops located within a block radius at the Wisconsin Street/ $26^{\text {th }}$ Street and $25^{\text {th }}$ Street/Connecticut Street intersections.

During Phase 2, Muni lines traveling along $26^{\text {th }}$ Street would be restored to $25^{\text {th }}$ Street. However, all Muni lines traveling along Dakota Street between $25^{\text {th }}$ and $23^{\text {rd }}$ Streets and along Connecticut Street

104402
between $25^{\text {th }}$ and Wisconsin Streets might be rerouted to Wisconsin Street for approximately 12 months. Due to the closure of Connecticut and Dakota Streets, two bus stops located along these roadway segments would be closed or relocated. However, Muni riders can access buses from four other neighboring bus stops located within a two-block radius at the Wisconsin Street/Coral Street, Dakota Street $/ 23^{\text {td }}$ Street, $25^{\text {th }}$ Street/Dakota Street, and $25^{\text {th }}$ Street/Dakota Street intersections.

During Phase 3, all Muni lines traveling along Dakota Street between $25^{\text {th }}$ and $23^{\text {rd }}$ Streets and along Connecticut Street between $25^{\text {th }}$ and Wisconsin Streets could be rerouted to Wisconsin Street and Arkansas Street that would be extended during Phase 2; these bus rerouting is expected to occur for approximately 12 months. Due to the closure of Dakota Street, the bus stop located at the Dakota Street $/ 23^{\text {rd }}$ Street intersection would also be closed or relocated. However, Muni riders can access buses from the neighboring bus stop located within a two-block radius at the Wisconsin Street/ $23^{\text {rd }}$ Street intersection.

Although each bus rerouting would not cause a significant impact individually, considering them altogether and over the long period of time would be considered a significant construction-related impact to on-site transit operations. Transportation Mitigation Measure 2, discussed in detail at the end of this section, would serve to reduce this impact by developing a bus rerouting and bus stop relocation plan prior to each construction phase; however, given the magnitude of the project and the duration of the construction period, the impact to on-site transit operations would remain significant and unavoidable.

Alternative 2 - During Phases 1 and 3 of Alternative 2, no streets would be closed. Hence, no rerouting of Muni lines is required for these two phases. However, bus stops may be closed or relocated due to ongoing construction off-street. Under such conditions, Muni riders can access buses from neighboring bus stops located within a two-block radius. Also, during Phase 2, the portion of Connecticut Street located north of $25^{\text {th }}$ Street would be closed or relocated. Therefore, Muni lines traveling along Connecticut Street between $25^{\text {th }}$ and Wisconsin Streets might have to be rerouted to Wisconsin Street for approximately 27 months. Due to the closure of Connecticut Street, the bus stops located along this roadway segment would be closed or relocated as well. However, Muni riders can access buses from three other neighboring bus stops located within a two-block radius at the Wisconsin Street/Coral Street, $25^{\text {th }}$ Street/Connecticut Street, and Wisconsin Street/ $25^{\text {th }}$ Street intersections.

Overall, bus routes and stops located along Connecticut Street between $25^{\text {th }}$ and Wisconsin Streets might have to be temporarily rerouted and relocated for approximately 27 months. Considering the duration of bus rerouting and bus stop relocation, Alternative 2 is expected to result in significant construction-related impact to on-site transit operations. As mentioned above for the Proposed Project and Alternative 1, Transportation Mitigation Measure 2 discussed at the end of this section would serve to reduce this impact. However, given the magnitude of the project and the duration of the bus rerouting period, the impact to on-site transit operations would remain significant and unavoidable.

Impacts to On-Site Pedestrian Operations due to Street Closure

Proposed Project, Alternative 1, and Alternative 2 - When street closures are implemented during the construction phase, it is anticipated that sidewalks located along those roadways would also be temporarily closed. However, temporary pedestrian facilities, subject to SFMTA approval, would be provided under those circumstances to facilitate pedestrian movement within and to the project site. It is anticipated that demolition and construction during each phase would be planned such as to maintain
pedestrian connections to the project site. As such, the construction-related temporary closures due to the Proposed Project and its alternatives would cause less-than-significant impacts to the pedestrian operations within the study area.

Impacts to On-Site Bicycle Operations due to Street Closure

Proposed Project, Alternative 1, and Alternative 2 - Since there are no dedicated bicycle facilities within the project site, bicyclists use streets for transportation. Therefore, when street closures are implemented during the construction phase, they would affect bicycle operations as well. However, as mentioned earlier, bicycle activity within and nearby the project site is minimal. Also, it is anticipated that demolition and construction during each phase would be planned such as to maintain bicycle connections to the project site. As such, the construction-related temporary closures due to the Proposed Project and its alternatives would cause less-than-significant impacts to the bicycle operations within the study area.

Impacts to Traffic Operations due to Construction Traffic

Proposed Project and Alternative 1 - The Proposed Project and Alternative 1 would include grading of approximately 248,160 cubic yards of earthwork over the three construction phases. During Phase 1 , approximately 18,000 cubic yards of earthwork would be used as fill and approximately 7,400 cubic yards would be exported off site. During Phase 2, approximately 135,680 cubic yards would be excavated and filled on site, but a total of approximately 213,490 cubic yards would be necessary for fill; as such, approximately 77,810 cubic yards of fill would be imported to the project site. During Phase 3 , approximately 35,730 cubic yards of earthwork would be used as fill and approximately 51,350 cubic yards would be exported off site. This earthwork would generate a minimum of about 3,550 truck trips (assuming 18 -wheel trucks with a capacity of 70 cubic yards would be used for hauling) and a maximum of about 14,600 truck trips (assuming dump trucks with a capacity of about 17 cubic yards would be used for hauling) during the construction period. Construction work is anticipated to occur Monday through Saturday from 7 AM to 5 PM. This would translate to about nine (9) to 34 truck trips per day, based on the conservative assumption of a six-month period of hauling activity per phase. Additionally, development of the project site would involve approximately 150 daily worker trips during Phase 1 and approximately 220 during Phases 2 and 3 . In total, the Proposed Project and Alternative 1 would involve approximately 144 construction-related vehicle trips (110 worker trips and 34 trucks trips) during the PM peak hour. Hence, the total peak hour construction-related vehicle trips would be substantially fewer than the number of vehicle-trips that would be generated by the Proposed Project and Alternative 1 (approximately 890 and 550 PM peak hour vehicle trips). Additionally, construction-related trips are temporary depending on the phase of construction. Nevertheless, construction traffic would reduce capacity of surrounding streets due to planned street closures and detours. Hence, construction traffic generated by the Proposed Project and Alternative 1 would result in a significant impact on traffic operations. As discussed in more detail below, Transportation Mitigation Measure 2 would address construction traffic specifically by planning construction work and truck deliveries such as to minimize construction traffic during the weekday morning (6 AM to 9 AM) and evening (4 PM to 6 PM) peak periods and by identifying ways to reduce construction worker vehicle trips though transportation demand management programs; however, the construction traffic impact on neighboring traffic operations would remain significant and unavoidable.

Alternative 2 - This alternative would involve approximately 150 daily worker trips during Phase 1, approximately 260 during Phase 2, and approximately 220 during Phase 3 . Assuming the amount of
earthwork required for the Proposed Project and its alternatives is the same, Alternative 2 would involve a maximum of about 164 construction-related vehicle trips (130 worker trips and 34 trucks trips) during the PM peak hour. These peak hour construction-related vehicle trips would be substantially higher than the number of vehicle-trips that would be generated by Alternative 2 (zero net PM peak hour vehicle trips). Also, these 164 construction-related vehicle trips generated for Alternative 2 are slightly higher than those generated during the construction of the Proposed Project and Alternative 1. Hence, construction traffic generated by Alternative 2 would result in a significant impact on traffic operations. Similar to the Proposed Project and Alternative 1, Transportation Mitigation Measure 2 (discussed in detail below) would address construction traffic; however, the construction traffic impact on neighboring traffic operations would remain significant and unavoidable.

Impacts to Transit, Bicycle, and Pedestrian Operations due to Construction Traffic
Proposed Project, Alternative 1, and Alternative 2 - Even though it is anticipated that very few construction workers would access the project site using transit, on foot, or using bicycle, it is anticipated that the construction traffic along with street closures would increase potential vehiclepedestrian and vehicle-bicycle conflicts within the study area. Nevertheless, there is low pedestrian and bicycle activity in the vicinity of the project site under Existing Conditions. As such, the pedestrian and bicycle facilities available within the study area are expected to handle the bicycle and pedestrian activity related to construction traffic. Also, construction sites would be fenced off during each construction phase to avoid and minimize disruption to pedestrian and bicycle operations outside the construction zone. Therefore, construction traffic generated by the Proposed Project and its alternatives are expected to result in less-than-significant impact to neighboring transit, bicycle, and pedestrian operations.

Impacts to Parking Operations due to Construction Traffic

Proposed Project, Alternative 1, and Alternative 2 - Construction staging and worker parking would not be provided, but would occupy the on-street parking spaces available within the project site. Therefore, even though construction workers would cause a temporary parking demand, it would be accommodated on site and is not anticipated to impact neighboring parking operations.

As discussed above, due to the length of the construction phases and schedule (approximately 10 years), the number of required street closures/detours, the number of bus route and stop relocations and the uncertainty associated with a long construction project, the Proposed Project and its alternatives would result in significant construction-related impacts to traffic and transit operations.

Transportation Mitigation Measure $\mathbf{3}$ - To reduce construction-related impacts to traffic and transit operations, the Project Sponsor shall develop and implement a Transportation Control Plan (TCP) for each construction phase to anticipate and minimize impacts of various construction activities associated with the Proposed Project and its alternatives. The TCP would disseminate appropriate information to contractors and affected agencies with respect to coordinating construction activities to minimize overall disruptions and ensure that overall circulation in the project area is maintained to the extent possible, with particular focus on ensuring pedestrian, transit, and bicycle connectivity. The program would supplement and expand, rather than modify or supersede, any manual, regulations, or provisions set forth by SFMTA, SFDPW, other City departments and agencies. Specifically, the plan should:

- Identify construction traffic management and a cohesive program of operational and demand management strategies designed to maintain acceptable levels of travel flow during periods of construction activities. These include, but are not limited to, construction strategies, demand management activities, alternative route strategies, and public information strategies consistent with best practices in San Francisco, as well as other cities or agencies that, although not being implemented in the City, could provide valuable management practices for the project. Management practices include, but are not limited to:
o Planning site construction and truck deliveries such as to minimize constructionrelated traffic operations during the weekday morning (6 AM to 9 AM) and evening (4 PM to 6 PM) peak commute hours;
o Identifying ways to reduce construction worker vehicle trips through transportation demand management programs and methods to manage construction work parking demands, such as promoting carpooling/vanpooling, encouraging transit usage, discouraging workers from parking off-site, etc.;
o Working further with SFMTA to identify the best traffic detours during each construction phase;
o Identifying best practices to accommodate pedestrians, such as temporary pedestrian wayfinding signage or temporary walkways;
o Working with SFMTA to identify relocated Muni routes and stops and the best methods to notify riders of changes; and
o Identifying best practices to manage traffic flows on surrounding streets.
- Describe procedures required by different departments and/or agencies in the city or region for implementation of the TCP, such as reviewing agencies, approval processes, and estimated timelines. For example,
o The project sponsor will need to coordinate temporary and permanent changes to the transportation network within the City of San Francisco, including traffic, street and parking changes and lane closures, with the SFMTA. Any permanent changes may require meeting with the SFMTA Board of Directors or one of its subCommittees. This may require a public hearing. As part of this process, the Construction Plan is required to be reviewed by the Transportation Advisory Staff Committee (TASC) to resolve internal differences between different transportation modes; and
o Caltrans Deputy Directive 60 (DD-60) requires TCP and contingency plans for all state highway activities. These plans should be part of the normal project development process and must be considered during the planning stage to allow for the proper cost, scope and scheduling of the TCP activities on Caltrans right-ofway. These plans should adhere to Caltrans standards and guidelines for stage construction, construction signage, traffic handling, lane and ramp closures and TCP documentation for all work within Caltrans right-of-way.
- Notify emergency vehicle providers about the planned street closures/detours and their duration for each construction phase.
- Develop a public information plan to provide adjacent residents and businesses with regularly-updated information regarding project construction, including construction activities, durations, peak construction vehicle activities (e.g., concrete pours), travel lane closures, and other lane closures; and
- Hire a transportation manager to actively manage the construction vehicle, truck loading, passenger loading and emergency vehicle access to the project site through at least the most intense phases of construction.

As mentioned earlier, the TCP should address phased development of the project and would require updating at each phase. The TCP shall be submitted to TASC, consisting of representatives from the SFMTA and Muni operations, Fire Department, Police Department, and SFDPW for review/approval. Similarly, any travel lane, parking lane, or sidewalk closures are required to be reviewed by the TASC. Implementation of Transportation Mitigation Measure 3 included in the traffic management plan would reduce the contribution of the Proposed Project and its alternatives to construction-related traffic impacts; however, given the magnitude of the project, the duration of the construction period, and the potential that street closures over long periods could affect traffic operations, the impact would remain significant and unavoidable.

Emergency Vehicle Access during Construction

Proposed Project and Alternative 1 - The construction emergency vehicle access plan for the Proposed Project and Alternative 1 is exhibited in Figure 4-6.

During Phase 1, emergency vehicle access routes would consist of Connecticut Street between $26^{\text {th }}$ and Wisconsin Street, Connecticut Street between $26^{\text {th }}$ and $25^{\text {th }}$ Streets, $25^{\text {th }}$ Street between Connecticut and Dakota Streets, and Dakota Street north of $25^{\text {th }}$ Street. During Phase 2, emergency vehicle access routes would consist of Connecticut Street between $26^{\text {th }}$ and $25^{\text {th }}$ Streets, $25^{\text {th }}$ Street between Connecticut and Wisconsin Streets, Wisconsin Street between $25^{\text {th }}$ and $23^{\text {rd }}$ Streets, and $23^{\text {rd }}$ Street east of Wisconsin Street. During Phase 3, the emergency access route would consist of Connecticut Street between $26^{\text {th }}$ and $23^{\text {rd }}$ Streets, $26^{\text {th }}$ Street west of Connecticut Street, $25^{\text {th }}$ Street west of Connecticut Street, and $24^{\text {th }}$ Street east and west of Connecticut Street.

Alternative 2 - The construction emergency vehicle access for Alternative 2 would remain the same as under Existing Conditions. During Phases 1 and 3, emergency vehicle access routes would be provided via the following two routes:

- Connecticut Street located between $26^{\text {th }}$ and Wisconsin Street; and
- Connecticut Street located between $26^{\text {th }}$ and $25^{\text {th }}$ Streets, $25^{\text {th }}$ Street between Connecticut and Dakota Streets, and Dakota Street north of $25^{\text {th }}$ Street.

During Phase 2, emergency vehicle access would be provided via the following two routes:

- Connecticut Street located between $26^{\text {th }}$ and $25^{\text {th }}$ Streets, $25^{\text {th }}$ Street between Connecticut and Dakota Streets, and Dakota Street north of $25^{\text {th }}$ Street; and
- Connecticut Street between $26^{\text {th }}$ and $25^{\text {th }}$ Streets, $25^{\text {th }}$ Street between Connecticut and Wisconsin Streets, Wisconsin Street between $25^{\text {th }}$ and $23^{\text {rd }}$ Streets, and $23^{\text {rd }}$ Street east of Wisconsin Street.

4.2.8 Parking Analysis

The following section includes an evaluation of the parking supply and demand analysis, parking requirements set forth by the Planning Code, and parking operations associated with the Proposed Project.

Planning Code Requirements - Based on the current Planning Code (§151) requirements, the Proposed Project and Alternative 1 would be required to provide a total of 667 and 436 off-street parking spaces, respectively. This is based on the provision of one (1) parking space for each dwelling unit, excluding affordable housing or senior housing units and one (1) parking space for every 500 square feet of occupied floor area for retail spaces ranging between 5,000 and 20,000 square feet in area. Additionally, the community center would be required to provide off-street parking for the proposed day care/preschool facilities (code requirement of one space for every 25 accommodated children) and music/dance/arts/gymnasium facilities (code requirement of one space for every 2,000 square feet of occupied floor area in excess of 7,500 square feet) provided as part of the community center for the Proposed Project and Alternative 1. Table 4-8 provides a comparison of the number of off-street parking spaces required by the Planning Code and the number of the spaces provided by the Proposed Project and Alternative 1.

In addition, according to the Planning Code requirements ($§ 155 . i$ and $\S 166 . d$), the project would be required to provide one handicap-accessible parking space for every 25 off-street parking spaces as well as two car-share parking spaces for the first 200 dwelling units of a residential development and an additional car-share parking space for every subsequent 200 dwelling units. In total, 663 off-street parking spaces are required per the Planning Code for the Proposed Project (630 spaces are required for residential uses, 16 spaces for retail uses, and 17 spaces for the community center). An additional 42 handicap-accessible and nine (9) car-share parking spaces are also required per Planning Code. Alternative 1 would be required to provide a total of 432 off-street parking spaces (404 spaces for residential uses, 16 for retail uses, and 12 for the community center), 30 handicap-accessible and seven (7) car-share spaces to meet Planning Code requirements. .

Parking Supply - The Proposed Project would provide approximately 1,055 off-street parking spaces for the Proposed Project and 773 off-street parking spaces for Alternative 1 within the project site. In general, these off-street parking spaces are split by structured or underground garages to be constructed at each block. For the Proposed Project, these off-street spaces would consist of 485 parking spaces for affordable housing units, 535 parking spaces for market-rate housing units, 20 parking spaces for senior housing, 10 parking spaces for retail use, and five (5) parking spaces for the community center. For Alternative 1, 398 parking spaces for affordable housing units, 345 parking spaces for market-rate units, 15 parking spaces for senior housing units, 10 spaces for retail uses, and five (5) spaces for the community center would be provided. In addition, 30 handicap-accessible spaces and seven (7) car-share spaces would be provided for both the Proposed Project and Alternative 1. Carshare spaces would be publicly accessible, as defined by the Planning Code. However, the exact locations of the parking spaces would be determined following the building design phase. As required by the City of San Francisco, all parking spaces for housing units would be unbundled and sold separately from the housing unit itself.

Table 4-8: San Francisco Planning Code Off-Street Parking Requirements

Land Use	Code Requirement	Proposed Project				Alternative 1			
		Size	Minimum Required	Proposed Supply	Difference	Size	Minimum Required	Proposed Supply	Difference
Residential									
Market-Rate	1 per unit	630 units	630	535	-95	404 units	404	345	-59
Affordable	None	970 units	0	485	485	796 units	0	398	398
Senior Housing	None 1 per 500 gsf occupied	100 units	0	20	20	80 units	0	15	15
Retail									
Block K		5,500 gsf	0	0	0	5,500 gsf	0	0	0
Block L	n.a. ${ }^{1}$	9,500 gsf	16	10	-6	9,500 gsf	16	10	-6
Community Center		35,000 gsf	17	5	-12	25,000 gsf	12	5	-7
Total			663	1,055	392		432	773	341
Handicap-accessible	1 per 25 spaces provided	n.a.	42	42	0	n.a.	30	30	0
Car-share	2 per first 200 units, 1 every 200 units after	n.a.	9	9	0	n.a.	7	7	0

Source: San Francisco Planning Code; CDM Smith- January 2012.
Notes:
${ }^{1}$ Parking requirements for the community center are determined by calculating the parking requirement of each specific use in the facility (gymnasium, pre-school, etc.) and totaling the parking requirements for each of these uses.

Additionally, the reconfiguration of roadways and addition of new streets within the project site would provide a minimum of 600 unmetered on-street parking spaces, consisting of curbed spaces along project roadways for both the Proposed Project and Alternative 1. Perpendicular, angled, or parallel onstreet parking would be provided on all streets located within the project site. On-street parking provided along $24^{\text {th }}$ Street between Missouri Street and Arkansas Street would be time-limited. Onstreet parking facilities planned within the project site for the Proposed Project and Alternative 1 are shown in Roadway Cross-Sections, included in Appendix B.

Parking Demand - Using the methodology recommended by the SF Guidelines, the short-term and longterm parking demands were calculated for the project during the weekday evening peak period. The Proposed Project is estimated to generate a parking demand of 1,764 parking spaces in the evening peak period, while approximately 1,655 parking spaces (1,055 off-street and 600 on-street) would be provided. The parking demand of the Proposed Project would exceed the parking supply by approximately 109 parking spaces. Alternative 1 would have an evening parking demand of 1,315 spaces, which would be served by the 1,373 parking spaces (773 off-street and 600 on-street) provided within the project site as part of this alternative. Long-term parking demand is expected to be the primary parking demand at the project site, since the project primarily consists of residential dwelling units. Detailed parking demand calculations are included in Appendix J.

Since on-site parking supply is expected to be less than the peak parking demand for the Proposed Project, residents and other parkers would likely search for parking in the neighborhood, outside of the project site. As discussed in Section 2.8.1 - On-Street Parking Conditions, the surrounding neighborhood under Existing Conditions has approximately 50 percent of the 1,301 available on-street parking spaces occupied during the evening peak period. As such, approximately 650 parking spaces are available in the vicinity of the project site during the weekday evening peak period. These surplus parking spaces would be able to accommodate the Proposed Project's additional parking demand of 109 parking spaces during the evening peak period. As mentioned earlier, all parking demand for Alternative 1 would be satisfied by the parking supply provided as part of this alternative.

Alternative 2 would have the same parking demand as under Existing Conditions. As mentioned in Section 2.8.3 - On-Site Parking Conditions, parking occupancy within the project site is less than 50 percent for both on- and off-street facilities during the weekday PM peak period under Existing Conditions, indicating that the parking demand at the project site is less than the available parking supply. Therefore, similar to Existing Conditions, the available on-site parking supply of approximately 256 off-street and 100 on-street parking spaces is expected to be sufficient to meet the parking demand of Alternative 2.

4.3 2030 Cumulative Impacts

This section includes a discussion on traffic and transit operations under 2030 Cumulative Conditions and 2030 Cumulative plus Project Conditions. Additionally, development of traffic volumes under 2030 Cumulative Conditions and transportation-related impacts identified under 2030 Cumulative plus Project Conditions have been discussed.

4.3.1 Background Growth

To be consistent with the traffic study being performed for a neighboring development (SunnydaleVelasco Housing Development), intersection volumes under 2030 Cumulative Conditions were developed using the same methodology that was adopted in that traffic study. According to this
methodology, intersection volumes under 2030 Cumulative Conditions were developed based on the combination of future traffic volumes reported in Candlestick Point-Hunters Point Shipyard Phase II Development Plan Environmental Impact Report, November 2009 (herein referred to as the "CS-HP Phase 2 EIR") and traffic growth projected by the San Francisco County Transportation Authority's Chain Activity Modeling Process (SF-CHAMP) model. The SF-CHAMP model is the City and County of San Francisco's unique activity-based forecasting tool for future travel demand within the city, taking into account future land use, socioeconomics, and transportation patterns to develop future traffic and transit volumes along all San Francisco roadways and transit lines. The SF-CHAMP model predicts future person trips by mode (auto, transit, walk and bicycle trips). It also forecasts vehicular traffic on regional freeways, major arterials and on the study area local roadway network considering the available roadway capacity, origin-destination demand and travel speeds when assigning the future travel demand to the roadway network. This model can be used to assess transportation-related impacts due to changes in land use, socioeconomic, and circulation network.

The SF-CHAMP model divides San Francisco into approximately 981 geographic areas, known as Traffic Analysis Zones (TAZs). For each TAZ, travel demand is estimated based on the population and employment growth assumptions developed by the Association of Bay Area Governments (ABAG). The SF-CHAMP Model travel demand estimates incorporate the ABAG land use and socio-economic database and growth forecasts for year 2030.

The technical memorandum detailing the development of intersection volumes under 2030 Cumulative Conditions is included in Appendix L. This memorandum was submitted to and approved by the Planning Department. Traffic volumes at the study intersections, along with their geometric configurations under 2030 Cumulative Conditions are illustrated in Figure 4-7.

The vehicle-trips generated by the Proposed Project (576 inbound and 316 outbound) and Alternative 1 (352 inbound and 202 outbound) during the weekday PM peak hour were distributed within the study area using the trip distribution discussed in Section 3.3 - Trip Distribution/Assignment. These distributed project trips were added to year 2030 intersection volumes. Additionally, relevant traffic circulation adjustments as mentioned in Section 1.4.2 - Vehicular Access (shifting approximately 25 percent of traffic traveling along Pennsylvania Avenue to Texas Street and approximately 25 percent of traffic traveling along Dakota Street to Arkansas Street), were applied to reflect changes in the circulation pattern due to the roadway layout reconfiguration planned as part of the Proposed Project and Alternative 1. The resulting traffic volumes and proposed geometric configurations at the study intersections under 2030 Cumulative Conditions for the Proposed Project and Alternative 1 are illustrated in Figures 4-8 and 4-9.

Traffic volumes at the study freeway segments and ramp junctions under 2030 Cumulative Conditions were obtained from the CS-HP Phase 2 EIR. To account for traffic volumes that would be generated by the Candlestick Point-Hunters Point Shipyard development, freeway and ramp volumes reported under 2030 plus Project Conditions of the CS-HP Phase 2 EIR were used as 2030 baseline volumes for this study. The vehicle-trips generated by the Proposed Project (576 inbound and 316 outbound) and Alternative 1 (352 inbound and 202 outbound) during the weekday PM peak hour were distributed within the study area using the trip distribution discussed in Section 3.3 - Trip Distribution/Assignment. These distributed project trips were added to year 2030 freeway and ramp volumes. The resulting traffic volumes at the study freeway segments and ramp junctions are exhibited in Tables 4-9, 4-10 and 4-11.

INTERSECTION VOLUMES AND GEOMETRIC CONFIGURATIONS - 2030 CUMULATIVE PM PEAK HOUR

INTERSECTION VOLUMES AND GEOMETRIC CONFIGURATIONS - 2030 CUMULATIVE PLUS PROJECT PM PEAK HOUR

INTERSECTION VOLUMES AND GEOMETRIC CONFIGURATIONS - 2030 CUMULATIVE PLUS PROJECT PM PEAK HOUR (ALTERNATIVE 1)

Table 4-9: 2030 Cumulative and 2030 Cumulative plus Project Traffic Volumes (AM Peak Hour) - Study Freeway Segments

				Proposed Project			Alternative 1		
\#	Study Freeway Segment	Existing	Cumulative	Volumes Added	2030 Cumulative plus Project	Project Contribution	Volumes Added	2030 Cumulative plus Project	Project Contribution
1	NB I-280 (south of Cesar Chavez Street Off-Ramp)	5,123	7,110	74	7,184	1.0\%	49	7,159	0.7\%
3	NB I-280 (north of Indiana Street On-Ramp)	4,644	6,450	142	6,592	2.2\%	84	6,534	1.3\%
5	NB US 101 (north of Cesar Chavez Street On-Ramp)	6,170	11,550	146	11,696	1.3\%	88	11,638	0.8\%
6	SB US 101 (north of Cesar Chavez Street Off-Ramp)	8,274	10,910	77	10,987	0.7\%	48	10,958	0.4\%

Table 4-10: 2030 Cumulative and 2030 Cumulative plus Project Traffic Volumes (PM Peak Hour) - Study Freeway Segments

	Study Freeway Segment	Existing	2030 Cumulative	Proposed Project			Alternative 1		
\#				Volumes Added	2030 Cumulative plus Project	Project Contribution	Volumes Added	2030 Cumulative plus Project	Project Contribution
1	NB I-280 (south of Cesar Chavez Street Off-Ramp)	2,394	6,670	74	6,744	1.1\%	46	6,716	0.7\%
2	SB I-280 (south of Pennsylvania Avenue On-Ramp)	4,375	7,500	74	7,574	1.0\%	49	7,549	0.7\%
3	NB I-280 (north of Indiana Street On-Ramp)	2,669	6,730	73	6,803	1.1\%	44	6,774	0.7\%
4	SB I-280 (north of Pennsylvania Avenue Off-Ramp)	4,877	6,760	142	6,902	2.1\%	84	6,844	1.2\%
5	NB US 101 (north of Cesar Chavez Street On-Ramp)	8,426	10,740	77	10,817	0.7\%	48	10,788	0.4\%
6	SB US 101 (north of Cesar Chavez Street Off-Ramp)	6,754	10,980	146	11,126	1.3\%	88	11,068	0.8\%

Table 4-11: 2030 Cumulative and 2030 Cumulative plus Project Traffic Volumes (PM Peak Hour) - Study Ramp Junctions

	Study Ramp Junction	Existing		2030 Cumulative		Proposed Project				Alternative 1			
\#				Volumes Added	2030 Cumulative plus Project		Project Contribution	Volumes Added	2030 Cumulative plus Project		Project Contribution		
		Ramp	Freeway		Ramp	Freeway			Ramp	Freeway		Ramp	Freeway
1	NB I-280/Cesar Chavez Street Off-Ramp	731	2,394	930	6,670	74	1,004	6,744	1.0\%	46	976	6,716	0.6\%
2	SB I-280/Pennsylvania Avenue Off-Ramp	482	4,877	870	6,760	142	1,012	6,902	1.8\%	84	954	6,844	1.1\%
3	NB I-280/Indiana Street On-Ramp	366	2,303	990	5,740	73	1,063	5,740	1.1\%	44	1,034	5,740	0.6\%
4	SB I-280/Pennsylvania Avenue On-Ramp	770	3,605	1,610	5,890	74	1,684	5,890	1.0\%	49	1,659	5,890	0.6\%

4.3.2 Foreseeable Transportation Network Changes

The following improvements to the transportation network located in the vicinity of the project site are expected in the nearby future and are considered for analysis under 2030 Cumulative Conditions. These improvements would be completed by City and County of San Francisco agencies such as SFDPW and SFMTA.

Transit Network Modifications

As discussed in Section 2.4.3 - Muni TEP Recommendations, the SFMTA would implement the TEP by 2016. The following changes planned as part of the TEP recommendations would affect the Muni routes serving the study area:

- The one-car K Ingleside would continue to be through-routed with the T Third Street.
- The 10 Townsend would be renamed to become the 10 Sansome. Short-line service would operate between Van Ness Avenue and Market Street to provide additional capacity, replacing the to-be-discontinued 12 Pacific service. Existing service during peak periods within the project study area would be reduced from 10 minute headways to 15 minute headways.
- The 19 Polk would be rerouted to operate between Van Ness Avenue/North Point and San Francisco General Hospital, modifying existing routing in the Civic Center area. Segments south of $24^{\text {th }}$ Street would be replaced by a revised 48 Quintara- $24^{\text {th }}$ Street.
- The 22 Fillmore would be rerouted to continue along $16^{\text {th }}$ Street to Third Street, creating new connections to Mission Bay. The segment on $17^{\text {th }}$ Street, Connecticut Street, and $18^{\text {th }}$ Street would be replaced by a revised 33 Stanyan and more frequent peak service would be provided to reduce crowding (service every six minutes during the weekday PM peak period).
- Service on the 48 Quintara-24 ${ }^{\text {th }}$ Street would run all day from $48^{\text {th }}$ Avenue to the Navy Yard, connecting to Hunters Point, currently served by the 19 Polk, complemented by a new $5824^{\text {th }}$ Street service connecting Diamond Street with the $22^{\text {nd }}$ Street Caltrain station. Segments along Douglass Street and Hoffman Street would be served by a revised 35 Eureka. Existing segments in Potrero Hill would be supplemented by the new $5824^{\text {th }}$ Street line, while service along Arkansas Street, $20^{\text {th }}$ Street, and Texas Street would be eliminated.

Bicycle Network Modifications

The following improvements to the neighboring bicycle network are anticipated as part of the San Francisco Bicycle Plan:

- Project 5-1 - This project involves conversion of existing wide curb lane bicycle route along $23^{\text {rd }}$ Street between Kansas Street and Potrero Avenue to sharrows and/or full bicycle lanes in both directions;
- Project 5-5 - This project involves conversion of existing shared-lane bicycle route along Cesar Chavez Street between I-280 and US 101 freeways to sharrows and/or full bicycle lanes in both directions;
- Project 5-18 - This project involves conversion of existing wide curb lane bicycle route along Kansas Street between $23^{\text {rd }}$ and $26^{\text {th }}$ Streets to sharrows and/or full bicycle lanes in both directions; and
- Minor improvements to the bicycle route along Indiana Street.

These projects in the vicinity of the project site are expected to improve existing bicycle routes and would not directly affect bicycle operations within the project site. The construction of these bicycle improvements would not conflict with the construction of this project (anticipated beginning is in 2015), since the above improvements either have been recently completed or are being performed currently, except for Project 5-1. However, even this bicycle improvement is expected to be completed before the construction of the project would begin.

4.3.3 Traffic Impacts

A comparison of the study intersection operations during the weekday PM peak hour under 2030 Cumulative Conditions and 2030 Cumulative plus Project Conditions is provided in Table 4-12.

2030 Cumulative Conditions Intersection Operations

Under 2030 Cumulative Conditions, during the weekday PM peak hour, five (5) of the 13 study intersections (Potrero Avenue/23 ${ }^{\text {rd }}$ Street, $23^{\text {rd }}$ Street/Dakota Street, $23^{\text {rd }}$ Street/Wisconsin Street, $20^{\text {th }}$ Street/Arkansas Street, and $22^{\text {nd }}$ Street/Missouri Street) would continue to operate at the same acceptable LOS (LOS C or better) as under Existing Conditions; while LOS conditions at the remaining eight (8) study intersections would deteriorate from their existing operations. However, of these eight intersections, four would continue to operate with an acceptable LOS (LOS D or better). The remaining four intersections would operate at an unacceptable LOS (LOS E or F) and include the following:

- Intersection \#2 - Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp (worsening from LOS D under Existing Conditions to LOS F under 2030 Cumulative Conditions);
- Intersection \#3 - Pennsylvania Avenue/Southbound I-280 Off-Ramp (worsening from LOS C under Existing Conditions to LOS F under 2030 Cumulative Conditions);
- Intersection \#12 - Cesar Chavez Street/Vermont Street (worsening from LOS C under Existing Conditions to LOS F under 2030 Cumulative Conditions); and
- Intersection \#13 - Cesar Chavez Street/US 101 Off-Ramp (worsening from LOS B under Existing Conditions to LOS F under 2030 Cumulative Conditions).

Detailed LOS calculation sheets for 2030 Cumulative Conditions are included in Appendix F and signal warrant analysis sheets for unsignalized intersections are included in Appendix K.

2030 Cumulative plus Project Conditions Intersection Impacts

Proposed Project - Study intersection operations during the weekday PM peak hour under 2030 Cumulative plus Project Conditions are provided in Table 4-12. Under 2030 Cumulative plus Project Conditions, eight of the 13 study intersections would continue to operate at an acceptable LOS (LOS D or better) during the weekday PM peak hour as compared to 2030 Cumulative Conditions. Therefore, the Proposed Project would result in less-than-significant traffic impacts at these eight intersections. The remaining five intersections (Cesar Chavez Street/Pennsylvania Avenue/NB I-280 Off-Ramp, Pennsylvania Avenue/SB I-280 Off-Ramp, 25th Street/Indiana Street/NB I-280 On-Ramp, Cesar Chavez Street/Vermont Street, and Cesar Chavez Street/US 101 Off-Ramp) would operate at an unacceptable LOS (LOS E or F). Based on the significance criteria mentioned in Section 4.1 - Significance Criteria, the Proposed Project would result in significant traffic impacts at four of these study intersections under 2030 Cumulative plus Project Conditions.

Table 4-12: PM Peak Hour Intersection Operations - 2030 Cumulative vs. Cumulative plus Project Conditions

\#	Intersection	Existing			2030 Cumulative			2030 Cumulative plus Project								
					Proposed Project	Alternative 1										
		Delay	$\begin{gathered} \text { V/C } \\ \text { Ratio } \end{gathered}$	LOS				Delay	$\begin{aligned} & \text { V/C } \\ & \text { Ratio } \end{aligned}$	LOS	Delay	$\begin{aligned} & \text { V/C } \\ & \text { Ratio } \end{aligned}$	LOS	Delay	$\begin{aligned} & \text { V/C } \\ & \text { Ratio } \end{aligned}$	LOS
Signalized																
1	Cesar Chavez Street/Connecticut Street	11.4	-	B	25.3	-	C	47.1	-	D	38.2	-	D			
2	Cesar Chavez Street/Pennsylvania Avenue/NB I-280 Off-Ramp	38.4	-	D	>80	1.07	F	>80	1.08	F	>80	1.07	F			
11	Potrero Avenue/ $23{ }^{\text {rd }}$ Street	22.2	-	C	24.3	-	C	26.6	-	C	25.6	-	C			
Unsignalized				-												
3	Pennsylvania Avenue/SB I-280 OffRamp	15.2 (SB)	-	C	>50 (SB)	1.10	F^{3}	>50 (WB)	0.93	F^{4}	40.3 (WB)	0.87	E^{4}			
4	$25^{\text {th }}$ Street/Indiana Street/NB I-280 On-Ramp	11.4 (EB)	-	B	21.5 (EB)	-	C	37.9 (EB)	0.88	E^{4}	30.7 (EB)	0.82	D			
5	$25^{\text {th }}$ Street/Connecticut Street	8.0 (EB)	-	A	10.3 (NB)	-	B	28.0 (NB)	-	D	16.6 (NB)	-	C			
6	$25^{\text {th }}$ Street/Texas Street ${ }^{1}$	9.6 (SEB)	-	A	11.0 (SB)	-	B	30.1 (SB)	-	D	20.0 (SB)	-	C			
7	$23^{\text {rd }}$ Street/Dakota Street ${ }^{2}$	9.2 (NB)	-	A	10.1 (NB)	-	A	11.1 (NB)	-	B	10.5 (NB)	-	B			
8	$23^{\text {rd }}$ Street/Wisconsin Street	7.5 (SB)	-	A	8.1 (SB)	-	A	8.5 (SB)	-	A	8.3 (SB)	-	A			
9	$20^{\text {th }}$ Street/Arkansas Street	8.5 (WB)	-	A	10.0 (WB)	-	A	10.2 (WB)	-	B	10.2 (WB)	-	B			
10	$22^{\text {nd }}$ Street/Missouri Street	8.5 (EB)	-	A	8.9 (EB)	-	A	8.8 (EB)	-	A	8.7 (EB)	-	A			
12	Cesar Chavez Street/Vermont Street	25.8 (SB)	-	D	>50 (SB)	5.00	F^{3}	>50 (SB)	6.54	F^{4}	>50 (SB)	5.99	F^{4}			
13	Cesar Chavez Street/US 101 OffRamp	13.3 (NB)		B	>50 (NB)	1.14	F^{3}	>50 (NB)	1.55	F^{4}	>50 (NB)	1.41	F^{4}			

Notes:
${ }^{1}$ This intersection is $25^{\text {th }}$ /Dakota/Texas under Cumulative Conditions and $25^{\text {th }} /$ Texas under Cumulative plus Project Conditions.
${ }^{2}$ This intersection is $23^{\text {rd }} /$ Dakota under Cumulative Conditions and $23^{\text {rd }} /$ Missouri under Cumulative plus Project Conditions.
${ }^{3}$ This intersection satisfies Caltrans signal warrants under 2030 Cumulative Conditions.
This intersection satisfies Caltrans signal warrants under 2030 Cumulative plus Project Conditions.
V/C Ratio - Volume-to-capacity ratio; it is reported for intersections operating at LOS E and F only.
EB - Eastbound, NB - Northbound, SB - Southbound, WB - Westbound
Delay is presented in seconds per vehicle; for unsignalized intersections, delay, v/c ratio, and LOS are presented for the worst approach, annotated in parenthesis ()
Bold indicates intersection operates at an unacceptable LOS.

Intersection \#2 - Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp
The Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp intersection would operate at LOS F under 2030 Cumulative and 2030 Cumulative plus Project Conditions, and the Proposed Project would increase traffic along the critical movements operating at LOS F by less than five percent (0.2 percent or one trip along the eastbound left-turning movement and 0.4 percent or three trips along the westbound through movement). The Proposed Project's traffic along the critical movements operating unacceptably under 2030 Cumulative plus Project Conditions at the Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp intersection would not be considered a substantial contribution and therefore, the traffic impact at this intersection would be considered less-than-significant.

Intersection \#3 - Pennsylvania Avenue/Southbound I-280 Off-Ramp

The LOS/worst approach of the Pennsylvania Avenue/Southbound I-280 Off-Ramp intersection would operate at LOS F (approximate average vehicle delay of 93 seconds) for the southbound approach under 2030 Cumulative Conditions, and would shift to the westbound approach with the worst average delay for the intersection decreasing to 50 seconds, although the overall LOS would remain at LOS F under 2030 Cumulative plus Project Conditions. As mentioned in Section 1.4.2 - Vehicular Access, the modification of roadway layout planned as part of the Proposed Project is anticipated to shift approximately 25 percent of traffic travelling along Pennsylvania Avenue to Texas Street. This shift in traffic would reduce traffic along northbound and southbound Pennsylvania Avenue, thereby improving traffic operations at this intersection under 2030 Cumulative plus Project Conditions. As such, the worst operating approach at this intersection would also shift from southbound approach under 2030 Cumulative Conditions to westbound approach under 2030 Cumulative plus Project Conditions. This intersection would satisfy the Caltrans signal warrants under both 2030 Cumulative and Cumulative plus Project Conditions (signal warrant analysis sheets are included in Appendix K). Therefore, contribution of the Proposed Project to traffic along the worst approach was examined. The Proposed Project would increase traffic along the westbound left-turning movement by about 160 vehicle trips (18 percent). Since the Proposed Project would alter the worst approach and result in an increase in traffic of the westbound left-turning critical movement at the Pennsylvania Avenue/Southbound I-280 Off-Ramp intersection by more than five percent, it would be considered to cause a significant impact at this intersection under 2030 Cumulative plus Project Conditions.

Capacity improvements such as providing an additional left-turning lane on the Southbound I-280 OffRamp to improve the operating conditions of this approach and intersection was considered, but would require providing an additional through lane along Southbound Pennsylvania Avenue, from either reducing sidewalk widths or encroaching into the neighboring property. Therefore, adding an additional southbound left-turn lane, although considered, is not recommended as mitigation.

Installation of a traffic signal at this location was considered and would improve the operating conditions of this intersection from LOS F (approximately 50 seconds of delay per vehicle for the westbound approach) to LOS B (approximately 17 seconds of delay per vehicle). However, when signal warrants are met at any intersection, before a signal is recommended, additional review and prioritization is required by SFMTA. The intersection is evaluated to determine whether a signal would be warranted; and if so, it would be added to the proposed signal list maintained by SFMTA Transportation Engineering. The intersection signalization is prioritized based on a number of factors, including availability of funding, degree of hazard, and need in relation to other locations in the City. SFMTA does not have any plans to install a traffic signal at this intersection currently, and therefore the project contributing to a potential future signalization at this intersection would not be considered a feasible mitigation measure.

Transportation Mitigation Measure 4 - Project's Fair Share of Traffic Improvements.
The project sponsor shall therefore mitigate its impact to traffic related to the project development by coordinating with SFMTA on the appropriateness of signalization at this location or similar improvements to traffic operations. The Project Sponsor shall financially compensate SFMTA for its fair share of the cost of signalization at this location or other similar traffic-related improvements in the vicinity which would similarly improve traffic operating conditions. The financial contribution shall be calculated and applied based on the proposed development's fair share of the identified improvements.

Due to the uncertainty of the implementation of Transportation Mitigation Measure 4, the feasibility of the recommended mitigation measure is unknown. Therefore, the Proposed Project's impact at the Pennsylvania Avenue/Southbound I-280 Off-Ramp intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Intersection \#4-25 ${ }^{\text {th }}$ Street/Indiana Street/Northbound I-280 On-Ramp
The worst approach (eastbound approach) of the $25^{\text {th }}$ Street/Indiana Street/Northbound I-280 On-Ramp intersection would deteriorate from LOS C (about 22 seconds of delay) under 2030 Cumulative Conditions to LOS E (about 38 seconds of delay) under 2030 Cumulative plus Project Conditions. In addition, traffic added by the Proposed Project would cause Caltrans signal warrant to be met at this intersection under 2030 Cumulative plus Project Conditions (signal warrant analysis sheets are included in Appendix K). As such, the Proposed Project would be considered to cause a significant impact at this intersection under 2030 Cumulative plus Project Conditions.

Transportation Mitigation Measure 5 - Restripe the eastbound approach so as to convert the existing shared left-through lane to a through lane and provide a new 75 -foot left-turn pocket. The restriping would require prohibition of on-street parking for approximately 75 feet in the eastbound approach (loss of two parking spaces).

Implementation of Transportation Mitigation Measure 5 would improve the intersection operations to LOS C (approximately 24 seconds of delay per vehicle in the northbound direction). Hence, with Transportation Mitigation Measure 5, the traffic impact at this intersection would be reduced to less-than-significant for the Proposed Project. Constructing a new left-turn pocket would result in the removal of two on-street parking spaces or although less likely, a slight reduction in sidewalk widths along the eastbound approach. These impacts related to the implementation of Transportation Mitigation Measure 5 would not be considered significant, and would be consistent with those analyzed with the proposed project.

Intersection \#12 - Cesar Chavez Street/Vermont Street

The worst approach (southbound approach) of the Cesar Chavez Street/Vermont Street intersection would operate at LOS F under 2030 Cumulative Conditions. In addition, this intersection would continue to satisfy the Caltrans signal warrants under 2030 Cumulative and Cumulative plus Project Conditions (signal warrant analysis sheets are included in Appendix K). Therefore, contribution of the Proposed Project to traffic along the worst approach was examined. The Proposed Project would increase traffic along the southbound approach of this intersection by about 33 vehicles (11 percent). Since the Proposed Project would alter the worst approach and result in an increase in traffic of the southbound approach at the Cesar Chavez Street/Vermont Street intersection by more than five percent, it is
considered to cause a significant impact at this intersection under 2030 Cumulative plus Project Conditions.

During the PM peak hour of 2030 Cumulative Conditions, the southbound approach of this intersection would operate with an average vehicle delay greater than 1,000 seconds. This is primarily due to the lack of sufficient gaps between vehicles travelling along Cesar Chavez Street (2,319 vehicles per hour) for the southbound left-turning vehicles (148 vehicles per hour) to perform the maneuver. Capacity improvements at this intersection would not help improve gaps between traffic travelling along Cesar Chavez Street. As such, capacity improvements alone, although considered, are not recommended to improve operations at this intersection.

Similarly, restricting southbound left turns from Vermont Street to Cesar Chavez Street was considered for mitigation. This improvement would reduce the delay of the southbound approach from greater than 1,000 seconds of delay per vehicle (LOS F) to approximately 45 seconds per vehicle (LOS E). However, elimination of left turns would force vehicles turning left to use Cesar Chavez Street/Connecticut Street intersection to travel along eastbound Cesar Chavez Street. This would worsen operations at the Cesar Chavez Street/Connecticut Street intersection from LOS D to LOS F. Therefore, this improvement is not recommended as a feasible mitigation measure either.

Installation of a traffic signal at this location was considered and would improve the operating conditions of this intersection from LOS F (greater than 1,000 seconds of delay per vehicle in the southbound direction) to LOS B (approximately 17 seconds of delay per vehicle). However, when signal warrants are met at any intersection, before a signal is recommended, additional review and prioritization is required by SFMTA. In particular, this intersection is located less than 50 feet away from the neighboring unsignalized intersection of Cesar Chavez Street and US 101 Off-Ramp, and as such, traffic signalization at this intersection is not likely recommended. SFMTA does not have any plans to install a traffic signal at this intersection currently, and therefore the project contributing to a potential future signalization at this intersection would not be considered a feasible mitigation measure.

Transportation Mitigation Measure 6 - Project's Fair Share of Traffic Improvements.

The project sponsor shall therefore mitigate its impact to traffic related to the project development by coordinating with SFMTA on the appropriateness of signalization at this location or similar improvements to traffic operations. The Project Sponsor shall financially compensate SFMTA for its fair share of the cost of signalization at this location or other similar traffic-related improvements in the vicinity which would similarly improve traffic operating conditions. The financial contribution shall be calculated and applied based on the proposed development's fair share of the identified improvements.

Due to the uncertainty of the implementation of Transportation Mitigation Measure 6, the feasibility of the recommended mitigation measure is unknown. Therefore, the Proposed Project's impact at the Cesar Chavez Street/Vermont Street intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Intersection \#13 - Cesar Chavez Street/US 101 Off-Ramp

The worst approach (northbound approach) of the Cesar Chavez Street/US 101 Off-Ramp intersection would operate at LOS F under 2030 Cumulative Conditions. In addition, this intersection would continue
to satisfy the Caltrans signal warrants under 2030 Cumulative and Cumulative plus Project Conditions (signal warrant analysis sheets are included in Appendix K). Therefore, contribution of the Proposed Project to traffic along the worst approach was examined. The Proposed Project would increase traffic along the northbound approach of this intersection by about 222 vehicles (33 percent). Since the Proposed Project would alter the worst approach and result in an increase in traffic of the northbound approach at the Cesar Chavez Street/ US 101 Off-Ramp intersection by more than five percent, it is considered to cause a significant impact at this intersection under 2030 Cumulative plus Project Conditions.

This intersection would satisfy the Caltrans signal warrant during the PM peak hour. However, even with the installation of a traffic signal this intersection would continue to operate at LOS F (approximately 105 seconds of delay per vehicle). Hence, improving the traffic operations at this intersection to acceptable levels would require widening of the US 101 Off-ramp, in addition to installing a traffic signal. But, widening of the off-ramp would involve substantial right-of-way acquisition, ramp construction, and pavement striping. Additionally, when signal warrants are met at any intersection, before a signal is recommended, additional review and prioritization is required by SFMTA. The intersection is evaluated to determine whether a signal would be warranted; and if so, it would be added to the proposed signal list maintained by SFMTA Transportation Engineering. The intersection signalization is prioritized based on a number of factors, including availability of funding, degree of hazard, and need in relation to other locations in the City. SFMTA does not have any plans to install a traffic signal at this intersection currently, and therefore the project contributing to a potential future signalization at this intersection would not be considered a feasible mitigation measure.

The Planning Department is currently developing improvements to the Cesar Chavez Street/Bayshore Avenue/Potrero Avenue intersection as part of the Cesar Chavez East Community Design Plan. According to this plan, a "hairball" design of this intersection has been recommended to improve pedestrian and bicycle operations. In addition, it has been proposed to allow left turns from eastbound Cesar Chavez Street directly onto the northbound US 101 On-ramp near Vermont Street. It is anticipated that these recommendations would improve the operating conditions of the Cesar Chavez Street/US 101 Off-Ramp intersection. However, the Cesar Chavez East Community Design Plan is in the planning stage and has not been adopted yet.

Transportation Mitigation Measure 7 - Project's Fair Share of Traffic Improvements.

The project sponsor shall therefore mitigate its impact to traffic related to the project development by coordinating with SFMTA on the appropriateness of signalization at this location or similar improvements to traffic operations. The Project Sponsor shall financially compensate SFMTA for its fair share of the cost of signalization at this location or other similar traffic-related improvements in the vicinity which would similarly improve traffic operating conditions. The financial contribution shall be calculated and applied based on the proposed development's fair share of the identified improvements.

Due to the uncertainty of the implementation of Transportation Mitigation Measure 7 and that it remains at LOS F even with signalization, the feasibility of the recommended mitigation measure is unknown. Therefore, the Proposed Project's impact at the Cesar Chavez Street/US 101 Off-Ramp intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Alternative 1 - Under 2030 Cumulative plus Alternative 1 Conditions, nine of the 13 study intersections would continue to operate at an acceptable LOS (LOS D or better) as under 2030 Cumulative Conditions. Therefore, Alternative 1 would result in less-than-significant traffic impacts at these nine intersections. The remaining four intersections (Cesar Chavez Street/Pennsylvania Avenue/NB I-280 Off-Ramp, Pennsylvania Avenue/SB I-280 Off-Ramp, Cesar Chavez Street/Vermont Street, and Cesar Chavez Street/US 101 Off-Ramp) would operate at an unacceptable LOS (LOS E or worse). Based on the significance criteria mentioned in Section 4.1 - Significance Criteria, Alternative 1 would result in significant traffic impacts at three of these study intersections under 2030 Cumulative plus Alternative 1 Conditions. A discussion of the determination of significant impacts is provided below.

Intersection \#2 - Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp
The Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp intersection would operate at LOS F under 2030 Cumulative and 2030 Cumulative plus Alternative 1 Conditions and Alternative 1 would increase traffic along the critical movement operating at LOS F by less than five percent (two trips or 0.3 percent along the westbound through movement). Traffic due to Alternative 1 along the critical movement operating unacceptably under 2030 Cumulative plus Project Conditions at the Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp intersection would not be considered a substantial contribution and therefore, the impact would be considered less-than-significant..

Intersection \#3 - Pennsylvania Avenue/Southbound I-280 Off-Ramp

The LOS/worst approach of the Pennsylvania Avenue/Southbound I-280 Off-Ramp intersection would operate at LOS F (approximate average vehicle delay of 93 seconds) for the southbound approach under 2030 Cumulative Conditions, and would shift to the westbound approach with the worst average delay for the intersection decreasing to 40 seconds (LOS E) under 2030 Cumulative plus Project Conditions. As mentioned in Section 1.4.2 - Vehicular Access, the modification of roadway layout planned as part of the Proposed Project is anticipated to shift approximately 25 percent of traffic from Pennsylvania Avenue to Texas Street. This shift in traffic would reduce traffic along northbound and southbound Pennsylvania Avenue, thereby improving traffic operations at this intersection under 2030 Cumulative plus Project Conditions. As such, the worst operating approach at this intersection would also shift from southbound approach under 2030 Cumulative Conditions to westbound approach under 2030 Cumulative plus Alternative 1 Conditions. Also, this intersection would continue to satisfy the Caltrans signal warrants under 2030 Cumulative and Cumulative plus Alternative 1 Conditions (signal warrant analysis sheets are included in Appendix K). Therefore, contribution of Alternative 1 to traffic along the worst approach was examined. Alternative 1 would increase traffic along the westbound left-turning movement by about 105 vehicle trips (13 percent), which is slightly lower than the Proposed Project's contribution of 160 vehicle trips (18 percent). Hence, similar to the Proposed Project, Alternative 1 would alter the worst approach and result in an increase in traffic of the westbound left-turning critical movement at the Pennsylvania Avenue/Southbound I-280 Off-Ramp intersection by more than five percent; as such, Alternative 1 would be considered to cause a significant impact at this intersection under 2030 Cumulative plus Alternative 1 Conditions.

Similar to that for the Proposed Project, installation of a traffic signal would improve the operating conditions of this intersection from LOS F (approximately 50 seconds of delay per vehicle for the westbound approach) to LOS B (approximately 17 seconds of delay per vehicle). However, the project contributing to a potential future signalization at this intersection would not be considered a feasible mitigation measure due to reasons discussed above for the Proposed Project.

Transportation Mitigation Measure 4, identified for the Proposed Project above, would also apply to Alternative 1. Similar to the Proposed Project, the feasibility of implementing this mitigation measure by SFMTA is uncertain; therefore, the impact of Alternative 1 at the Pennsylvania Avenue/Southbound I280 Off-Ramp intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Intersection \#12 - Cesar Chavez Street/Vermont Street

The worst approach (southbound approach) of the Cesar Chavez Street/Vermont Street intersection would operate at LOS F under 2030 Cumulative Conditions. In addition, this intersection would continue to satisfy the Caltrans signal warrants under 2030 Cumulative and Cumulative plus Alternative 1 Conditions (signal warrant analysis sheets are included in Appendix K). Therefore, contribution of Alternative 1 to traffic along the worst approach was examined. Alternative 1 would increase traffic along the southbound approach of this intersection by about 24 vehicles (8 percent), which is slightly lower than the Proposed Project's contribution of 33 vehicles (11 percent). Hence, similar to the Proposed Project, Alternative 1 would alter the worst approach and result in an increase in traffic of the southbound approach at the Cesar Chavez Street/Vermont Street intersection by more than five percent; as such, Alternative 1 would be considered to cause a significant impact at this intersection under 2030 Cumulative plus Alternative 1 Conditions.

Similar to that for the Proposed Project, installation of a traffic signal would improve the operating conditions of this intersection from LOS F (greater than 1,000 seconds of delay per vehicle for the southbound approach) to LOS B (approximately 16 seconds of delay per vehicle). However, the project contributing to a potential future signalization at this intersection would not be considered a feasible mitigation measure due to reasons discussed above for the Proposed Project.

Transportation Mitigation Measure 6, identified for the Proposed Project above, would also apply to Alternative 1. Similar to the Proposed Project, the feasibility of implementing this mitigation measure by SFMTA is uncertain; therefore, the impact of Alternative 1 at the Cesar Chavez Street/Vermont Street intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Intersection \#13 - Cesar Chavez Street/US 101 Off-Ramp

The worst approach (northbound approach) of the Cesar Chavez Street/US 101 Off-Ramp intersection would operate at LOS F under 2030 Cumulative Conditions. In addition, this intersection would continue to satisfy the Caltrans signal warrants under 2030 Cumulative and Cumulative plus Alternative 1 Conditions (signal warrant analysis sheets are included in Appendix K). Therefore, contribution of Alternative 1 to traffic along the worst approach was examined. Alternative 1 would increase traffic along the northbound approach of this intersection by about 146 vehicles (22 percent), which is lower than the Proposed Project's contribution of 222 vehicles (33 percent). Similar to the Proposed Project, Alternative 1 would alter the worst approach and result in an increase in traffic of the northbound approach at the Cesar Chavez Street/ US 101 Off-Ramp intersection by more than five percent; as such, Alternative 1 is considered to cause a significant impact at this intersection under 2030 Cumulative plus Alternative 1 Conditions.

Similar to that for the Proposed Project, installation of a traffic signal would improve the operating conditions of this intersection, but would still continue to operate at LOS F. However, the project
contributing to a potential future signalization at this intersection would not be considered a feasible mitigation measure due to reasons discussed above for the Proposed Project.

Transportation Mitigation Measure 7, identified for the Proposed Project above, would also apply to Alternative 1. Similar to the Proposed Project, the feasibility of implementing this mitigation measure by SFMTA is uncertain; therefore, the impact of Alternative 1 at the Cesar Chavez Street/ US 101 Off-Ramp intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Alternative 2 - Alternative 2 would not add any new trips; as such, all study intersections would continue to operate with the same LOS and delay values as under 2030 Cumulative Conditions. Therefore, Alternative 2 would result in less-than-significant traffic impacts at the study intersections.

Detailed LOS calculation sheets, including TRAFFIX outputs sheets for the proposed mitigation measures are provided in Appendix F, while signal warrant analysis sheets are included in Appendix K.

2030 Cumulative Conditions Freeway Segment Operations

A comparison of the study freeway segment operations during the weekday AM and PM peak hours under 2030 Cumulative Conditions and 2030 Cumulative plus Project Conditions is provided in Table 4-13.

Under 2030 Cumulative Conditions, during the weekday AM peak hour, none of the study freeway segments would operate at the same LOS value as under Existing Conditions; LOS values of all the study freeway segments would deteriorate from their existing operating conditions. However, one freeway segment (Northbound I-280, north of Indiana Street On-Ramp) would continue to operate at acceptable operating conditions (LOS D or better). The remaining three freeway segments would operate at unacceptable operating conditions (LOS F) and include the following:

- Northbound I-280 (south of Cesar Chavez Street Off-Ramp)
- Northbound US 101 (north of Cesar Chavez Street On-Ramp)
- Southbound US 101 (north of Cesar Chavez Street Off-Ramp)

Table 4-13: AM and PM Peak Hour Freeway Segment Operations - 2030 Cumulative vs. 2030 Cumulative plus Project Conditions

Notes:
${ }^{1}$ Source: Freeway analysis conducted as part of the CS-HP Phase 2 EIR.
${ }^{2}$ Source: Ramp junction analysis conducted as part of the CS-HP Phase 2 EIR.
NB - Northbound, SB - Southbound
Density is reported in passenger cars per mile per lane ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$).
Bold indicates unacceptable conditions (LOS E or F).

Under 2030 Cumulative Conditions during the weekday PM peak hour, only one study freeway segment (Northbound US 101, north of Cesar Chavez Street On-Ramp) would operate at the same LOS as under Existing Conditions (LOS F); while LOS values of the remaining five (5) study freeway segments would deteriorate from their existing operating conditions. However, of these five study freeway segments, one segment (Northbound I-280, north of Indiana Street On-Ramp) would operate at acceptable operating conditions (LOS D or better), while the remaining four freeway segments would operate at unacceptable operating conditions (LOS F). Overall, the following five freeway segments would operate at LOS F under 2030 Cumulative PM Peak Hour Conditions:

- Northbound I-280 (south of Cesar Chavez Street Off-Ramp)
- Southbound I-280 (south of Pennsylvania Avenue On-Ramp)
- Southbound I-280 (north of Pennsylvania Avenue Off-Ramp)
- Northbound US 101 (north of Cesar Chavez Street On-Ramp)
- Southbound US 101 (north of Cesar Chavez Street Off-Ramp)

Detailed LOS calculation sheets for the study freeway segments under 2030 Cumulative Conditions are included in Appendix G.

2030 Cumulative plus Project Conditions Freeway Segment Impacts

Proposed Project - Under 2030 Cumulative plus Project weekday AM peak hour conditions, only one study freeway segment, Northbound I-280 (north of Indiana Street On-Ramp) would continue to operate at acceptable operating conditions (LOS D or better) as under 2030 Cumulative Conditions; the remaining three study freeway segments would operate at unacceptable operating conditions (LOS F). However, as shown in Table 4-9, the Proposed Project's contribution to the increase in traffic along these three freeway segments that would operate at LOS F would be less than five (5) percent. Since the Proposed Project would not contribute considerable amounts of traffic to these freeway segments, the Proposed Project's contribution to LOS F operating conditions under 2030 Cumulative Conditions at these three freeway segments (Northbound I-280, south of Cesar Chavez Street Off-Ramp; Northbound US 101, north of Cesar Chavez Street On-Ramp; and Southbound US 101, north of Cesar Chavez Street Off-Ramp) would be considered a less-than-significant impact during the AM peak hour.

Under 2030 Cumulative plus Project weekday PM peak hour conditions, only one study freeway segment would continue to operate at acceptable operating conditions (LOS D or better) under 2030 Cumulative and 2030 Cumulative plus Project Conditions; the remaining five freeway segments, including Northbound I-280 (south of Cesar Chavez Street Off-Ramp, Southbound I-280 (south of Pennsylvania Avenue On-Ramp), Southbound I-280 (north of Pennsylvania Avenue Off-Ramp), Northbound US 101 (north of Cesar Chavez Street On-Ramp), and Southbound US 101 (north of Cesar Chavez Street Off-Ramp) would operate at unacceptable operating conditions (LOS F). However, as shown in Table 4-10, the Proposed Project's contribution to traffic increase along these five freeway segments that would operate at LOS F would be less than five (5) percent. Since the Proposed Project would not contribute considerable amounts of traffic to these freeway segments, the Proposed Project's contribution to LOS F operating conditions under 2030 Cumulative Conditions at these freeway segments would be considered a less-than-significant impact during the PM peak hour, as well.

Therefore, the Proposed Project would result in less-than-significant traffic impacts at all of the study freeway segments under 2030 Cumulative plus Project Conditions.

Alternative 1 - Under 2030 Cumulative plus Alternative 1 weekday AM peak hour conditions, only one study freeway segment, Northbound I-280 (north of Indiana Street On-Ramp) would continue to operate at acceptable operating conditions (LOS D or better) as under 2030 Cumulative Conditions; the remaining three study freeway segments would operate at unacceptable operating conditions (LOS F). However, as shown in Table 4-9, the contribution of Alternative 1 to the increase in traffic along freeway segments operating at LOS F would be less than five (5) percent. Since Alternative 1 would not contribute considerable amounts of traffic to these freeway segments, the contribution of Alternative 1 to LOS F operating conditions under 2030 Cumulative Conditions at these three freeway segments (Northbound I-280, south of Cesar Chavez Street Off-Ramp; Northbound US 101, north of Cesar Chavez Street On-Ramp; and Southbound US 101, north of Cesar Chavez Street Off-Ramp) would be considered a less-than-significant impact during the AM peak hour.

Under 2030 Cumulative plus Alternative 1 weekday PM peak hour conditions, only one study freeway segment would continue to operate at acceptable operating conditions (LOS D or better) under 2030 Cumulative and 2030 Cumulative plus Alternative 1 Conditions. The remaining five freeway segments, including Northbound I-280 (south of Cesar Chavez Street Off-Ramp, Southbound I-280 (south of Pennsylvania Avenue On-Ramp), Southbound I-280 (north of Pennsylvania Avenue Off-Ramp), Northbound US 101 (north of Cesar Chavez Street On-Ramp), and Southbound US 101 (north of Cesar Chavez Street Off-Ramp) would operate at unacceptable operating conditions (LOS F). However, as shown in Table 4-10, the contribution of Alternative 1 to the increase in traffic along the study freeway segments would be less than five (5) percent. Since Alternative 1 would not contribute considerable amounts of traffic to the study freeway segments, the contribution of Alternative 1 to LOS F operating conditions under 2030 Cumulative Conditions at these freeway segments would be considered a less-than-significant impact during the PM peak hour as well.

Therefore, Alternative 1 would result in less-than-significant traffic impacts at all of the study freeway segments under 2030 Cumulative plus Alternative 1 AM and PM Peak Hour Conditions.

Alternative 2 - Alternative 2 would not add any new trips; as such, all study freeway segments would continue to operate with the same LOS and density values as under 2030 Cumulative Conditions. Therefore, Alternative 2 would result in less-than-significant traffic impacts at the study freeway segments.

Detailed LOS calculation sheets for the study freeway segments under 2030 Cumulative plus Alternative 2 Conditions are included in Appendix G.

2030 Cumulative Ramp Junction Operations

A comparison of the study freeway segment operations during the weekday PM peak hour under 2030 Cumulative Conditions and 2030 Cumulative plus Project Conditions is provided in Table 4-14.

Under 2030 Cumulative Conditions, LOS of all the study ramp junctions would worsen from an acceptable LOS (LOS D or better) under Existing Conditions to an unacceptable LOS (LOS F).

Detailed LOS calculation sheets for the study ramp junctions under 2030 Cumulative Conditions are included in Appendix G.

Table 4-14: PM Peak Hour Ramp Junction Operations - 2030 Cumulative vs. 2030 Cumulative plus Project Conditions

\#	Study Ramp Junction	Existing		2030 Cumulative		2030 Cumulative plus Project			
		Density	LOS	Density	LOS	Proposed Project		Alternative 1	
						Density	LOS	Density	LOS
1	NB I-280/Cesar Chavez Street Off-Ramp	4.8	A	DEC	F	DEC	F	DEC	F
2	SB I-280/Pennsylvania Avenue Off-Ramp	29.4	D	DEC	F	DEC	F	DEC	F
3	NB I-280/Indiana Street On-Ramp	17.0	B	DEC	F	DEC	F	DEC	F
4	SB I-280/Pennsylvania Avenue On-Ramp	26.9	C	DEC	F	DEC	F	DEC	F

Notes:
NB - Northbound; SB - Southbound
DEC - Demand Exceeds Capacity.
Density is reported in passenger cars per mile per lane ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$).
Bold indicates unacceptable conditions (LOS E or F).

2030 Cumulative plus Project Conditions Ramp Junction Impacts

Proposed Project - Similar to 2030 Cumulative Conditions, all of the study ramp junctions would operate at an unacceptable LOS (LOS F) under 2030 Cumulative plus Project Conditions. However, as shown in Table 4-11, the contribution of the Proposed Project to the increase in traffic at the study ramp junctions would vary between 1 percent and 1.8 percent. Since the Proposed Project would not contribute cumulatively considerable amounts of traffic to the study ramp junctions, the Proposed Project's contribution to the LOS F operating conditions under 2030 Cumulative Conditions at these ramp junctions would not be considered a significant impact. Therefore, the Proposed Project would result in less-than-significant traffic impacts at all of the study ramp junctions because of its less-thansubstantial contribution to freeway congestion.

Alternative 1 - All of the study ramp junctions would operate at an unacceptable LOS (LOS F) under 2030 Cumulative and 2030 Cumulative plus Alternative 1 Conditions. However, as shown in Table 4-11, the contribution of Alternative 1 to the increase in traffic at the study ramp junctions would vary between 0.6 percent and 1 percent. Since Alternative 1 would not contribute cumulatively considerable amounts of traffic to the study ramp junctions, the contribution of Alternative 1 to the LOS F operating conditions under 2030 Cumulative Conditions at these ramp junctions would not be considered a significant impact. Therefore, Alternative 1 would result in less-than-significant traffic impacts at all of the study ramp junctions because of its less-than-substantial contribution to freeway congestion.

Alternative 2 - Alternative 2 would not add any new trips; as such, all study ramp junctions would continue to operate with the same LOS and density values as under 2030 Cumulative Conditions. Therefore, Alternative 2 would result in less-than-significant traffic impacts at the study ramp junctions.

Detailed LOS calculation sheets for the study ramp junctions under 2030 Cumulative plus Project Conditions are included in Appendix G.

4.3.4 Transit Impacts

Transit analysis under 2030 Cumulative Conditions was performed based on the assumptions that all of the TEP recommendations proposed by the SFMTA and discussed in Section 2.4.3-Muni TEP Recommendations would be implemented by 2030. The following changes planned as part of the TEP recommendations would affect the Muni routes serving the study area and are expected to be in place by year 2030:

- The 10 Townsend would be renamed to become the 10 Sansome;
- A new $5824^{\text {th }}$ Street line would serve the Potrero Hill area and replace the to-be-rerouted 19 Polk, while supplementing 48 Quintara- $24^{\text {th }}$ Street routes;
- The 19 Polk would be rerouted and direct service to the project study area would be discontinued; and
- The 48 Quintara- $24^{\text {th }}$ Street line would have all-day service and connect to Hunters Point, where the 19 Polk currently terminates. It would be rerouted in the Potrero Hill area with the inclusion of the new $5824^{\text {th }}$ Street line.

Therefore, transit analysis under 2030 Cumulative and 2030 Cumulative plus Project Conditions was performed taking into consideration the above planned modifications to Muni lines and operations.

2030 Cumulative Conditions Muni Line-by-Line Analysis

To determine future ridership, Muni transit projections documented in the Transit Center District Plan Transportation Study (AECOM, 2010) were used. The study included an updated screenline summary for specific Muni routes and regional transit operators. Additionally, the study used updated TEP data and documented changes to transit service since the last update to the transit screenlines conducted and published in SF Guidelines. The study included screenline data; therefore, each Muni route that would service the project site was assigned to appropriate screenline (Southeast screenline). Ridership estimates for each Muni study route (10 Townsend/Sansome, 19 Polk, and 48 Quintara- $24^{\text {th }}$ Street) was determined by calculating the difference in projected 2030 Muni screenline ridership from existing (2008) screenline ridership and determining annual growth rates in transit ridership based on this difference, for both light rail and bus vehicles. These growth rates were subsequently applied to each individual transit line being studied in the line-by-line analysis. Additionally, since 19 Polk would not provide direct service to the project site under 2030 Cumulative Conditions, it was assumed that the anticipated ridership demand for 19 Polk in the Potrero Hill area would be served by other Muni routes operating in that area, approximately 40 percent by the 10 Townsend, 20 percent each by the 22 Fillmore and the new $5824^{\text {th }}$ Street, and 10 percent each by the 48 Quintara- $24^{\text {th }}$ Street and the T Third Street.

Future year transit capacity for each study route was determined using the proposed service headways developed by the SFMTA as part of the TEP and documented in the Summary of Recommendations Comparison of Proposed and Existing Service Frequencies and Hours of Service (September 2008). Using the proposed headway of each transit route during the PM peak hour and the seated capacity of vehicle serving each route, the capacity of Muni routes under 2030 Cumulative Conditions were developed. As part of the TEP, headways were developed for transit service in the peak direction only. Future headways for service in the non-peak direction were estimated assuming that the rate of change of headways in the peak and non-peak directions would remain the same.

A comparison of Muni line-by-line operations under 2030 Cumulative and 2030 Cumulative plus Project Conditions is provided in Table 4-15.

Under 2030 Cumulative Conditions, capacity utilization of the 19 Polk would slightly improve compared to Existing Conditions in both the directions (from 68 to 58 percent in the inbound direction and from 49 to 42 percent in the inbound direction) due to the planned increase in service frequencies. Similarly, capacity utilization of the 10 Townsend/Sansome would slightly improve compared to Existing Conditions in both the directions; however, this line would continue to operate with a capacity utilization higher than the Muni's 85 percent utilization standard (94 percent in the inbound direction and 87 percent in the outbound direction). The capacity utilization of the 48 Quintara- $24^{\text {th }}$ Street would worsen from Existing Conditions and exceed Muni's 85 percent utilization standard in both the directions (89 percent in the inbound direction and 91 percent in the outbound direction).

Table 4-15: Muni Line-by-Line Analysis - 2030 Cumulative vs. Cumulative plus Project Weekday PM Peak Hour

Route	Travel Direction	Existing		2030 Cumulative		Project Trips	2030 Cumulative plus Project	
		Ridership	Capacity Utilization	Ridership	Capacity Utilization		Ridership	Capacity Utilization
Proposed Project								
10 Townsend/Sansome ${ }^{1}$	Inbound	186	98\%	238	94\%	36	274	109\%
	Outbound	171	90\%	219	87\%	68	287	114\%
19 Polk	Inbound	172	68\%	220	58\%	0^{2}	220	58\%
	Outbound	124	49\%	159	42\%	0^{2}	159	42\%
48 Quintara-24 ${ }^{\text {th }}$ Street	Inbound	175	46\%	224	89\%	30	254	101\%
	Outbound	180	48\%	230	91\%	21	251	100\%
Alternative 1								
10 Townsend/Sansome ${ }^{1}$	Inbound	186	98\%	238	94\%	23	261	104\%
	Outbound	171	90\%	219	87\%	42	261	104\%
19 Polk	Inbound	172	68\%	220	58\%	0^{2}	220	58\%
	Outbound	124	49\%	159	42\%	0^{2}	159	42\%
48 Quintara-24 ${ }^{\text {th }}$ Street	Inbound	175	46\%	224	89\%	17	241	96\%
	Outbound	180	48\%	230	91\%	13	243	97\%

Source: SFMTA APC Data - 2011, CDM Smith - June 2012
Notes:
The 10 Townsend is proposed to be renamed to the 10 Sansome following TEP implementation.
${ }^{2}$ No project-related transit trips were assumed to access 19 Polk due to the proposed rerouting of this line as part of the TEP
Bold indicates load exceeding Muni's 85 percent capacity utilization standard

2030 Cumulative plus Project Conditions Muni Line-by-Line Analysis

As mentioned in Section 4.2.2 - Transit Impacts, the Proposed Project would generate 344 weekday PM peak hour transit trips (221 inbound and 123 outbound). Of these 344 PM peak hour transit trips, 175 inbound and 98 outbound trips would be served by Muni lines, while 46 inbound and 25 outbound trips would be served by regional transit providers. The Proposed Project, under Existing plus Project conditions would have a significant impact to the 10 Townsend, and would similarly significantly increase ridership under Cumulative plus Project conditions. Using the same methodology adopted for Existing plus Project Conditions (discussed in Section 4.2.2 - Transit Impacts), project-related Munibound transit trips were distributed to the three Muni lines (10 Townsend/Sansome, 19 Polk, and 48 Quintara- $24^{\text {th }}$ Street). Since the 19 Polk would not provide direct service to the project site under 2030 Cumulative plus Project Conditions, no project-related transit trips were assigned to this line.

Proposed Project - Under 2030 Cumulative plus Project Conditions, the Proposed Project would deteriorate transit operations of two Muni lines (10 Townsend/Sansome and 48 Quintara-24 ${ }^{\text {th }}$ Street), but would not modify operations of the 19 Polk. The 19 Polk would continue to operate with a capacity utilization of 58 percent and 42 percent in the inbound and outbound directions; however, capacity utilization of the 10 Townsend/Sansome would increase by 15 percent (from 94 to 109 percent) in the inbound direction and 27 percent (from 87 percent to 114 percent) in the outbound direction. Also, capacity utilization of the 48 Quintara- $24^{\text {th }}$ Street would increase by 12 percent (from 89 to 101 percent) in the inbound direction and 8 percent (from 91 percent to 99 percent) in the outbound direction. Both the 10 Townsend/Sansome and 48 Quintara- $24^{\text {th }}$ Street lines would continue to operate above Muni's 85 percent utilization standard in both the inbound and outbound directions under 2030 Cumulative plus Project Conditions.

Under 2030 Cumulative plus Project Conditions, during the weekday PM peak hour, the Proposed Project would substantially increase the ridership of outbound 10 Townsend/Sansome by about 68 riders (about 23 riders per bus during the peak hour), inbound 10 Townsend/Sansome by about 36 riders (about 12 riders per bus during the peak hour), outbound 48 Quintara- $24^{\text {th }}$ Street by about 19 riders (about 3 riders per bus during the peak hour), and inbound 48 Quintara- $24^{\text {th }}$ Street by about 30 riders (about 5 riders per bus during the peak hour). Given that both these Muni lines are anticipated to operate above Muni's 85 percent utilization standard under 2030 Cumulative Conditions, the additional transit demand due to the Proposed Project would result in significant impacts to the 10 Townsend/Sansome (primarily outbound) and 48 Quintara- $24^{\text {th }}$ Street (primarily inbound) routes under 2030 Cumulative plus Project Conditions.

10 Townsend/Sansome

The 10 Townsend/Sansome line would operate with capacity utilization exceeding the Muni's 85 percent threshold under 2030 Cumulative and 2030 Cumulative plus Project Conditions. Since, the Proposed Project would increase ridership of this line by a maximum of 68 trips (27 percent), the Proposed Project is considered to cause a significant transit impact to this Muni line under 2030 Cumulative plus Project Conditions.

As discussed under Existing plus Project conditions, Transportation Mitigation Measure 2 which would require the Project Sponsor to work with SFMTA to determine its fair share of ensuring the transit capacity impact to the 10 Townsend related to the Proposed Project is reduced to a less-than-significant level, would similarly apply under 2030 Cumulative Plus Project conditions. The payment of the fee identified in this mitigation measure would serve to reduce the Proposed Project's impact on the

104402
POTRERO HOPE TRANSPORTATION STUDY
FINAL REPORT
operations of 10 Townsend under Existing plus Project and 2030 Cumulative plus Project Conditions to a less-than-significant level. However, because the ability of SFMTA, as another City agency, to provide the additional service on local lines needed to accommodate this project is uncertain, the feasibility of the mitigation measure is unknown. Therefore, the Proposed Project's impact to the operations of 10 Townsend would be considered significant and unavoidable.

48 Quintara-24 ${ }^{\text {th }}$ Street

The 48 Quintara- $24^{\text {th }}$ Street line would operate with capacity utilization exceeding the Muni's 85 percent threshold under 2030 Cumulative and 2030 Cumulative plus Project Conditions. Since, the Proposed Project would increase ridership of this line by a maximum of 30 trips (12 percent), the Proposed Project is considered to cause a significant transit impact to this Muni line under 2030 Cumulative plus Project Conditions.

Transportation Mitigation Measure 8 - The Project Sponsor shall work with SFMTA to ensure that the transit capacity impact to the 48 Quintara- $24^{\text {th }}$ Street line related to the Proposed Project under cumulative conditions is reduced to a less-than-significant level by financially compensating SFMTA for the cost of providing the service needed to accommodate the project at proposed levels of service. The financial contribution shall be calculated and applied in a manner that is consistent with the SFMTA cost/scheduling model. The amount and schedule of payment and commitment to application of service needs shall be set forth in a Transit Mitigation Agreement between the Project Sponsor and SFMTA.

The payment of the fee identified in this mitigation measure would serve to reduce the Proposed Project's impact on the operations of the 48 Quintara-24 ${ }^{\text {th }}$ Street under 2030 Cumulative Conditions to a less-than-significant level. However, because the ability of SFMTA, as another City agency, to provide the additional service on local lines needed to accommodate this project is uncertain, the feasibility of the mitigation measure is unknown. Therefore, the Proposed Project's impact to the operations of the 10 Townsend and 48 Quintara-24 ${ }^{\text {th }}$ Street would be considered significant and unavoidable under 2030 Cumulative plus Project Conditions.

Alternative 1 - Alternative 1 would generate 214 weekday PM peak hour transit trips (135 inbound and 79 outbound), of which 107 inbound and 63 outbound trips would be served by Muni lines, while 28 inbound and 16 outbound trips would be served by regional transit providers. Similar to the Proposed Project, Alternative 1 would deteriorate transit operations of the 10 Townsend/Sansome and 48 Quintara-24 ${ }^{\text {th }}$ Street, but would not modify operations of the 19 Polk (this line would continue to operate with a capacity utilization of 58 percent and 42 percent in the inbound and outbound directions). Alternative 1 would increase the capacity utilization of the 10 Townsend/Sansome by 10 percent (from 94 to 104 percent) in the inbound direction and 17 percent (from 87 percent to 104 percent) in the outbound direction. Also, it would increase the capacity utilization of 48 Quintara- $24^{\text {th }}$ Street by 7 percent (from 89 to 96 percent) in the inbound direction and 5 percent (from 91 percent to 96 percent) in the outbound direction. Both the 10 Townsend/Sansome and 48 Quintara- $24^{\text {th }}$ Street lines would continue to operate above Muni's 85 percent utilization standard in both the inbound and outbound directions under 2030 Cumulative plus Alternative 1 Conditions.

Under 2030 Cumulative plus Alternative 1 Conditions, during the weekday PM peak hour, Alternative 1 would substantially increase the ridership of outbound 10 Townsend/Sansome by about 42 riders (about 14 riders per bus during the peak hour), inbound 10 Townsend/Sansome by about 23 riders (about 8 riders per bus during the peak hour), outbound 48 Quintara- $24^{\text {th }}$ Street by about 12 riders (about 2
riders per bus during the peak hour), and inbound 48 Quintara- $24^{\text {th }}$ Street by about 17 riders (about 3 riders per bus during the peak hour). Given that both these Muni lines are anticipated to operate above Muni's 85 percent utilization standard under 2030 Cumulative Conditions, the additional transit demand due to Alternative 1 would result in a significant impacts to the 10 Townsend/Sansome and 48 Quintara$24^{\text {th }}$ Street lines under 2030 Cumulative plus Alternative 1 Conditions.

10 Townsend/Sansome

The 10 Townsend/Sansome line would operate with capacity utilization exceeding Muni's 85 percent threshold under 2030 Cumulative and 2030 Cumulative plus Alternative 1 Conditions. Since Alternative 1 would increase the ridership of this line by a maximum of 42 trips (17 percent), Alternative 1 is considered to cause a significant transit impact to 10 Townsend/Sansome under 2030 Cumulative plus Alternative 1 Conditions.

Transportation Mitigation Measure 2 discussed for the Proposed Project above would also apply to Alternative 1. The payment of the fee identified in this mitigation measure would reduce the impact of Alternative 1 on the operations of 10 Townsend to a less-than-significant level. However, similar to the Proposed Project, the feasibility of implementing this mitigation measure by SFMTA is uncertain; therefore, the impact would remain significant and unavoidable under 2030 Cumulative plus Alternative 1 Conditions.

48 Quintara-24 ${ }^{\text {th }}$ Street

The 48 Quintara- $24^{\text {th }}$ Street line would operate with capacity utilization exceeding Muni's 85 percent threshold under 2030 Cumulative and 2030 Cumulative plus Alternative 1 Conditions. Since, Alternative 1 would increase ridership of this line by a maximum of 17 trips (7 percent), it is considered to cause a significant impact to this Muni line under 2030 Cumulative plus Alternative 1 Conditions. Transportation Mitigation Measure 8 identified for the Proposed Project above would also apply to Alternative 1. The payment of the fee identified in this mitigation measure would reduce the impact of Alternative 1 on the operations of 48 Quintara- $24^{\text {th }}$ Street to a less-than-significant level. However, similar to the Proposed Project, because the ability of SFMTA to provide the additional service on these lines needed to accommodate this project is uncertain, the feasibility of the mitigation measure is unknown. Therefore, the impact of Alternative 1 to the operations of 48 Quintara- $24^{\text {th }}$ Street would be considered significant and unavoidable under 2030 Cumulative plus Alternative 1 Conditions.

Alternative 2 - Alternative 2 would not add any new transit-related trips; as such, all study Muni lines would continue to operate with the same capacity utilization as under 2030 Cumulative Conditions. Therefore, Alternative 2 would result in less-than-significant transit impacts to specific Muni lines under 2030 Cumulative plus Alternative 2 Conditions.

Detailed calculation sheets for the line-by-line analysis under 2030 Cumulative and 2030 Cumulative plus Project Conditions are included in Appendix H.

2030 Cumulative Conditions Muni Screenline Analysis

Similar to Existing Conditions, weekday PM peak hour capacity utilization for Muni's Southeast screenline was determined under 2030 Cumulative Conditions. Screenline analysis under 2030 Cumulative Conditions takes into account the planned changes to Muni service, including projected capacity and anticipated service changes. Muni ridership and capacity under 2030 Cumulative Conditions were obtained from the transit projections documented in the Transit Center District Plan -

104402

Transportation Study (AECOM, 2010). The ridership and capacity projections under 2030 Cumulative Conditions, along with a comparison of screenline operations under Existing Conditions, and the forecasted capacity utilization for the Muni's Southeast screenline, are presented in Table 4-16.

Under 2030 Cumulative conditions, the overall capacity utilization of the Muni's Southeast screenline (79 percent) is expected to increase by approximately 13 percent from Existing Conditions (66 percent); however, it would still operate with a capacity utilization value that is below Muni's standard of 85 percent. Compared to Existing Conditions, under 2030 Cumulative Conditions, the capacity utilization of the Third Street corridor would increase from 78 percent to 91 percent (13 percent increase) and exceed Muni's 85 percent threshold, and the All Other Lines corridor (consisting of J Church, 12 Folsom, and 19 Polk lines) would increase from 70 percent to 85 percent (15 percent increase) and operate at Muni's 85 percent threshold. The other two corridors, Mission Street and San Bruno/Bayshore would operate with capacity utilization below the 85 percent threshold.

2030 Cumulative plus Project Conditions Muni Screenline Analysis

Using the same methodology and project-generated transit ridership as mentioned in Section 4.2 .2 Transit Impacts, approximately 130 and 80 transit trips associated with the Proposed Project and Alternative 1, respectively, would cross the Southeast screenline in the peak direction from downtown San Francisco (along the 10 Townsend, 19 Polk, and T Third Street lines). The remaining inbound Muni trips (46 for the Proposed Project and 23 for Alternative 1) would use the 22 Fillmore and 48 Quintara$24^{\text {th }}$ Street lines, which are not included in the Muni screenlines. A summary of the screenline analysis for Muni's Southeast screenline under 2030 Cumulative plus Project Conditions during the weekday PM peak hour is provided in Table 4-16.

Proposed Project - Under 2030 Cumulative plus Project Conditions, the Southeast screenline would operate with an overall capacity utilization of 80 percent (less than Muni's 85 percent threshold), an increase of approximately one percent from 2030 Cumulative Conditions. The Mission Street and San Bruno/Bayshore corridors would continue to operate with the same capacity utilizations as under 2030 Cumulative Conditions (61 and 78 percent, respectively). The All Other Lines corridor (consisting of J Church, 12 Folsom, and 19 Polk lines) and the Third Street corridor would operate with an overall capacity utilization of 90 and 92 percents (greater than Muni's 85 percent threshold) under 2030 Cumulative plus Project Conditions. However, the capacity utilization of these corridors would exceed Muni's 85 percent threshold under 2030 Cumulative Conditions itself; as such, the Proposed Project's contribution to the changes in the capacity utilizations of these corridors was estimated.

The Proposed Project would increase the capacity utilization of the All Other Lines corridor by 5.9 percent (from 85 percent to 90 percent) and the Third Street corridor by 1.5 percent (from 91 percent to 92 percent). Since the Proposed Project would increase ridership along the Third Street corridor by approximately one (1) percent, its contribution would not be considered a significant impact to this Southeast screenline under 2030 Cumulative plus Project Conditions. However, the Proposed Project would increase the capacity utilization of the All Other Lines corridor crossing the Southeast screenline (consisting of J Church, 12 Folsom, and 19 Polk) by 5.9 percent. Therefore, the Proposed Project's contribution of riders to this corridor within the Southeast screenline which operates above Muni's 85 percent capacity utilization threshold under cumulative conditions would be considered a significant transit impact under 2030 Cumulative plus Project Conditions.

Table 4-16: 2030 Cumulative vs. Cumulative plus Project Muni Screenline Analysis - Weekday PM Peak Hour

Screenline/Corridor	Existing			2030 Cumulative			2030 Cumulative plus Project								
				Proposed Project	Alternative 1										
	Ridership		Capacity Utilization				Ridership	Peak Hour Capacity	Capacity Utilization	Project Trips	Ridership	Capacity Utilization	Project Trips	Ridership	Capacity Utilization
Southeast Screenline															
Third Street	554	714	78\%	2,592	2,856	91\%	39	2,631	92\%	24	2,616	92\%			
Mission Street	1,254	2,350	53\%	1,370	2,256	61\%	0	1,370	61\%	0	1,370	61\%			
San Bruno/Bayshore	1,671	2,256	74\%	2,344	3,008	78\%	0	2,344	78\%	0	2,344	78\%			
All Other Lines	1,189	1,708	70\%	1,550	1,820	85\%	91	1,641	90\%	56	1,606	88\%			
Total	4,668	7,028	66\%	7,856	9,940	79\%	130	7,996	80\%	80	7,936	80\%			

Source: AECOM - 2010; CDM Smith - January 2012.
Notes:
Screenline analysis conducted only in the peak outbound direction from San Francisco toward the project site.

Transportation Mitigation Measure 9 - The Project Sponsor shall work with SFMTA to ensure that the transit capacity impact to the All Other Lines corridor related to the Proposed Project under cumulative conditions is reduced to a less-than-significant level by financially compensating SFMTA for the cost of providing the service needed to accommodate the project at proposed levels of service. The financial contribution shall be calculated and applied in a manner that is consistent with the SFMTA cost/scheduling model. The amount and schedule of payment and commitment to application of service needs shall be set forth in a Transit Mitigation Agreement between the Project Sponsor and SFMTA.

The payment of the fee identified in this mitigation measure would reduce the Proposed Project's impact on the operations of the All Other Lines corridor in the Southeast screenline to a less-than significant level. However, because the ability of SFMTA to provide the additional service on these lines needed to accommodate this project is uncertain, the feasibility of the mitigation measure is unknown. Therefore, the Proposed Project's impact on the operations of the All Other Lines corridor in the Southeast screenline under 2030 Cumulative plus Project Conditions would be considered significant and unavoidable.

Alternative 1 - Similar to the Proposed Project, the overall capacity utilization of the Southeast screenline under 2030 Cumulative plus Alternative 1 Conditions would increase by approximately one percent (from 79 percent under 2030 Cumulative Conditions to 80 percent) for Alternative 1. The Mission Street and San Bruno/Bayshore corridors would continue to operate with the same capacity utilizations as under 2030 Cumulative Conditions (61 and 78 percent, respectively). The All Other Lines corridor and the Third Street corridor would operate with an overall capacity utilization of 88 and 92 percents (greater than Muni's 85 percent threshold) under 2030 Cumulative plus Alternative 1 Conditions. However, the capacity utilization of these corridors would exceed Muni's 85 percent threshold under 2030 Cumulative Conditions itself; as such, the contribution of Alternative 1 to the changes in the capacity utilizations of these corridors was estimated.

Alternative 1 would increase the capacity utilization of the All Other Lines corridor by 3.6 percent (from 85 percent to 88 percent) and that of the Third Street corridor by 0.9 percent (from 91 percent to 92 percent). Since Alternative 1 would increase ridership along the Third Street corridor by approximately one (1) percent, it would not be considered to cause any significant impacts to this corridor under 2030 Cumulative plus Alternative 1 Conditions. However, Alternative 1 would increase the capacity utilization of the All Other Lines corridor crossing the Southeast screenline by approximately four (4) percent. Therefore, the contribution of Alternative 1 to this corridor within the Southeast screenline which operates above Muni's 85 percent capacity utilization threshold under cumulative conditions would be considered a significant transit impact under 2030 Cumulative plus Alternative 1 Conditions.

Transportation Mitigation Measure 9 discussed for the Proposed Project above would also apply to Alternative 1. The payment of the fee identified in this mitigation measure would reduce the impact of Alternative 1 on the operations of the All Other Lines corridor to a less-than-significant level. However, similar to the Proposed Project, the feasibility of implementing this mitigation measure by SFMTA is uncertain; therefore, the impact would remain significant and unavoidable under 2030 Cumulative plus Alternative 1 Conditions.

Alternative 2 - Alternative 2 would not add any new transit-related trips; as such, the Southeast screenline and all corridors included in it would continue to operate with the same capacity utilization as
under 2030 Cumulative Conditions. Therefore, Alternative 2 would result in less-than-significant traffic impacts to Muni screenlines under 2030 Cumulative plus Alternative 2 Conditions.

2030 Cumulative Conditions Regional Transit Screenline Analysis

Regional transit capacity utilization was also evaluated under 2030 Cumulative Conditions. Similar to Muni screenline projections, ridership and capacity projections of regional transit operators under 2030 Cumulative Conditions were obtained from the transit projections documented in the Transit Center District Plan Transportation Study (AECOM, 2010). Table 4-17 exhibits ridership, capacity, and expected utilization for 2030 Cumulative Conditions, alongside Existing Conditions, as a comparison.

Under 2030 Cumulative Conditions, the transit operations of most regional transit operators serving the project study area would worsen from Existing Conditions, with the exception of BART and SamTrans service to the South Bay, where the expected provision of additional transit service would offset the anticipated increase in transit ridership. The overall capacity utilization of all the regional transit operators would increase from 70 percent to 86 percent. The capacity utilization of BART to the East Bay, AC Transit to the East Bay, and GGT buses to the North Bay are anticipated to increase from 83 percent to 110 percent for BART, from 60 percent to 113 percent for AC Transit, and from 63 percent to 114 percent for GGT buses. All regional transit providers have a 100 percent capacity utilization standard. Hence, capacity utilizations of BART, AC Transit buses, and GGT buses would increase above their threshold values under 2030 Cumulative Conditions. All other regional transit operators would operate with capacity utilizations below their respective threshold values. Additionally, the East Bay and North Bay regional transit screenlines are anticipated to operate with capacity utilizations of more than 100 percent.

2030 Cumulative plus Project Conditions Regional Transit Screenline Analysis

Regional transit screenlines were also evaluated under 2030 Cumulative plus Project Conditions using the same methodology previously described in Section 2.4.5 - Existing Regional Transit Screenline Analysis. A summary of the regional transit screenline analysis under 2030 Cumulative plus Project conditions during the weekday PM peak hour is provided in Table 4-17.

Proposed Project - Under 2030 Cumulative plus Project Conditions, the Proposed Project would generate a total of 25 regional transit trips during the PM peak hour in the peak direction (away from San Francisco). The capacity utilizations of all regional transit operators would remain almost the same under both 2030 Cumulative and 2030 Cumulative plus Project Conditions. The South Bay screenline would continue to operate with a capacity utilization of less than 100 percent, while the East Bay and North Bay regional screenlines would continue to operate with capacity utilizations of greater than 100 percent. Specifically, BART to the East Bay, AC Transit to the East Bay, and GGT buses to the North Bay would operate with capacity utilizations of 110 percent, 113 percent and 114 percent, respectively, thereby exceeding their 100 percent utilization standard. However, the Proposed Project would add less than one (1) percent of the trips to these transit providers (seven trips to BART serving the East Bay, two trips to AC Transit serving the East Bay, and one trip to GGT buses serving the North Bay). Therefore, the Proposed Project would not make a substantial contribution to the ridership of regional transit operators and result in less-than-significant impacts to these operators under 2030 Cumulative plus Project Conditions.

Table 4-17: 2030 Cumulative vs. Cumulative plus Project Regional Transit Screenline Analysis - Weekday PM Peak Hour

Region	Regional Transit Operator	Existing			2030 Cumulative			2030 Cumulative plus Project								
					Proposed Project	Alternative 1										
		Ridership	Peak Hour Capacity	Capacity Utilization				Ridership	Peak Hour Capacity	Capacity Utilization	Project Trips	Ridership	Capacity Utilization	Project Trips	Ridership	Capacity Utilization
East Bay	BART	20,067	24,150	83\%	32,225	29,400	110\%	7	32,232	110\%	5	32,230	110\%			
	AC Transit	2,517	4,193	60\%	7,477	6,600	113\%	2	7,479	113\%	1	7,478	113\%			
	Ferries	702	1,519	46\%	2,118	2,719	78\%	0	2,118	78\%	0	2,118	78\%			
	Subtotal	23,286	29,862	78\%	41,819	38,719	108\%	9	41,829	108\%	6	41,826	108\%			
North Bay	GGT Buses	1,397	2,205	63\%	2,508	2,205	114\%	1	2,509	114\%	1	2,509	114\%			
	GGT Ferries	906	1,700	53\%	1,627	1,700	96\%	1	1,628	96\%	1	1,628	96\%			
	Subtotal	2,303	3,905	59\%	4,135	3,905	106\%	2	4,137	106\%	2	4,137	106\%			
South Bay	BART	10,202	16,800	61\%	11,202	21,000	53\%	9	11,211	53\%	6	11,208	53\%			
	Caltrain	1,986	3,250	61\%	3,981	6,400	62\%	5	3,986	62\%	2	3,983	62\%			
	SamTrans	575	940	61\%	402	940	43\%	0	402	43\%	0	402	43\%			
	Ferries	-	-	-	74	300	25\%	0	74	25\%	0	74	25\%			
	Subtotal	12,763	20,990	61\%	15,659	28,640	55\%	14	15,673	55\%	8	15,667	55\%			
Total		38,352	54,757	70\%	61,614	71,264	86\%	25	61,639	86\%	16	61,630	86\%			

[^9]Alternative 1 - Under 2030 Cumulative plus Alternative 1 Conditions, Alternative 1 would generate a total of 16 regional transit trips during the PM peak hour in the peak direction (away from San Francisco). Similar to the Proposed Project, the capacity utilizations of all regional transit operators would remain almost the same under 2030 Cumulative and 2030 Cumulative plus Alternative 1 Conditions. The South Bay screenline would continue to operate with a capacity utilization of less than 100 percent, while the East Bay and North Bay regional screenlines would continue to operate with capacity utilizations of greater than 100 percent. BART to the East Bay, AC Transit to the East Bay, and GGT buses to the North Bay would continue to operate with capacity utilizations of 110 percent, 113 percent, and 114 percent, respectively, thereby exceeding their 100 percent utilization standard. However, Alternative 1 would add less than one (1) percent of the trips to these transit providers (five trips to BART serving the East Bay, one trip to AC Transit serving the East Bay, and one trip to GGT buses serving the North Bay). Therefore, Alternative 1 would not make a substantial contribution to the ridership of regional transit operators and would result in a less-than-significant impact to these operators under 2030 Cumulative plus Alternative 1 Conditions.

Alternative 2 - Alternative 2 would not add any new transit-related trips; as such, all study regional transit services would continue to operate with the same capacity utilizations as under 2030 Cumulative Conditions. Therefore, Alternative 2 would result in less-than-significant operational impacts to regional transit operators under 2030 Cumulative plus Alternative 2 Conditions.

Chapter 5: Mitigation and Improvement Measures

This chapter includes recommended mitigation and improvement measures that would enhance the study area operations. In addition, a transportation demand management (TDM) plan comprised of several applicable strategies to reduce auto-based travel demand is included.

5.1 Mitigation Measures - Existing plus Project Conditions

The following section describes the mitigation measures that would enhance the study area operations under Existing plus Project Conditions.

5.1.1 Traffic and Circulation

Proposed Project, Alternative 1, and Alternative 2 - Recommended mitigation measures are as follows:
Transportation Mitigation Measure 1 - During the design of each phase of the project, the Project Sponsor shall develop designs for intersection bulb-outs and driveways connecting to parking garages incorporating the guidelines and design controls provided below. These design recommendations were identified from Better Streets Plan and guidelines provided by SFMTA, and the Planning Department.

Bulb-out Design (Source - Better Streets Plan)

- All streets within the project site shall adhere to standards contained in the Better Streets Plan by the San Francisco Planning Department, including the following:
o Streets and bulb-outs shall be designed to accommodate emergency vehicle (WB-40) turns; and
o Streets and bulb-outs along Muni routes shall be designed to accommodate a 40 -foot (B-40) bus.
- Bulb-outs shall be designed consistent with the SFDPW and other City agency specifications to accommodate use of mechanical street sweepers, and shall be consistent with San Francisco Fire Department and SFMTA regulations. All bulb-outs require the approval of the interagency TASC committee.

Driveway Design (Source - Better Streets Plan, Planning Department, and SFMTA)

- All driveways leading to parking garages shall be designed in accordance with the San Francisco Planning Code Sections 145.1 and 155 standards applicable in RM zoning districts and the Planning Department's Guidelines for Adding Garages and Curb Cuts;
- Garages with more than 20 parking spaces would be subject to the Planning Department's Queue Abatement Condition of Approval, requiring the project sponsor to design for and prevent through monitoring the potential for vehicle queues in the public right-of-way;
- Garage entrances and curb cuts shall be designed to minimize their impact on other modes of travel, including pedestrian circulation;
- Garage entrances shall be no wider than 16 feet, 12 feet being the preferred width;
- Garage entrances located along streets with transit service (Missouri, Arkansas, and Wisconsin Streets) shall not encumber any bus stop and not be located directly before a bus stop; and
- The minimum clearance distance between any garage driveway and neighboring intersections would be identified coordinating with the SFMTA.

The intersection bulb-out and driveway designs for each phase of construction would be finalized after review and approval by the Planning Department and SFMTA to assure compliance with these standards. With the implementation of Transportation Mitigation Measure 1, the circulation impacts of the Proposed Project and its alternatives would be considered less-than-significant with mitigation.

5.1.2 Transit

Proposed Project and Alternative 1 - Recommended mitigation measures are as follows:

10 Townsend

Transportation Mitigation Measure 2 - The Project Sponsor shall work with the SFMTA to ensure that the transit capacity impact to the 10 Townsend related to the Proposed Project and Alternative 1 is reduced to a less-than-significant level by financially compensating the SFMTA for the cost of providing the service needed to accommodate the project at proposed levels of service. The financial contribution shall be calculated and applied in a manner that is consistent with the SFMTA cost/scheduling model. The amount and schedule of payment and commitment to application of service needs shall be set forth in a Transit Mitigation Agreement between the Project Sponsor and SFMTA.

The payment of the fee identified in this mitigation measure would serve to reduce the impact of the Proposed Project and Alternative 1 on the operations of 10 Townsend to a less-than-significant level. However, because the ability of SFMTA, as another City agency, to provide the additional service on local lines needed to accommodate this project is uncertain, the feasibility of the mitigation measure is unknown. Therefore, the impact of the Proposed Project and Alternative 1 to the operations of 10 Townsend would be considered significant and unavoidable.

Alternative 2 - No mitigation measures are recommended, since Alternative 2 would not cause any significant traffic impacts.

5.1.3 Pedestrian

No mitigation measures are recommended, since the Proposed Project and its alternatives would not cause significant impacts to nearby pedestrian operations.

5.1.4 Bicycle

No mitigation measures are recommended, since the Proposed Project and its alternatives would not cause significant impacts to nearby bicycle operations.

5.1.5 Loading

No mitigation measures are required, since project-related loading demand would not affect loading operations.

However, as an improvement, it is recommended that the Project Sponsor coordinate with the San Francisco Department of the Environment (SF Environment) and the SFMTA's Sustainable Streets Division to ensure that the garbage facilities would remain on the street for the shortest time and would not result in any impacts to pedestrian and traffic circulation.

5.1.6 Emergency Access

No mitigation measures are required, since the Proposed Project and its alternatives are not expected to significantly alter emergency access to the project site.

5.1.7 Construction

Recommended mitigation measures are as follows:

Transportation Mitigation Measure 3 - To reduce construction-related impacts, the Project Sponsor shall develop and implement a Construction Transportation Control Plan (TCP) for each construction phase to anticipate and minimize impacts of various construction activities associated with the Proposed Project and its alternatives. The TCP would disseminate appropriate information to contractors and affected agencies with respect to coordinating construction activities to minimize overall disruptions and ensure that overall circulation in the project area is maintained to the extent possible, with particular focus on ensuring pedestrian, transit, and bicycle connectivity. The program would supplement and expand, rather than modify or supersede, any manual, regulations, or provisions set forth by SFMTA, SDDPW, other City departments and agencies. Specifically, the plan should:

- Identify construction traffic management and a cohesive program of operational and demand management strategies designed to maintain acceptable levels of travel flow during periods of construction activities. These include, but are not limited to, construction strategies, demand management activities, alternative route strategies, and public information strategies consistent with best practices in San Francisco, as well as other cities or agencies that, although not being implemented in the City, could provide valuable management practices for the project. Management practices include, but are not limited to:
o Planning site construction and truck deliveries such as to minimize constructionrelated traffic operations during the weekday morning and evening peak commute hours;
o Identifying ways to reduce construction worker vehicle trips through transportation demand management programs and methods to manage construction work parking demands, such as promoting carpooling/vanpooling, encouraging transit usage, discouraging workers from parking off-site, etc.;
o Working further with SFDPW to identify the best traffic detours during each construction phase;
o Identifying best practices to accommodate pedestrians, such as temporary pedestrian wayfinding signage or temporary walkways;
o Working with SFMTA to identify relocated Muni routes and stops; and
o Identifying best practices to manage traffic flows on surrounding streets.
- Describe procedures required by different departments and/or agencies in the city for implementation of the TCP, such as reviewing agencies, approval processes, and estimated timelines. For example,
o The project sponsor will need to coordinate temporary and permanent changes to the transportation network within the City of San Francisco, including traffic, street and parking changes and lane closures, with SFMTA. Any permanent changes may require meeting with the SFMTA Board of Directors or one of its sub-Committees. This may require a public hearing. Temporary traffic and transportation changes must be coordinated through the SFMTA's Interdepartmental Staff Committee on

Traffic and Transportation (ISCOTT) and would require a public meeting. As part of this process, the Construction Plan may be reviewed by the Transportation Advisory Staff Committee (TASC) to resolve internal differences between different transportation modes; and
o Caltrans Deputy Directive 60 (DD-60) requires TCP and contingency plans for all state highway activities. These plans should be part of the normal project development process and must be considered during the planning stage to allow for the proper cost, scope and scheduling of the TCP activities on Caltrans right-ofway. These plans should adhere to Caltrans standards and guidelines for stage construction, construction signage, traffic handling, lane and ramp closures and TCP documentation for all work within Caltrans right-of-way.

- Notify emergency vehicle providers about the planned street closures/detours and their duration for each construction phase.
- Develop a public information plan to provide adjacent residents and businesses with regularly-updated information regarding project construction, including construction activities, durations, peak construction vehicle activities (e.g., concrete pours), travel lane closures, and other lane closures; and
- Hire a transportation manager to actively manage the construction vehicle, truck loading, passenger loading and emergency vehicle access to the project site through at least the most intense phases of construction.

As mentioned earlier, the TCP should address phased development of the project. The TCP shall be submitted to TASC, consisting of representatives from the SFMTA and Muni operations, Fire Department, Police Department, and SFDPW for review/approval. Similarly, any travel lane, parking lane, or sidewalk closures are required to be reviewed by the TASC. Implementation of the Mitigation Measure 2 included in the traffic management plan would reduce the contribution of the Proposed Project and its alternatives to construction-related traffic impacts; however, given the magnitude of the project, the duration of the construction period, and the potential that street closures over long periods could affect traffic operations, the impact would remain significant and unavoidable.

5.2 Mitigation Measures - 2030 Cumulative plus Project Conditions

The following section describes the mitigation measures that would enhance the study area operations under 2030 Cumulative plus Project Conditions.

5.2.1 Traffic

Proposed Project - Recommended mitigation measures are as follows:

Intersection \#3 - Pennsylvania Avenue/Southbound I-280 Off-Ramp

Transportation Mitigation Measure 4 - Project's Fair Share of Traffic Improvements.

The project sponsor shall therefore mitigate its impact to traffic related to the project development by coordinating with SFMTA on the appropriateness of signalization at this location or similar improvements to traffic operations. The Project Sponsor shall financially compensate SFMTA for its fair share of the cost of signalization at this location or other similar traffic-related improvements in the vicinity which would similarly improve traffic operating conditions. The financial contribution shall be calculated and applied based on the proposed development's fair share of the identified improvements.

Due to the uncertainty of the implementation of Transportation Mitigation Measure 3, the feasibility of the recommended mitigation measure is unknown. Therefore, the Proposed Project's impact at the Pennsylvania Avenue/Southbound l-280 Off-Ramp intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Intersection \#4-25 ${ }^{\text {th }}$ Street/Indiana Street/Northbound I-280 On-Ramp

Transportation Mitigation Measure 5 - Restripe the eastbound approach so as to convert the existing shared left-through lane to a through lane and provide a new 75 -foot left-turn pocket. The restriping would require prohibition of on-street parking for approximately 75 feet in the eastbound approach (loss of two parking spaces).

Implementation of Transportation Mitigation Measure 4 would improve the intersection operations to LOS C (approximately 24 seconds of delay per vehicle in the northbound direction). Hence, with Mitigation Measure 4, the traffic impact at this intersection would be reduced to less-than-significant for the Proposed Project. Constructing a new left-turn pocket would result in the removal of two onstreet parking spaces or although less likely, a slight reduction in sidewalk widths along the eastbound approach. These impacts related to the implementation of Transportation Mitigation Measure 4 would not be considered significant, and would be consistent with those analyzed with the proposed project.

Intersection \#12 - Cesar Chavez Street/Vermont Street

Transportation Mitigation Measure 6 - Project's Fair Share of Traffic Improvements.
The project sponsor shall therefore mitigate its impact to traffic related to the project development by coordinating with SFMTA on the appropriateness of signalization at this location or similar improvements to traffic operations. The Project Sponsor shall financially compensate SFMTA for its fair share of the cost of signalization at this location or other similar traffic-related improvements in the vicinity which would similarly improve traffic operating conditions. The financial contribution shall be calculated and applied based on the proposed development's fair share of the identified improvements.

Due to the uncertainty of the implementation of Transportation Mitigation Measure 5, the feasibility of the recommended mitigation measure is unknown. Therefore, the Proposed Project's impact at the Cesar Chavez Street/Vermont Street intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Intersection \#13 - Cesar Chavez Street/US 101 Off-Ramp

Transportation Mitigation Measure 7 - Project's Fair Share of Traffic Improvements.
The project sponsor shall therefore mitigate its impact to traffic related to the project development by coordinating with SFMTA on the appropriateness of signalization at this location or similar improvements to traffic operations. The Project Sponsor shall financially compensate SFMTA for its fair share of the cost of signalization at this location or other similar traffic-related improvements in the vicinity which would similarly improve traffic operating conditions. The financial contribution shall be calculated and applied based on the proposed development's fair share of the identified improvements.

Due to the uncertainty of the implementation of Transportation Mitigation Measure 6, the feasibility of the recommended mitigation measure is unknown. Therefore, the Proposed Project's impact at the Cesar Chavez Street/US 101 Off-Ramp intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Alternative 1 - Recommended mitigation measures are as follows:

Intersection \#3 - Pennsylvania Avenue/Southbound I-280 Off-Ramp

Transportation Mitigation Measure 4 - Project's Fair Share of Traffic Improvements.
The project sponsor shall therefore mitigate its impact to traffic related to the project development by coordinating with SFMTA on the appropriateness of signalization at this location or similar improvements to traffic operations. The Project Sponsor shall financially compensate SFMTA for its fair share of the cost of signalization at this location or other similar traffic-related improvements in the vicinity which would similarly improve traffic operating conditions. The financial contribution shall be calculated and applied based on the proposed development's fair share of the identified improvements.

Due to the uncertainty of the implementation of Transportation Mitigation Measure 3, the feasibility of the recommended mitigation measure is unknown. Therefore, the impact of Alternative 1 at the Pennsylvania Avenue/Southbound I-280 Off-Ramp intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Intersection \#12 - Cesar Chavez Street/Vermont Street

Transportation Mitigation Measure 6 - Project's Fair Share of Traffic Improvements.
The project sponsor shall therefore mitigate its impact to traffic related to the project development by coordinating with SFMTA on the appropriateness of signalization at this location or similar improvements to traffic operations. The Project Sponsor shall financially compensate SFMTA for its fair share of the cost of signalization at this location or other similar traffic-related improvements in the vicinity which would similarly improve traffic operating conditions. The financial contribution shall be calculated and applied based on the proposed development's fair share of the identified improvements.

Due to the uncertainty of the implementation of Transportation Mitigation Measure 5, the feasibility of the recommended mitigation measure is unknown. Therefore, the impact of Alternative 1 at the Cesar Chavez Street/Vermont Street intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Intersection \#13 - Cesar Chavez Street/US 101 Off-Ramp

Transportation Mitigation Measure 7 - Project's Fair Share of Traffic Improvements.
The project sponsor shall therefore mitigate its impact to traffic related to the project development by coordinating with SFMTA on the appropriateness of signalization at this location or similar improvements to traffic operations. The Project Sponsor shall financially compensate SFMTA for its fair share of the cost of signalization at this location or other similar
traffic-related improvements in the vicinity which would similarly improve traffic operating conditions. The financial contribution shall be calculated and applied based on the proposed development's fair share of the identified improvements.

Due to the uncertainty of the implementation of Transportation Mitigation Measure 6, the feasibility of the recommended mitigation measure is unknown. Therefore, the impact of Alternative 1 at the Cesar Chavez Street/US 101 Off-Ramp intersection would remain significant and unavoidable. The Project Sponsor shall work with SFMTA to identify any alternative improvements at this intersection and contribute its fair share to improvements at this intersection.

Alternative 2 - No mitigation measures are recommended, since Alternative 2 would not cause any significant traffic impacts.

5.2.2 Transit

Proposed Project and Alternative 1 - Recommended mitigation measures are as follows:

10 Townsend/Sansome

Transportation Mitigation Measure 2 - The Project Sponsor shall work with the SFMTA to ensure that the transit capacity impact to the 10 Townsend related to the Proposed Project and Alternative 1 is reduced to a less-than-significant level by financially compensating the SFMTA for the cost of providing the service needed to accommodate the project at proposed levels of service. The financial contribution shall be calculated and applied in a manner that is consistent with the SFMTA cost/scheduling model. The amount and schedule of payment and commitment to application of service needs shall be set forth in a Transit Mitigation Agreement between the Project Sponsor and SFMTA.

The payment of the fee identified in this mitigation measure would serve to reduce the impact of the Proposed Project and Alternative 1 on the operations of 10 Townsend to a less-than-significant level. However, because the ability of SFMTA, as another City agency, to provide the additional service on local lines needed to accommodate this project is uncertain, the feasibility of the mitigation measure is unknown. Therefore, the impact of the Proposed Project and Alternative 1 on the operations of 10 Townsend would be considered significant and unavoidable.

48 Quintara-24 ${ }^{\text {th }}$ Street

Transportation Mitigation Measure 8 - The Project Sponsor shall work with SFMTA to ensure that the transit capacity impact to the 48 Quintara- $24^{\text {th }}$ Street line related to the Proposed Project and Alternative 1 under cumulative conditions is reduced to a less-than-significant level by financially compensating SFMTA for the cost of providing the service needed to accommodate the project at proposed levels of service. The financial contribution shall be calculated and applied in a manner that is consistent with the SFMTA cost/scheduling model. The amount and schedule of payment and commitment to application of service needs shall be set forth in a Transit Mitigation Agreement between the Project Sponsor and SFMTA.

The payment of the fee identified in this mitigation measure would serve to reduce the impact of the Proposed Project and Alternative 1 on the operations of the 48 Quintara-24 ${ }^{\text {th }}$ Street under 2030 Cumulative Conditions to a less-than-significant level. However, because the ability of SFMTA, as another City agency, to provide the additional service on local lines needed to accommodate this project is uncertain, the feasibility of the mitigation measure is unknown. Therefore, the impact of the Proposed

104402

Project and Alternative 1 on the operations of the 10 Townsend and 48 Quintara- $24^{\text {th }}$ Street would be considered significant and unavoidable under 2030 Cumulative plus Project Conditions.

All Other Lines at the Southeast Screenline

Transportation Mitigation Measure 9 - The Project Sponsor shall work with SFMTA to ensure that the transit capacity impact to the All Other Lines corridor related to the Proposed Project and Alternative 1 under cumulative conditions is reduced to a less-than-significant level by financially compensating SFMTA for the cost of providing the service needed to accommodate the project at proposed levels of service. The financial contribution shall be calculated and applied in a manner that is consistent with the SFMTA cost/scheduling model. The amount and schedule of payment and commitment to application of service needs shall be set forth in a Transit Mitigation Agreement between the Project Sponsor and SFMTA.

The payment of the fee identified in this mitigation measure would reduce the impact of the Proposed Project and Alternative 1 on the operations of the All Other Lines corridor in the Southeast screenline to a less-than significant level. However, because the ability of SFMTA to provide the additional service on these lines needed to accommodate this project is uncertain, the feasibility of the mitigation measure is unknown. Therefore, the impact of the Proposed Project and Alternative 1 on the operations of the All Other Lines corridor in the Southeast screenline would be considered significant and unavoidable.

Alternative 2 - No mitigation measures are recommended, since Alternative 2 would not cause any significant transit impacts.

5.3 Improvement Measures

5.3.1 Transportation Demand Management Plan

A transportation demand management (TDM) plan generally includes strategies that aim to promote and encourage more efficient use of transportation resources. It may comprise of a multitude of solutions and evaluative techniques that provide information on measures to increase transportation system efficiency.

TDM measures typically encourage travelers to utilize alternative modes of transportation, such as inducing shifts from single auto occupancy travel to transit, rideshare, bicycle, and pedestrian travel. The following sections include a description of various TDM measures that are applicable to the Proposed Project.

TDM Strategies Currently Considered by the Project Sponsor

This section describes the TDM strategies that either would be implemented or are being considered by the Project Sponsor to implement as part of the Proposed Project.

Promote Transit Usage - The Project Sponsor would promote transit usage to reduce external autobased trips.

- The Project Sponsor would explore the feasibility of providing a subsidized transit pass to lowincome households. The Project Sponsor would either identify a source of funding to provide subsidized passes or coordinate with the SFMTA to have an agreement to offer transit passes at a reduced cost to residents.
- The Master Homeowners Association would regularly distribute transit information, including timetables, schedules, information on nearby transit stations and stops, and additional information on local and regional transit operators to all residents. Accurate, up-to-date information on transit options would also be provided via a transit bulletin board or similar structure in the community center.

Promote Pedestrian Activity - The Project Sponsor would promote pedestrian activity to reduce external and internal auto-based trips.

- A series of pedestrian paths and stairways would be provided within the project site, including along Connecticut Street, $23^{\text {rd }}$ Street, and $22^{\text {nd }}$ Street;
- An accessible path would be provided to important neighborhood amenities, such as Starr King Elementary School and the health clinic at the Wisconsin Street/Coral Street intersection; and
- Pedestrian facilities provided along $22^{\text {nd }}$ Street is anticipated to offer a pedestrian connection at the north end of the park down to the $22^{\text {nd }}$ Street Caltrain station, the T Third Street light rail station at $23^{\text {rd }}$ Street and Third Street, and the $22^{\text {nd }}$ Street mixed-use district.

Promote Car-sharing - Car-sharing programs provide convenient auto access to a resident, employee, or visitor on a demand response basis. Dedicated car-share parking locations or "pods" are established which is accessed through an automated reservation system. This system provides access to a vehicle for trips requiring an automobile but reduces the bundled costs of private ownership and parking of a dedicated vehicle for every resident or employee. The Project Sponsor would promote car-sharing to reduce external auto-based trips.

- Car-sharing spaces would be provided within the project site; and
- To encourage more users, the Project Sponsor is considering the provision of discounted membership rates, especially to the affordable housing residents for using car-sharing facilities.

Provide On-site Neighborhood Center - The Project Sponsor would provide on-site neighborhood center to reduce external project-related trips.

- Small neighborhood retail outlets would be provided within the project site;
- Pre-school, day care, gymnasium, and sports facilities would be provided at the proposed onsite community center; and
- The Project Sponsor is considering the provision of a non-profit food cooperative within the project site.

Traffic Calming Measures - Traffic calming includes various design features and strategies intended to reduce vehicle traffic speeds and volumes on a particular roadway. These roadway design treatments range from minor modifications for an individual street to a comprehensive redesign of the roadway network.

- New safe streets, open spaces, and a walkable neighborhood;
- The surrounding street grid-pattern would be extended in to the project site to improve the movement and safety of pedestrians and bicyclists;
- New streets would be constructed in the north-south and east-west direction to improve vehicle, pedestrian, and bicycle circulation;
- At least five-foot-wide sidewalks and striped crosswalks are expected to be provided on all block faces within the project site, along with pedestrian bulb-outs at intersections to improve pedestrian safety and reduce crossing distances. The pedestrian bulb-outs would also serve as traffic calming measures. These sidewalks and corner bulb-outs would be compliant with the American Disability Act (ADA) to ensure safe crossings for seniors and persons with disabilities; and
- The diagonally aligned Dakota Street from $23^{\text {rd }}$ Street to $25^{\text {th }}$ Street would be replaced by Missouri Street aligned in the north-south direction. This would either eliminate or reduce speeding issues currently observed along Dakota Street.

The above mentioned traffic calming measures provided on-site would improve pedestrian safety by reducing the severity of pedestrian injuries when they do occur by calming traffic, creating intersections for convenient and safe pedestrian crossings, and reducing the incidence of speeding. Street and park lighting play a key role in enhancing personal security and creating safe public spaces. As such, light levels shall be as specified in the San Francisco Better Streets Plan. Stairways and terraces shall be well lit at night to enhance safety and personal security. Lighting shall be pedestrian scaled and be coordinated with street trees and site furnishings.

Additional TDM Strategies - Improvement Measures

The following TDM strategies are recommended in addition to those that are already being considered by the Project Sponsor to implement as part of the Proposed Project and its alternatives.

Hire Local - The Project Sponsor could encourage the owners of neighborhood retail developments to hire employees from the local community. This would either eliminate or reduce work-related autobased trips to the retail developments planned within the project site.

Preferential HOV Parking - The Project Sponsor could provide incentives for use of alternate modes of travel to the single occupancy vehicle by reserving close-in, secure, covered, and/or preferable parking spaces for high-occupancy vehicles. Carpool and vanpool spaces could be provided closer to the building entrance or elevator, but not closer than the parking spaces designated for use by handicapped persons.

Carpool/Vanpool - The Project Sponsor could promote carpool or vanpool programs for commuters who live within the project site and share the same schedule. The Project Sponsor could subsidize the cost of vehicles and fuel costs; the remaining costs could be divided among the participants based on the distance they travelled.

On-site TDM Coordinator - The Project Sponsor could provide a TDM Coordinator with responsibilities such as providing concierge trip-planning services, mobility training, provision of transit passes, new resident outreach to promote moving in without a vehicle (like Travel Choice New Residents program), coordination of ride-sharing/vanpooling, etc. The TDM Coordinator could be located at the neighborhood community center.

Provision of Muni Fast Pass - The Project Sponsor could provide at least one Muni Fast Pass per dwelling unit, as part of rent/HOA fees. This program could be partially subsidized by the Project Sponsor.

Promote Bicycling - The Project Sponsor could promote bicycle usage to reduce external and internal auto-based trips by providing bicycle facilities within the project site, primarily along less steep streets, including Texas Street and $24^{\text {th }}$ Street.
(This page intentionally left blank)

Appendix 4.7B Transportation Study Appendices. CDM Smith. October 11, 2012. Case NO. 2010.0515E

APPENDIX

201 Mission Street
Suite 1450
San Francisco, CA 94105
(415) 495-6201
(415) 495-5305 fax
www.wilbursmith.com

November 10, 2011

Mr. Brett Bollinger
San Francisco Planning Department
Major Environmental Analysis Section
1650 Mission Street, Suite 400
San Francisco, CA 94103

Subject: Transportation Study Scope of Work for the proposed Potrero Annex and Terraces HOPE SF
Development, San Francisco Development, San Francisco

Mr. Bollinger:

Wilbur Smith Associates (WSA) is pleased to submit this scope of work to offer transportation engineering and planning services required for the proposed Potrero HOPE SF Development (herein referred to as the 'Proposed Project') at the Potrero Annex and Terrace public housing site in the Potrero Hill neighborhood of San Francisco, California. This scope of work has been developed based on the San Francisco Transportation Impact Analysis Guidelines for Environmental Review (SF Guidelines) published by the Planning Department in October 2002.

The transportation study will address the existing transportation network and assess the transportation impacts associated with the proposed Potrero Annex and Terraces HOPE SF Development (herein referred to as the "Proposed Project"). To comply with the National Environmental Policy Act (NEPA) requirements, two alternatives will be analyzed as part of this transportation study. The following two alternatives will be studied as part of the combined EIR/EIS document:

- Alternative 1 - This alternative would involve reducing the height of proposed buildings at the project site from 80 feet to 40 feet. Also, the number of units would be reduced.
- Alternative 2 - This alternative would involve constructing the land use that's already present at the project site under existing conditions.

Evaluation of project alternatives would involve the following assumptions:

- The only difference between the Original Project description and Alternative 1 would be in the size of proposed land uses. All other project descriptions, including the type and location of land uses, number and location of proposed internal blocks, and new vehicle as well as pedestrian connections within the project site would remain the same.
- Alternative 2 would require only qualitative analysis.

Per the latest project description provided to WSA on August 8, 2011, the proposed project would consist of 970 affordable units (145 studios/one-bedroom units and 825 two or more bedroom units), 630 market rate units (345 studios/one-bedroom units and 285 two or more bedroom units), 100 senior units (98 studios/onebedroom units and 2 two or more bedroom units), 15,000 square foot of retail, 35,000 square foot community center, and 1,040 off-street parking spaces (485 spaces for affordable units, 535 spaces for market rate units, 20 spaces for senior units, 10 spaces for retail, and 5 spaces for the community center). The Proposed Project would result in new vehicle connections along $24^{\text {th }}$ Street, Arkansas Street, Missouri Street, and Texas Street and new pedestrian connections along $241 / 2^{\text {th }}$ Street, 24 Street, $23^{\text {rd }}$ Street, $22^{\text {nd }}$ Street, Arkansas Street, Connecticut Street, Missouri Street, and Texas Street.

SCOPE OF SERVICES

The following sections of this scope of work describe the tasks that will be performed by WSA to conduct the transportation analysis and prepare the Transportation Report for the Proposed Project.

The San Francisco Planning Department requires that the scope of work for the transportation study be reviewed and approved by the Department prior to commencement of any work by the transportation consultant. WSA's project manager met with the San Francisco Planning Department staff, as well as with Project Sponsor representatives on September 24, 2010, to review, discuss and finalize the scope of work presented here.

The key focus of this task was to determine the methodology and approach to this study based on past and ongoing transportation studies in the area.

Task 1 - Project Description

WSA will describe the Proposed Project in a Project Description section. This section will include a brief description of the existing uses on the site and the adjacent land uses, including off-street parking, and a description of the uses being proposed as part of the Project, including their location, types and intensities, and access. The description will also include the transit service, bicycle facilities, site circulation, pedestrian facilities, and on-street/off-street parking that would be provided and access to those spaces; the passenger and freight loading/unloading facilities and driveways, will also be described. Site maps, design plans as well as locational maps of the Proposed Project will be included as provided by the Project Sponsor.

Task 2 - Data Collection

WSA anticipates collecting weekday evening (4:00-6:00 PM) peak period turning movement counts for 13 intersections within the study area. The study intersections include:

1. Cesar Chavez Street/Connecticut Street
2. Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp
3. Pennsylvania Avenue/Southbound I-280 Off-Ramp
4. $25^{\text {th }}$ Street/Indiana Street/Northbound I-280 On-Ramp
5. $25^{\text {th }}$ Street/Connecticut Street
6. $25^{\text {th }}$ Street/Dakota Street/Texas Street (proposed to be $25^{\text {th }}$ Street/Texas Street)
7. $23^{\text {rd }}$ Street/Dakota Street (proposed to be $23^{\text {rd }} /$ Connecticut Street)
8. $23^{\text {rd }}$ Street/Wisconsin Street
9. $20^{\text {th }}$ Street/Arkansas Street
10. $22^{\text {nd }}$ Street/Missouri Street
11. Potrero Avenue/ $23^{\text {rd }}$ Street
12. Cesar Chavez Street/Vermont Street/US 101 On-Ramp
13. Cesar Chavez Street/US 101 Off-Ramp

Study intersections were updated and finalized based on input from the Planning Department staff.

Freeway and Ramp Data - WSA will collect the freeway segment and ramp volumes from the most recent California Department of Transportation (Caltrans) traffic counts. Potential freeway segment and ramp locations include the following:

Ramp Locations:

- Northbound I-280 off-ramp to Cesar Chavez Street
- Southbound I-280 off-ramp to Pennsylvania Avenue
- Northbound I-280 on-ramp from Indiana Street
- Southbound I-280 on-ramp from Pennsylvania Avenue

Freeway Segment Locations:

- Northbound I-280 (south of off-ramp to Cesar Chavez Street)
- Southbound I-280 (south of on-ramp from Pennsylvania Avenue)
- Northbound I-280 (north of on-ramp from Indiana Street)
- Southbound I-280 (north of off-ramp to Pennsylvania Avenue)
- Northbound US 101 (north of on-ramp from Cesar Chavez Street)
- Southbound US 101 (north of off-ramp to Cesar Chavez Street)

Parking Data - WSA will perform general observations of parking conditions at and around the proposed project site. WSA will present information on the proposed parking lot usage for the Proposed Project. The project site boundary will extend from $20^{\text {th }}$ Street in the north to $26^{\text {th }}$ Street in the south and Carolina Street in the west to Texas Street in the east. WSA will conduct parking inventory and occupancy counts for the parking study area that is located outside of the project site. WSA will collect this parking data during the weekday evening peak period (4 PM to 6 PM).

Transit Data - Data will be compiled on transit operators that provide service to the study area. Operating times and capacity utilization of Muni Routes 48, 19, 10, 22, and T will be collected.

Bicycle, Pedestrian, and Loading Data - WSA will perform general observations of the bicycle, pedestrian, and loading facilities available in the vicinity of the project site.

Task 3 - Existing Conditions Analysis

Using the data gathered in Task 1, WSA will document existing street traffic, transit, parking, and bicycle conditions in the vicinity of the Proposed Project site, including:

Task 3.1 - A base map and text for the study area, describing the street designations, street names, current number of lanes and traffic flow directions. Location and distance of access points to and from regional highways will be noted and identification of roadways on the Congestion Management Network. Figures showing the location of bicycle lanes in the vicinity of the project site and intersection geometrics will also be prepared.

Task 3.2 - Intersection level of service (LOS) conditions during the weekday PM peak hour at the study intersections would be analyzed using the 2000 Highway Capacity Manual Operations Methodology.

Task 3.3 - WSA will perform the freeway analysis using the methodology that is consistent with the Candlestick Point-Hunters Point Shipyard Phase II Development EIR. Operating conditions during the weekday PM peak hour at the mainline segments will be analyzed using the Highway Capacity Software (HCS+) and the LOS and average density values will be reported.

Additionally, WSA will perform merge and diverge analysis using HCS+ software at the study ramp locations.

Task 3.4 - WSA will document a quantitative discussion of the parking supply at and around the project site. WSA assumes that the information about existing parking usage at the project site will be provided by the Project Sponsor. Parking data for the study area located outside of the project site will be compiled from the parking supply and occupancy counts conducted by WSA. A discussion of the existing vehicle circulation and site access conditions will also be included under this task. Residential parking permit areas within the study area will also be noted.

Task 3.5 - WSA will document the local and regional transit operators that provide service to/from San Francisco, including information on access between the study area and the regional terminals. The project team will perform weekday evening peak hour corridor analyses for Muni and other regional transit operators serving the study area. To be consistent with the Sunnydale Environmental Impact Report (EIR), WSA will perform a line-by-line analysis for the five Muni lines within the study area (Lines 48, 19, 10, 22 and T).

Task 3.6 - Qualitative discussion of general pedestrian and bicycle circulation conditions in the vicinity of the project site, including identification of nearby bicycle lanes and routes and the provision of bicycle parking would be assessed during the weekday PM peak hour. In addition, pedestrian and bicycle safety as well as any right-of-way issues will be identified and documented.

Task 3.7 - Qualitative discussion of other retail and freight loading conditions in the study area under existing conditions will be provided as part of this task.

Task 4 - Project Trip Generation, Trip Distribution, Parking, and Loading Demand Analysis

Using SF Guidelines, WSA will estimate the weekday daily and evening peak hour trips generated by the Proposed Project. Also, vehicle trips from the existing land use will be estimated using SF Guidelines. These trips will be deducted from the project trips generated under future Buildout conditions to identify the net new trips associated with the Proposed Project. These new trips will then be distributed by mode and by origin/destination. The mode split and distribution of the net project trips will be based on SF Guidelines.

In addition, WSA will estimate the weekday midday and evening peak period parking demand along with the demand for delivery and retail loading/unloading spaces. WSA will use the project trip generation rates to calculate the estimated project parking demand based on the methodology prescribed by SF Guidelines. WSA will estimate project travel demand based on the project description provided by the Project Sponsor for both alternatives.

WSA will submit a technical memorandum summarizing the project travel demand, parking demand, and loading demand to the Planning Department for review.

Task 5 - Volume Development for Future Conditions

Per direction from the Planning Department, WSA will perform the future analysis under Year 2030 Conditions. The future traffic volumes at the existing study intersections will be obtained from the Candlestick Point-Hunters Point Shipyard Phase II Development EIR. The Proposed Project will assume that the Candlestick Point-Hunters Point Shipyard development is already in place. Thus, the 2030 baseline volumes developed for the Proposed Project will correspond to the Year 2030+Project volumes from the Candlestick Point-Hunters Point Shipyard Phase II development. For study intersections that are not evaluated as part of the Candlestick Point-Hunters Point Shipyard Phase II Development EIR, year 2030 traffic volumes will be developed by applying a traffic growth factor that is consistent with the projected growth at the common study intersections. WSA will coordinate closely with SFCTA to ensure volumes developed for future conditions are accurate and defensible.

As part of the Proposed Project, new intersections are proposed to be developed within the study area. These new intersections will likely change the underlying traffic circulation around the project site. Based on the knowledge of local traffic behavior and engineering judgment, WSA in consultation with the Planning Department, will manually overlay estimated traffic patterns for future conditions.

WSA will prepare a technical memorandum discussing the methodology to develop future volumes. This memorandum will be submitted to the Planning Department for review and approval prior to proceeding with the analysis under the Proposed Project.

Task 6 - Transportation Impact Analysis

Task 6.1 - Traffic Impacts: WSA will calculate intersection LOS conditions during the weekday PM peak hour at the study intersections using the 2000 Highway Capacity Manual Operations Methodology. The intersection levels of service will be calculated for the following scenarios:

- Existing
- Existing plus Project
- Year 2030 Baseline
- Year 2030 Baseline plus Project

WSA will also evaluate the new internal intersections that would be created as part of the project under plus project conditions. Similar to Existing Conditions, WSA will use the Traffix ${ }^{\top}$ software to evaluate the intersection operations under plus project and future scenarios. WSA will also qualitatively discuss traffic impacts associated with each phase of the proposed development.

Also, WSA will evaluate the study freeway segments and ramps under the above mentioned scenarios. Similar to analysis under Existing Conditions, WSA will use HCS+ to perform a basic freeway segment analysis at the study freeway segments. Traffic impacts to the freeway segments will be identified based on the guidelines provided in the Guide for the Preparation of Traffic Impacts Studies (Caltrans, December 2002).

Task 6.2 - Parking Impacts: WSA will determine the sufficiency of the proposed parking supply relative to the estimated parking demand and the project parking required under Section 151 of the San Francisco Planning Code. WSA will compare the aggregate evening parking demand for the Proposed Project to the aggregate proposed parking requirements (minimums or maximums) within the study area. Any potential parking deficits will be discussed.

Task 6.3 - Transit Impacts: WSA will estimate the increase in weekday PM peak hour transit ridership for Muni and the regional transit providers based on the estimated travel demand at the project site. An assessment of the future transit ridership and capacity will be conducted for existing and future transit operations in the vicinity of the study, using the previously-identified Muni corridors and regional screenlines as well as 2020 Cumulative ridership and capacity utilization data provided in SF Guidelines.

Task 6.4 - Pedestrian Impacts: WSA will qualitatively assess the changes to the pedestrian conditions in the study area, including estimates of the number of new pedestrian trips that would be added to the network with the Proposed Project. Potential pedestrian safety issues will be identified.

Task 6.5 - Bicycle Impacts: WSA will qualitatively assess the changes to the bicycle conditions in the study area. Potential bicycle safety issues will be identified.

Task 6.6 - Freight Loading and Service Impacts: WSA will quantitatively assess the potential loading impacts associated with the Proposed Project, specifically with regards to any changed requirements for the provision of off-street loading spaces. Areas of high current loading demand and areas where exiting needs are not met will be identified, and potential impacts to on-street loading and general vehicular circulation will be discussed.

Task 6.7 - Construction Impacts: WSA will qualitatively assess the potential impacts associated with construction of the Proposed Project within the study area.

Task 6.8 - Internal Circulation Development Support: WSA will assist the project design team in developing circulation within the Proposed Project site. The circulation development support will include reviewing the project master plans, identifying new internal intersection control requirements, developing the geometric configurations of the new internal intersections and roadways, and reviewing and developing the parking layout within the project site. WSA will ensure that all roadway cross-sections conform to state and local roadway design standards. WSA will provide input to the project architects and civil engineers for both the project's internal and adjacent roadways.

Task 6.9 - Traffic Management Plan and Traffic Construction Document Development (Optional Task):

 During construction activities, a Traffic Management Plan (TMP) will be developed to provide strategies to continue operations and identify improvements needed to maintain operations. The following are key issues that the team has identified and will be addressed in the TMP:- Phasing and sequencing of construction activities to identify an optimal circulation strategy.
- Parking areas for construction activities to minimize disruption and provide enough capacity for simultaneous activities.
- New or relocated bus stop locations.

Traffic construction documents will be prepared to address the improvements identified by the Traffic Management Plan. These may include plans and specifications for temporary parking areas, interim traffic signalization (if signals are warranted for the proposed construction), and auxiliary turn lanes as identified by the traffic study.

Task 7 - Develop Mitigation/Improvement Measures

WSA will identify mitigation measures to improve conditions where significant project-related impacts have been identified, and improvement measures where non-significant impacts have been identified due to the Proposed Project.

Task 8 - Updating Transportation Analysis

This task addresses the revision of traffic analysis required based on the updated project description provided by the Project Sponsor. Completion of this task involves redoing the following tasks:

- Project travel demand estimation, including estimation of project trip generation, trip distribution, parking demand, and loading demand.
- Evaluation of transportation impacts, including traffic impacts, parking impacts, transit impacts, pedestrian impacts, bicycle impacts, and loading/unloading impacts for the following two scenarios:
o Existing plus Project
o Year 2030 Cumulative plus Project
- Developing mitigation measures to improve potential significant impacts to less-than-significant level under the following two scenarios:
o Existing plus Project
o Year 2030 Cumulative plus Project
- Documenting the results of the analysis in the draft report.

Task 9 - Analysis Supporting EIR/EIS Document

Task 9.1 - Project Travel Demand Estimation: Similar to the original project, WSA will estimate the weekday daily and evening peak hour trips generated by Alternative 1 using SF Guidelines. The vehicle trips from the existing land use will be deducted from the trips generated by Alternative 1 to identify the net new trips associated with Alternative 1. These new trips will then be distributed by mode and by origin/destination. The mode split and distribution of the net trips will be based on SF Guidelines.

In addition, WSA will estimate the weekday midday and evening peak period parking demand along with the demand for freight loading/unloading spaces using the methodology prescribed by SF Guidelines.

Task 9.2 - Transportation Impact Analysis: Similar to the original project, WSA will perform transportation impact analysis for Alternative 1. As part of this task, traffic impacts, parking impacts, transit impacts, pedestrian impacts, bicycle impacts, freight loading/unloading impacts, and construction impacts will be identified for Alternative 1 using the same methodologies adopted for the original project.

Traffic impact analysis will be conducted at the same 13 intersections, four (4) freeway-ramp junctions, and six (6) freeway segment locations evaluated for the Original Project. Transportation impact analysis for Alternative 1 will be performed under the following two scenarios:

- Existing plus Project
- Year 2030 Baseline plus Project

As mentioned earlier, WSA will perform and report a qualitative analysis for Alternative 2.

Task 9.3 - Development of Mitigation Measures: WSA will identify mitigation measures to improve conditions where significant transportation impacts have been identified due to Alternative 1.

Task 10 - Documentation

WSA will prepare a technical memorandum summarizing the project travel demand, including project trip generation, trip distribution, parking and loading demand and submit it to the MEA for review three weeks after the notice-to-proceed is issued. WSA will prepare another technical memorandum discussing the methodology for developing future traffic volumes. This report will be submitted to MEA for review five weeks after the notice-to-proceed is issued.

Additionally, WSA will prepare the Draft Report 1, incorporating the data, analysis, and conclusions from the above tasks. WSA will make sure that the traffic analysis and the draft report complies with the California Environmental Quality Act (CEQA) and NEPA requirements. This report will be submitted to the Planning Department for review and to circulate to other appropriate City of San Francisco agencies.

Per comments submitted by the Planning Department on Draft Report 1 on August 22, 2011, WSA will submit the following two additional technical memorandums before submitting the Draft Report 2:

- A technical memorandum addressing mitigations proposed at each study intersection that results in a significant impact. The memorandum should include all mitigation measures that were considered and reasons why mitigation measure(s) was rejected and/or applied to each affected intersection.
- A technical memorandum addressing all comments provided by the Planning Department and SFMTA and how those comments would be addressed in Draft Report 2.

WSA will prepare the Draft Report 2, incorporating the comments from the City agencies on Draft Report 1 and reporting data, analysis, and conclusions from Tasks 8 and 9. This report will also be submitted to the Planning Department for review and to circulate to other appropriate City of San Francisco agencies. WSA will incorporate comments from the City agencies and prepare one additional draft report, and then prepare a final report for the City's approval. The City will then perform a screencheck of the final report.

The proposed schedule for the transportation study is attached as part of this scope of work.

PROJECT SITE PLANS

CIRCULATION (uramed)

POTENTIAL GARAGE ENTRIES*

* The arrows represent potential garage entry locations. Depending on the future design of the buildings, fewer entries may be required and location of entries may change. No garage entries are to be located on 24th Street between Wisconsin and Missouri Streets. Garage entries shall not conflict with MUNI Bus stops. Garage entries shall be located as far from street intersections as possible.

OPEN SPACE (UPDated)

LANDSCAPE CONCEPT PLAN (uppated)

POLLACK프․

BUILDING TYPE

BUILDING HEIGHT

Part 2: Urban Design Concepts

POTRERO RENDERINGS KEY

TRANSIT AND BIKE PARKING

ROADWAY CROSS-SECTIONS

North/South Typical - 69' ROW

East/West Typical - 56' ROW

KEY PLAN

ROADWAY CROSS-SECTIONS

25th Street between Wisconsin and Connecticut

Connecticut Street

ROADWAY CROSS-SECTIONS

24th Street

101'6" BUILDING TO BUILDING
24th Street between Arkansas and Missouri

KEY PLAN

80'0" BUILDING TO BUILDING

ROADWAY CROSS-SECTIONS

23rd Street and Missouri Street

Texas Street @ Garden

KEY PLAN

ROADWAY CROSS-SECTIONS

Texas Street

ROADWAY NETWORK DEFINITIONS

ROADWAY CLASSIFICATIONS

The San Francisco Planning Department has developed a street hierarchy system for the City and County of San Francisco, in which the function and design of each street are consistent with the character and use of adjacent land. The major classifications in the Vehicle Circulation Plan of the San Francisco General Plan are:

- Freeways: Limited access, very high capacity facilities; primary function is to carry intercity traffic; they may, as a result of route location, also serve the secondary function of providing for travel between distant sections in the city.
- Major Arterials: Cross-town thoroughfares whose primary function is to link districts within the city and to distribute traffic from and to the freeways; these are routes generally of citywide significance; of varying capacity depending on the travel demand for the specific direction and adjacent land uses.
- Transit Conflict Streets: Streets with a primary transit function and are not classified as major arterials but experience significant conflicts with automobile traffic.
- Secondary Arterials: Primarily intra-district routes of varying capacity serving as collectors for the major thoroughfares; in some cases supplemental to the major arterial system.
- Recreational Streets: A special category of street whose major function is to provide for slow pleasure drives and cyclist and pedestrian use; more highly valued for recreational use than for traffic movement. The order of priority for these streets should be to accommodate: 1) pedestrians, hiking trails or wilderness routes, as appropriate; 2) cyclists; 3) equestrians; 4) automobile scenic driving. This should be slow and consistent with the topography and nature of the area.
- Collector Streets: Relatively low-capacity streets serving local distribution functions primarily in large, low-density areas, connecting to major and secondary arterials.
- Local Streets: All other streets intended for access to abutting residential and other land uses, rather than for through traffic; generally of lowest capacity.

In addition to the San Francisco Planning Department's roadway classifications, the freeways, major arterials, and transit conflict streets are included in the Congestion Management Program (CMP) Network and Metropolitan Transportation System (MTS) Network (see below).

Transit Preferential Streets

The Transit Preferential Street network classification system takes into consideration all transportation functions, and identifies the major transit routes where general traffic should be routed away from. There are two classifications of transit preferential streets: Primary Transit Streets, which are either transit-oriented or transit-important; and Secondary Transit Streets.

- Primary Transit Street - Transit-Oriented: Not major arterials, with either high transit ridership, a high frequency of service, or surface rail. Along these streets, the emphasis should be on moving transit vehicles, and impacts on automobile traffic should be of secondary concern.
- Primary Transit Street - Transit-Important: Major arterials, with either high transit ridership, high frequency of service, or surface rail. Along these streets, the goal is to improve the balance between modes of transportation, and the emphasis should be on moving people and goods, rather than on moving vehicles.
- Secondary Transit Street: Medium transit ridership and low-to-medium frequency of service, or medium frequency of service and low-to-medium transit ridership, or connects two or more major destinations.

In general, it is City policy that transit preferential treatments should be concentrated on the most important transit streets, and the treatments applied should respond to all transportation needs of the street. For example, on streets that are major arterials for transit and not for automobile traffic, treatments should emphasize transit priority; on streets that are major arterials for both transit and automobiles, treatments should emphasize a balance between the modes. It is also City policy that automobile facility features (such as driveways and loading docks) should be reduced, relocated or prohibited on transit preferential streets in order to avoid traffic conflicts and automobile congestion.

Citywide Pedestrian Network

The Citywide Pedestrian Network is a classification of streets throughout the City used to identify streets devoted to or primarily oriented to pedestrian use. The main classifications are:

- Citywide Pedestrian Network Street: An inter-neighborhood connection with "citywide significance" includes both exclusive pedestrian and pedestrian-oriented vehicular streets. These streets include the Bay, Ridge, and Coast trails, are used by commuters, tourists, general public and recreaters, and connect major institutions with transit facilities.
- Neighborhood Network Street: A neighborhood commercial, residential or transit street that serves pedestrians from the general vicinity. Some streets may be part of the Citywide network, but are generally oriented towards neighborhood-serving uses. Types include exclusive pedestrian and pedestrian-oriented vehicular streets. As part of the Neighborhood Network Street network, streets are classified as Neighborhood Commercial Streets, which are streets that are predominately commercial use with parking and loading conflicts, or Neighborhood Network Connection Streets, which are intra-neighborhood connection streets that connect neighborhood destinations.

In general, it is City policy that sufficient pedestrian movement space should be provided to minimize pedestrian congestion, sidewalks should be widened where intensive commercial,
recreational or institutional activity is present, and efforts should be made to ensure convenient and safe pedestrian crossings at intersections.

Congestion Management Program (CMP) Network

The CMP Network is the network of freeways, state highways, major arterials and transit conflict streets (see Roadway Classifications, above) established in accordance with state Congestion Management legislation. As part of the CMP, the San Francisco County Transportation Authority is required to determine the level of service (LOS) for the CMP Network streets every two years. The LOS is based on the average travel speed for each roadway segment during both the AM and PM peak periods. The level of service standard is LOS E, except for roadway segments that operated at LOS F in 1991 (when the first study was performed). The CMP requires development of "Deficiency Plans" for any CMP-designated roadway that operates at LOS F. These plans include an analysis of the causes of the deficiency, a list of improvements that would have to be made to prevent the deficiency from occurring (including cost estimates), a list of improvements proposed as part of the plan, and an action plan for implementation of the improvements (including an implementation schedule).

Metropolitan Transportation System (MTS) Network

The MTS Network is defined by Metropolitan Transportation Commission (MTC) as part of its Regional Transportation Plan. The MTS is a regional network of roadways, transit corridors and transfer points, identified by the MTC on the basis of specific criteria. The criteria identified facilities that provide relief to congested corridors, improve connectivity, accommodate travel demand and serve a regional transportation function. The State highways and major thorough-fares designated in San Francisco's CMP roadway network are all included in the regional MTS network. There are a few instances in which the local CMP network is not identical to the MTS network due to differences in the criteria used to define each network.

HCM 2000 METHODOLOGY

Intersection Los Definitions

Table D-1: Level of Service Criteria and Definitions for Signalized Intersections

Level of Servic e	Stopped Delay (seconds/vehicl e)	Typical Traffic Condition
A	≤ 10.0	Very Low Delays: Progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all.
B	$\begin{gathered} >10.0 \text { and } \leq \\ 20.0 \end{gathered}$	Minimal Delays: Generally good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of average delay. Drivers begin to feel restricted.
C	$\begin{gathered} >20.0 \text { and } \leq \\ 35.0 \end{gathered}$	Acceptable Delays: Fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear, though many still pass through the intersection without stopping. Most drivers feel somewhat restricted.
D	$\begin{gathered} >35.0 \text { and } \leq \\ 55.0 \end{gathered}$	Tolerable Delays: The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable. Queues may develop but dissipate rapidly, without excessive delays.
E	$\begin{gathered} >55.0 \text { and } \leq \\ 80.0 \end{gathered}$	Significant Delays: Considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent occurrences. Vehicles may wait through several signal cycles and long queues of vehicles form upstream.
F	> 80.0	Excessive Delays: Considered to be unacceptable to most drivers. Often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the intersection. Poor progression and long cycle lengths may also be major contributing causes to such delay levels. Queues may block upstream intersections.

Source: Highway Capacity Manual2000, Transportation Research Board.
Table D-2: Level of Service Criteria and Definitions for Two-way Stop-controlled Intersections

Level of Service	Average Total Delay (seconds/vehicle)	Typical Traffic Condition
A	≤ 10	Little or no delay
B	>10 and ≤ 15	Short traffic delays
C	>15 and ≤ 25	Average traffic delays
D	>25 and ≤ 35	Long traffic delays
E	>35 and ≤ 50	Very long traffic delays
F	>50	$*$

* Level of Service F exists when there are insufficient gaps of suitable size to allow a side street demand to cross safely through a major street traffic stream. This level of service is generally evident from extremely long total delays experienced by side street traffic and by queuing on the minor approaches
Source: Highway Capacity Manual2000, Transportation Research Board.

Table D-3: Level of Service Criteria for All-way Stop-controlled Intersections

Level of Service	Average Total Delay (seconds/vehicle)
A	≤ 10
B	>10 and ≤ 15
C	>15 and ≤ 25
D	>25 and ≤ 35
E	>35 and ≤ 50
F	>50

Source: Highway Capacity Manual2000, Transportation Research Board.
Freeway Segment Los Definitions

Table D-4: Level of Service Criteria - Basic Freeway Segments

Level of Service	Average Density (seconds/vehicle)
A	$0.0-11.0$
B	$11.1-18.0$
C	$18.1-26.0$
D	$26.1-35.0$
E	$35.1-45.0$
F	>45.0

Source: Highway Capacity Manual2000, Transportation Research Board.
Ramp Junction Los Definitions
Table D-5: Level of Service Criteria - Ramp Junctions

Level of Service	Average Density (seconds/vehicle)
A	≤ 10.0
B	$10.1-20.0$
C	$20.1-28.0$
D	$28.1-35.0$
E	>35
F	DEC
Source: Highway Capacity Manual, Transportation Research Board, 2000	

Source: Highway Capacity Manual, Transportation Research Board, 2000
Notes:
DEC - Demand Exceeds Capacity.

All Traffic Data

(916) 771-8700

File Name : 10-7498-011 POTRERO-23RD Site Code : 00000000
Start Date : 1/4/2011
Page No : 1
CITY OF SAN FRANCISCO

	POTRERO AVE. Southbound				23RD ST. Westbound				POTRERO AVE. Northbound				23RD ST. Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
16:00	20	256	6	282	25	6	47	78	0	159	19	178	8	10	16	34	572
16:15	26	245	7	278	21	5	36	62	0	142	12	154	4	10	13	27	521
16:30	23	251	7	281	21	11	38	70	0	137	16	153	6	11	8	25	529
16:45	16	233	3	252	19	9	40	68	0	132	13	145	9	10	11	30	495
Total	85	985	23	1093	86	31	161	278	0	570	60	630	27	41	48	116	2117
17:00	11	252	5	268	18	13	38	69	0	122	11	133	8	17	16	41	511
17:15	19	239	4	262	22	7	44	73	0	127	15	142	3	17	11	31	508
17:30	19	231	1	251	18	12	44	74	0	139	15	154	10	16	8	34	513
17:45	18	203	5	226	27	7	24	58	0	144	8	152	7	8	10	25	461
Total	67	925	15	1007	85	39	150	274	0	532	49	581	28	58	45	131	1993
Grand Total	152	1910	38	2100	171	70	311	552	0	1102	109	1211	55	99	93	247	4110
Apprch \%	7.2	91	1.8		31	12.7	56.3		0	91	9		22.3	40.1	37.7		
Total \%	3.7	46.5	0.9	51.1	4.2	1.7	7.6	13.4	0	26.8	2.7	29.5	1.3	2.4	2.3	6	

	POTRERO AVE. Southbound				23RD ST. Westbound				POTRERO AVE. Northbound				23RD ST. Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45-Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 16:00																	
16:00	20	256	6	282	25	6	47	78	0	159	19	178	8	10	16	34	572
16:15	26	245	7	278	21	5	36	62	0	142	12	154	4	10	13	27	521
16:30	23	251	7	281	21	11	38	70	0	137	16	153	6	11	8	25	529
16:45	16	233	3	252	19	9	40	68	0	132	13	145	9	10	11	30	495
Total Volume	85	985	23	1093	86	31	161	278	0	570	60	630	27	41	48	116	2117
\% App. Total	7.8	90.1	2.1		30.9	11.2	57.9		0	90.5	9.5		23.3	35.3	41.4		
PHF	. 817	. 962	. 821	. 969	. 860	705	. 856	. 891	. 000	. 896	. 789	. 885	. 750	. 932	. 750	. 853	. 925

All Traffic Data

File Name : 10-7498-011 POTRERO-23RD Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data
 (916) 771-8700

CITY OF SAN FRANCISCO
File Name : 10-7498-010 MISSOURI-22nd
Site Code : 00000000
Start Date : 1/18/2011
Page No : 1

	MISSOURI ST. Southbound				Westbound				MISSOURI ST. Northbound				22nd ST. Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
16:00	0	10	0	10	0	0	0	0	0	12	0	12	0	0	0	0	22
16:15	0	8	0	8	0	0	0	0	0	5	0	5	0	0	0	0	13
16:30	0	6	0	6	0	0	0	0	0	7	0	7	0	0	0	0	13
16:45	0	1	1	2	0	0	0	0	0	6	0	6	0	0	0	0	8
Total	0	25	1	26	0	0	0	0	0	30	0	30	0	0	0	0	56

17:00	0	4	1	5	0	0	0	0	0	3	0	3	1	0	0	1	9
17:15	0	6	2	8	0	0	0	0	0	8	0	8	1	0	0	1	17
17:30	0	7	0	7	0	0	0	0	1	4	0	5	0	0	1	1	13
17:45	0	4	0	4	0	0	0	0	0	4	0	4	0	0	0	0	8
Total	0	21	3	24	0	0	0	0	1	19	0	20	2	0	1	3	47
Grand Total	0	46	4	50	0	0	0	0	1	49	0	50	2	0	1	3	103
Apprch \%	0	92	8		0	0	0		2	98	0		66.7	0	33.3		
Total \%	0	44.7	3.9	48.5	0	0	0	0	1	47.6	0	48.5	1.9	0	1	2.9	

	MISSOURI ST. Southbound				Westbound				MISSOURI ST. Northbound				22nd ST. Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total

Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 16:00

Peak Hour for Entire Intersection Begins at 16:00																	
16:00	0	10	0	10	0	0	0	0	0	12	0	12	0	0	0	0	22
16:15	0	8	0	8	0	0	0	0	0	5	0	5	0	0	0	0	13
16:30	0	6	0	6	0	0	0	0	0	7	0	7	0	0	0	0	13
16:45	0	1	1	2	0	0	0	0	0	6	0	6	0	0	0	0	8
Total Volume	0	25	1	26	0	0	0	0	0	30	0	30	0	0	0	0	56
\% App. Total	0	96.2	3.8		0	0	0		0	100	0		0	0	0		
PHF	. 000	. 625	. 250	. 650	. 000	. 000	. 000	. 000	. 000	. 625	. 000	. 625	. 000	. 000	. 000	. 000	. 636

All Traffic Data

File Name : 10-7498-010 MISSOURI-22nd
Site Code : 00000000
Start Date : 1/18/2011
Page No : 2

All Traffic Data

(916) 771-8700

File Name : 10-7498-010 20TH-MISSOURI
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

	MISSOURI ST. Southbound				20TH ST. Westbound				MISSOURI ST. Northbound				20TH ST. Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
16:00	3	1	6	10	0	31	2	33	3	5	1	9	6	19	6	31	83
16:15	3	5	9	17	1	17	3	21	4	1	1	6	3	18	3	24	68
16:30	0	3	15	18	2	20	3	25	2	7	1	10	8	19	6	33	86
16:45	4	8	12	24	3	27	1	31	2	4	2	8	12	17	3	32	95
Total	10	17	42	69	6	95	9	110	11	17	5	33	29	73	18	120	332
17:00	3	14	8	25	1	18	5	24	3	6	1	10	4	16	6	26	85
17:15	4	8	11	23	0	35	7	42	5	5	2	12	7	23	5	35	112
17:30	3	5	9	17	1	32	7	40	3	6	2	11	8	28	5	41	109
17:45	1	7	8	16	1	43	5	49	5	3	0	8	6	25	5	36	109
Total	11	34	36	81	3	128	24	155	16	20	5	41	25	92	21	138	415
Grand Total	21	51	78	150	9	223	33	265	27	37	10	74	54	165	39	258	747
Apprch \%	14	34	52		3.4	84.2	12.5		36.5	50	13.5		20.9	64	15.1		
Total \%	2.8	6.8	10.4	20.1	1.2	29.9	4.4	35.5	3.6	5	1.3	9.9	7.2	22.1	5.2	34.5	

	MISSOURI ST. Southbound				20TH ST. Westbound				MISSOURI ST. Northbound				20TH ST. Eastbound	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Righ	App. Total	Left	Thru	Right	App. Total		

Peak Hour for Entire Intersection Begins at 17:00

17:00	3	14	8	25	1	18	5	24	3	6	1	10	4	16	6	26	85
17:15	4	8	11	23	0	35	7	42	5	5	2	12	7	23	5	35	112
17:30	3	5	9	17	1	32	7	40	3	6	2	11	8	28	5	41	109
17:45	1	7	8	16	1	43	5	49	5	3	0	8	6	25	5	36	109
Total Volume	11	34	36	81	3	128	24	155	16	20	5	41	25	92	21	138	415
\% App. Total	13.6	42	44.4		1.9	82.6	15.5		39	48.8	12.2		18.1	66.7	15.2		
PHF	. 688	607	. 818	. 810	750	744	. 857	.791	800	. 833	. 625	. 854	781	. 821	. 875	. 841	. 926

All Traffic Data

File Name : 10-7498-010 20TH-MISSOURI
Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

(916) 771-8700

File Name : 10-7498-009 20TH-ARKANSAS
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

Groups Printed- Unshifted																	
	ARKANSAS ST. Southbound				20TH ST. Westbound				ARKANSAS ST. Northbound				20TH ST. Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
16:00	3	3	1	7	4	31	4	39	1	3	1	5	2	30	0	32	83
16:15	4	4	1	9	7	22	3	32	2	2	2	6	1	22	2	25	72
16:30	1	5	7	13	3	30	0	33	0	6	4	10	2	23	1	26	82
16:45	1	5	0	6	10	32	1	43	3	2	4	9	3	22	1	26	84
Total	9	17	9	35	24	115	8	147	6	13	11	30	8	97	4	109	321
17:00	1	5	2	8	5	28	2	35	2	4	0	6	3	21	2	26	75
17:15	0	4	5	9	5	38	6	49	1	4	4	9	0	25	0	25	92
17:30	1	6	4	11	5	32	0	37	0	3	3	6	2	30	2	34	88
17:45	4	6	4	14	5	42	5	52	0	5	2	7	1	28	2	31	104
Total	6	21	15	42	20	140	13	173	3	16	9	28	6	104	6	116	359
Grand Total	15	38	24	77	44	255	21	320	9	29	20	58	14	201	10	225	680
Apprch \%	19.5	49.4	31.2		13.8	79.7	6.6		15.5	50	34.5		6.2	89.3	4.4		
Total \%	2.2	5.6	3.5	11.3	6.5	37.5	3.1	47.1	1.3	4.3	2.9	8.5	2.1	29.6	1.5	33.1	

	ARKANSAS ST. Southbound				20TH ST. Westbound				ARKANSAS ST. Northbound				20TH ST. Eastbound	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Righ	App. Total	Left	Thru	Right	App. Total	Left	

Peak Hour for Entire Intersection Begins at 17:00

17:00	1	5	2	8	5	28	2	35	2	4	0	6	3	21	2	26	75
17:15	0	4	5	9	5	38	6	49	1	4	4	9	0	25	0	25	92
17:30	1	6	4	11	5	32	0	37	0	3	3	6	2	30	2	34	88
17:45	4	6	4	14	5	42	5	52	0	5	2	7	1	28	2	31	104
Total Volume		21	15	42	20	140	13	173	3	16	9	28	6	104	6	116	359
\% App. Total	14.3	50	35.7		11.6	80.9	7.5		10.7	57.1	32.1		5.2	89.7	5.2		
PHF	. 375	. 875	. 750	. 750	1.000	. 833	. 542	. 832	. 375	. 800	. 563	. 778	. 500	. 867	. 750	. 853	. 863

All Traffic Data

File Name : 10-7498-009 20TH-ARKANSAS
Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

(916) 771-8700

CITY OF SAN FRANCISCO
File Name : 10-7498-008 23RD-WISCONSIN
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

	WISCONSIN ST. Southbound				23RD ST. Westbound				WISCONSIN ST. Northbound				Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
16:00	2	9	0	11	7	0	2	9	0	7	16	23	0	0	0	0	43
16:15	3	3	0	6	5	0	2	7	0	8	18	26	0	0	0	0	39
16:30	4	6	0	10	10	0	6	16	0	16	14	30	0	0	0	0	56
16:45	1	6	0	7	8	0	4	12	0	14	6	20	0	0	0	0	39
Total	10	24	0	34	30	0	14	44	0	45	54	99	0	0	0	0	177
17:00	6	11	0	17	5	0	7	12	0	14	7	21	0	0	0	0	50
17:15	5	12	0	17	5	0	8	13	0	9	5	14	0	0	0	0	44
17:30	5	11	0	16	6	0	4	10	0	17	11	28	0	0	0	0	54
17:45	1	6	0	7	8	0	4	12	0	21	10	31	0	0	0	0	50
Total	17	40	0	57	24	0	23	47	0	61	33	94	0	0	0	0	198
Grand Total	27	64	0	91	54	0	37	91	0	106	87	193	0	0	0	0	375
Apprch \%	29.7	70.3	0		59.3	0	40.7		0	54.9	45.1		0	0	0		
Total \%	7.2	17.1	0	24.3	14.4	0	9.9	24.3	0	28.3	23.2	51.5	0	0	0	0	

	WISCONSIN ST. Southbound				23RD ST. Westbound				WISCONSIN ST. Northbound				Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total

Peak Hour for Entire Intersection Begins at 17:00

17:00	6	11	0	17	5	0	7	12	0	14	7	21	0	0	0	0	50
17:15	5	12	0	17	5	0	8	13	0	9	5	14	0	0	0	0	44
17:30	5	11	0	16	6	0	4	10	0	17	11	28	0	0	0	0	54
17:45	1	6	0	7	8	0	4	12	0	21	10	31	0	0	0	0	50
Total Volume	17	40	0	57	24	0	23	47	0	61	33	94	0	0	0	0	198
\% App. Total	29.8	70.2	0		51.1	0	48.9		0	64.9	35.1		0	0	0		
PHF	. 708	. 833	. 000	. 838	. 750	000	. 719	. 904	. 000	. 726	. 750	. 758	. 000	. 000	. 000	. 000	. 917

All Traffic Data

File Name : 10-7498-008 23RD-WISCONSIN
Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

(916) 771-8700

File Name : 10-7498-007 23RD-DAKOTA
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

Groups Printed- Unshifted

	23RD ST. Southbound				DAKOTA ST. Westbound				Northbound				DAKOTA ST. Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
16:00	6	0	4	10	0	8	6	14	0	0	0	0	5	14	0	19	43
16:15	2	0	3	5	0	9	0	9	0	0	0	0	6	20	0	26	40
16:30	5	0	1	6	0	13	4	17	0	0	0	0	4	17	0	21	44
16:45	5	0	9	14	0	10	5	15	0	0	0	0	4	11	0	15	44
Total	18	0	17	35	0	40	15	55	0	0	0	0	19	62	0	81	171
17:00	8	0	3	11	0	15	6	21	0	0	0	0	3	10	0	13	45
17:15	6	0	2	8	0	5	4	9	0	0	0	0	2	8	0	10	27
17:30	4	0	4	8	0	11	1	12	0	0	0	0	2	18	0	20	40
17:45	12	0	3	15	0	13	4	17	0	0	0	0	4	12	0	16	48
Total	30	0	12	42	0	44	15	59	0	0	0	0	11	48	0	59	160
Grand Total	48	0	29	77	0	84	30	114	0	0	0	0	30	110	0	140	331
Apprch \%	62.3	0	37.7		0	73.7	26.3		0	0	0		21.4	78.6	0		
Total \%	14.5	0	8.8	23.3	0	25.4	9.1	34.4	0	0	0	0	9.1	33.2	0	42.3	

	23RD ST. Southbound				DAKOTA ST. Westbound				Northbound				DAKOTA ST. Eastbound	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	

Peak Hour for Entire Intersection Begins at 16:15

16:15	2	0	3	5	0	9	0	9	0	0	0	0	6	20	0	26	40
16:30	5	0	1	6	0	13	4	17	0	0	0	0	4	17	0	21	44
16:45	5	0	9	14	0	10	5	15	0	0	0	0	4	11	0	15	44
17:00	8	0	3	11	0	15	6	21	0	0	0	0	3	10	0	13	45
Total Volume	20	0	16	36	0	47	15	62	0	0	0	0	17	58	0	75	173
\% App. Total	55.6	0	44.4		0	75.8	24.2		0	0	0		22.7	77.3	0		
PHF	. 625	. 000	. 444	. 643	. 000	. 783	. 625	. 738	. 000	. 000	. 000	. 000	. 708	. 725	. 000	. 721	. 961

All Traffic Data

File Name : 10-7498-007 23RD-DAKOTA
Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

(916) 771-8700

CITY OF SAN FRANCISCO
File Name : 10-7498-006 25TH-DAKOTA
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

Groups Printed- Unshifted																	
	TEXAS ST. Southbound				25TH ST. Westbound				25TH ST. Eastbound				DAKOTA ST. Southeastbound				
Start Time	Left	Right	Hard Right	App. Total	Thru	Bear Right	Right	App. Total	Hard Left	Left	Thru	App. Total	Hard Left	Bear Left	Hard Right	App. Total	Int. Total
16:00	0	0	0	0	13	8	0	21	11	0	30	41	0	5	15	20	82
16:15	0	1	0	1	10	6	0	16	2	1	34	37	0	9	15	24	78
16:30	0	0	0	0	11	12	0	23	6	0	29	35	0	9	15	24	82
16:45	1	0	0	1	11	9	0	20	6	0	31	37	0	12	7	19	77
Total	1	1	0	2	45	35	0	80	25	1	124	150	0	35	52	87	319
17:00	0	0	0	0	12	14	0	26	9	0	27	36	0	8	10	18	80
17:15	1	0	0	1	14	2	3	19	8	0	22	30	0	10	9	19	69
17:30	1	0	1	2	9	8	1	18	3	0	25	28	0	8	12	20	68
17:45	1	1	0	2	12	7	1	20	12	0	19	31	0	9	13	22	75
Total	3	1	1	5	47	31	5	83	32	0	93	125	0	35	44	79	292
Grand Total	4	2	1	7	92	66	5	163	57	1	217	275	0	70	96	166	611
Apprch \%	57.1	28.6	14.3		56.4	40.5	3.1		20.7	0.4	78.9		0	42.2	57.8		
Total \%	0.7	0.3	0.2	1.1	15.1	10.8	0.8	26.7	9.3	0.2	35.5	45	0	11.5	15.7	27.2	

	TEXAS ST. Southbound				25TH ST. Westbound				25TH ST. Eastbound				DAKOTA ST. Southeastbound				
Start Time	Left	Right	Hard Right	App. Total	Thru	Bear Right	Right	App. Total	Hard Left	Left	Thru	App. Total	Hard Left	Bear Left	Hard Right	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45-Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 16:00																	
16:00	0	0	0	0	13	8	0	21	11	0	30	41	0	5	15	20	82
16:15	0	1	0	1	10	6	0	16	2	1	34	37	0	9	15	24	78
16:30	0	0	0	0	11	12	0	23	6	0	29	35	0	9	15	24	82
16:45	1	0	0	1	11	9	0	20	6	0	31	37	0	12	7	19	77
Total Volume	1	1	0	2	45	35	0	80	25	1	124	150	0	35	52	87	319
\% App. Total	50	50	0		56.2	43.8	0		16.7	0.7	82.7		0	40.2	59.8		
PHF	. 250	. 250	. 000	. 500	. 865	. 729	. 000	. 870	. 568	. 250	. 912	. 915	. 000	. 729	. 867	. 906	. 973

All Traffic Data

File Name : 10-7498-006 25TH-DAKOTA
Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

(916) 771-8700

CITY OF SAN FRANCISCO
File Name : 10-7498-005 25TH-CONNECTICUT
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

	CONNECTICUT ST. Southbound				25TH ST. Westbound				CONNECTICUT ST. Northbound				25TH ST. Eastbound	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	

Peak Hour for Entire Intersection Begins at 16:00

16:00	0	0	0	0	9	13	6	28	1	7	30	38	13	14	7	34	100
16:15	0	0	0	0	11	10	7	28	0	10	20	30	7	19	8	34	92
16:30	0	0	0	0	7	13	6	26	1	7	18	26	3	13	4	20	72
16:45	0	0	0	0	7	7	3	17	1	9	20	30	1	20	3	24	71
Total Volume	0	0	0	0	34	43	22	99	3	33	88	124	24	66	22	112	335
\% App. Total	0	0	0		34.3	43.4	22.2		2.4	26.6	71		21.4	58.9	19.6		
PHF	. 000	. 000	. 000	. 000	773	827	. 786	. 884	750	. 825	. 733	. 816	. 462	. 825	. 688	. 824	. 838

All Traffic Data

File Name : 10-7498-005 25TH-CONNECTICUT
Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

(916) 771-8700

File Name : 10-7498-004 25TH-INDIANA
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

	INDIANA ST. Southbound					25TH ST. Westbound					INDIANA ST. Northbound					25TH ST. Eastbound					NB I-280 ON-RAMP Southeastbound					
Start Time	Left	Thru	Right	Hardipigh	App. Total	Left	Thru	Bar Right	Right	App. Total	Left	Baar Left	Thru	Right	App. Total	Hard Left	Left	Thru	Right	App. Total	Hard Left	Bear Left	Baar Right	Hard Righ	App. Total	Int. Total
16:00	0	0	0	0	0	0	47	31	4	82	6	56	14	3	79	24	3	40	0	67	0	0	0	0	0	228
16:15	0	0	0	0	0	0	34	18	0	52	10	65	17	2	94	23	2	36	0	61	0	0	0	0	0	207
16:30	0	0	0	0	0	0	51	27	2	80	7	60	13	4	84	19	3	42	0	64	0	0	0	0	0	228
16:45	0	0	0	0	0	0	47	20	2	69	7	54	10	2	73	16	3	28	0	47	0	0	0	0	0	189
Total	0	0	0	0	0	0	179	96	8	283	30	235	54	11	330	82	11	146	0	239	0	0	0	0	0	852
17:00	0	0	0	0	0	0	58	24	2	84	8	56	18	5	87	17	2	29	0	48	0	0	0	0	0	219
17:15	0	0	0	0	0	0	25	15	1	41	3	41	12	3	59	15	1	21	0	37	0	0	0	0	0	137
17:30	0	0	0	0	0	0	28	15	1	44	7	27	10	1	45	13	1	10	0	24	0	0	0	0	0	113
17:45	0	0	0	0	0	0	30	13	2	45	4	35	17	2	58	9	4	17	0	30	0	0	0	0	0	133
Total	0	0	0	0	0	0	141	67	6	214	22	159	57	11	249	54	8	77	0	139	0	0	0	0	0	602
Grand Total	0	0	0	0	0	0	320	163	14	497	52	394	111	22	579	136	19	223	0	378	0	0	0	0	0	1454
Apprch \%	0	0	0	0		0	64.4	32.8	2.8		9	68	19.2	3.8		36	5	59	0		0	0	0	0		
Total \%	0	0	0	0	0	0	22	11.2	1	34.2	3.6	27.1	7.6	1.5	39.8	9.4	1.3	15.3	0	26	0	0	0	0	0	

	INDIANA ST. Southbound					25TH ST. Westbound					INDIANA ST. Northbound					25TH ST. Eastbound					NB I-280 ON-RAMP Southeastbound					
Start Time	Left	Thru	Right	Hact Ripht	App. Total	Left	Thru	Bear Right	Right	App. Total	Left	Bear Left	Thru	Right	App. Total	Hard Left	Left	Thru	Right	App. Total	Hard Left	Bear Left	Baar Right	Hard Rigit	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45-Peak 1 of 1																										
Peak Hour for Entire Intersection Begins at 16:00																										
16:00	0	0	0	0	0	0	47	31	4	82	6	56	14	3	79	24	3	40	0	67	0	0	0	0	0	228
16:15	0	0	0	0	0	0	34	18	0	52	10	65	17	2	94	23	2	36	0	61	0	0	0	0	0	207
16:30	0	0	0	0	0	0	51	27	2	80	7	60	13	4	84	19	3	42	0	64	0	0	0	0	0	228
16:45	0	0	0	0	0	0	47	20	2	69	7	54	10	2	73	16	3	28	0	47	0	0	0	0	0	189
Total Volume	0	0	0	0	0	0	179	96	8	283	30	235	54	11	330	82	11	146	0	239	0	0	0	0	0	852
\% App. Total	0	0	0	0		0	63.3	33.9	2.8		9.1	71.2	16.4	3.3		34.3	4.6	61.1	0		0	0	0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 877	. 774	. 500	. 863	. 750	. 904	. 794	. 688	. 878	. 854	. 917	. 869	. 000	. 892	. 000	. 000	. 000	. 000	. 000	. 934

All Traffic Data

File Name : 10-7498-004 25TH-INDIANA
Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

File Name : 10-7498-003 PENNSYLVANIA-SB I 280
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1
CITY OF SAN FRANCISCO

Groups Printed- Unshifted

	PENNSYLVANIA AVE. Southbound				SB I-280 OFF-RAMP Westbound				PENNSYLVANIA AVE. Northbound				Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
16:00	0	80	0	80	120	0	23	143	0	52	0	52	0	0	0	0	275
16:15	0	58	0	58	126	0	13	139	0	52	0	52	0	0	0	0	249
16:30	0	80	0	80	128	0	10	138	0	42	0	42	0	0	0	0	260
16:45	0	73	0	73	109	0	3	112	0	55	0	55	0	0	0	0	240
Total	0	291	0	291	483	0	49	532	0	201	0	201	0	0	0	0	1024
17:00	0	79	0	79	97	0	7	104	0	52	0	52	0	0	0	0	235
17:15	0	99	0	99	92	0	2	94	0	41	0	41	0	0	0	0	234
17:30	0	102	0	102	65	0	2	67	0	58	0	58	0	0	0	0	227
17:45	0	107	0	107	73	0	8	81	0	57	0	57	0	0	0	0	245
Total	0	387	0	387	327	0	19	346	0	208	0	208	0	0	0	0	941
Grand Total	0	678	0	678	810	0	68	878	0	409	0	409	0	0	0	0	1965
Apprch \%	0	100	0		92.3	0	7.7		0	100	0		0	0	0		
Total \%	0	34.5	0	34.5	41.2	0	3.5	44.7	0	20.8	0	20.8	0	0	0	0	

	PENNSYLVANIA AVE. Southbound				SB I-280 OFF-RAMP Westbound				PENNSYLVANIA AVE. Northbound				Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45-Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 16:00																	
16:00	0	80	0	80	120	0	23	143	0	52	0	52	0	0	0	0	275
16:15	0	58	0	58	126	0	13	139	0	52	0	52	0	0	0	0	249
16:30	0	80	0	80	128	0	10	138	0	42	0	42	0	0	0	0	260
16:45	0	73	0	73	109	0	3	112	0	55	0	55	0	0	0	0	240
Total Volume	0	291	0	291	483	0	49	532	0	201	0	201	0	0	0	0	1024
\% App. Total	0	100	0		90.8	0	9.2		0	100	0		0	0	0		
PHF	. 000	. 909	. 000	. 909	. 943	. 000	. 533	. 930	. 000	. 914	. 000	. 914	. 000	. 000	. 000	. 000	. 931

All Traffic Data

(916) 771-8700

File Name : 10-7498-003 PENNSYLVANIA-SB I 280
Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

File Name : 10-7498-002 CESAR CHAVEZ-PENNSYLVANIA
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

Groups Printed- Unshifted

	PENNSYLVANIA AVE. Southbound				CESAR CHAVEZ ST. Westbound				NB I-280 OFF-RAMP Northbound				CESAR CHAVEZ ST. Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
16:00	19	0	84	103	0	49	98	147	54	32	77	163	100	98	0	198	611
16:15	25	0	103	128	0	36	78	114	54	39	79	172	74	95	0	169	583
16:30	21	0	125	146	0	38	101	139	36	32	61	129	72	102	0	174	588
16:45	19	0	100	119	0	39	88	127	42	40	65	147	68	96	0	164	557
Total	84	0	412	496	0	162	365	527	186	143	282	611	314	391	0	705	2339
17:00	12	0	119	131	0	57	126	183	35	36	53	124	82	88	0	170	608
17:15	12	0	109	121	0	62	84	146	48	26	71	145	57	68	0	125	537
17:30	13	0	106	119	0	63	84	147	43	50	59	152	54	62	0	116	534
17:45	9	0	128	137	0	40	60	100	54	54	62	170	40	53	0	93	500
Total	46	0	462	508	0	222	354	576	180	166	245	591	233	271	0	504	2179
Grand Total	130	0	874	1004	0	384	719	1103	366	309	527	1202	547	662	0	1209	4518
Apprch \%	12.9	0	87.1		0	34.8	65.2		30.4	25.7	43.8		45.2	54.8	0		
Total \%	2.9	0	19.3	22.2	0	8.5	15.9	24.4	8.1	6.8	11.7	26.6	12.1	14.7	0	26.8	

	PENNSYLVANIA AVE. Southbound				CESAR CHAVEZ ST. Westbound				NB I-280 OFF-RAMP Northbound				CESAR CHAVEZ ST. Eastbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	

Peak Hour for Entire Intersection Begins at 16:00

16:00	19	0	84	103	0	49	98	147	54	32	77	163	100	98	0	198	611
16:15	25	0	103	128	0	36	78	114	54	39	79	172	74	95	0	169	583
16:30	21	0	125	146	0	38	101	139	36	32	61	129	72	102	0	174	588
16:45	19	0	100	119	0	39	88	127	42	40	65	147	68	96	0	164	557
Total Volume	84	0	412	496	0	162	365	527	186	143	282	611	314	391	0	705	2339
\% App. Total	16.9	0	83.1		0	30.7	69.3		30.4	23.4	46.2		44.5	55.5	0		
PHF	840	0	824	849	000	827	903	896	861	894	892	. 888	785	. 958	000	890	957

All Traffic Data

(916) 771-8700

File Name : 10-7498-002 CESAR CHAVEZ-PENNSYLVANIA
Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

(916) 771-8700

CITY OF SAN FRANCISCO
File Name : 10-7498-001 CESAR CHAVEZ-CONNECTICUT
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

Groups Printed- Unshifted

	CONNECTICUT ST. Southbound				CESAR CHAVEZ ST. Westbound				Northbound				CESAR CHAVEZ ST. Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
16:00	12	0	29	41	0	157	15	172	0	0	0	0	21	166	0	187	400
16:15	6	0	24	30	0	175	21	196	0	0	0	0	12	147	0	159	385
16:30	4	0	15	19	0	176	16	192	0	0	0	0	20	160	0	180	391
16:45	5	0	20	25	0	173	20	193	0	0	0	0	9	137	0	146	364
Total	27	0	88	115	0	681	72	753	0	0	0	0	62	610	0	672	1540
17:00	5	0	27	32	0	199	21	220	0	0	0	0	15	150	0	165	417
17:15	4	0	23	27	0	220	12	232	0	0	0	0	25	91	0	116	375
17:30	8	0	19	27	0	199	17	216	0	0	0	0	16	95	0	111	354
17:45	8	0	23	31	0	209	19	228	0	0	0	0	23	76	0	99	358
Total	25	0	92	117	0	827	69	896	0	0	0	0	79	412	0	491	1504
Grand Total	52	0	180	232	0	1508	141	1649	0	0	0	0	141	1022	0	1163	3044
Apprch \%	22.4	0	77.6		0	91.4	8.6		0	0	0		12.1	87.9	0		
Total \%	1.7	0	5.9	7.6	0	49.5	4.6	54.2	0	0	0	0	4.6	33.6	0	38.2	

	CONNECTICUT ST. Southbound				CESAR CHAVEZ ST. Westbound				Northbound				CESAR CHAVEZ ST. Eastbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	

Peak Hour for Entire Intersection Begins at 16:15

16:15	6	0	24	30	0	175	21	196	0	0	0	0	12	147	0	159	385
16:30	4	0	15	19	0	176	16	192	0	0	0	0	20	160	0	180	391
16:45	5	0	20	25	0	173	20	193	0	0	0	0	9	137	0	146	364
17:00	5	0	27	32	0	199	21	220	0	0	0	0	15	150	0	165	417
Total Volume	20	0	86	106	0	723	78	801	0	0	0	0	56	594	0	650	1557
\% App. Total	18.9	0	81.1		0	90.3	9.7		0	0	0		8.6	91.4	0		
PHF	. 833	. 000	796	. 828	. 000	. 908	929	. 910	000	. 000	000	. 00	. 700	. 928	000	. 903	933

All Traffic Data

File Name : 10-7498-001 CESAR CHAVEZ-CONNECTICUT Site Code : 00000000
Start Date : 1/4/2011
Page No : 2

All Traffic Data

(916) 771-8700

File Name : 10-7498-012 013 CESAR CHAVEZ-VERMONT-US 101
Site Code : 00000000
Start Date : 1/4/2011
Page No : 1

	VERMONT ST. Southbound					CESAR CHAVEZ ST. Westbound					US-101 OFF-RAMP Northbound					CESAR CHAVEZ ST. Eastbound					US-101 ON-RAMP Southeastbound					
Start Time	Left	Thru	Right	Haxd Righ	App. Total	Left	Thru	Baar Right	Right	App. Total	Left	Bear Left	Thru	Right	App. Total	Hard Left	Left	Thru	Right	App. Total	Hard Left	Bear Left	Bear Right	Hard Rigit	App. Total	Int. Total
16:00	4	0	17	16	37	0	143	78	29	250	0	0	0	95	95	4	20	121	0	145	0	0	0	0	0	527
16:15	6	0	20	13	39	0	142	71	19	232	0	0	0	73	73	3	28	107	0	138	0	0	0	0	0	482
16:30	4	0	26	17	47	0	138	93	16	247	0	0	0	72	72	3	15	117	0	135	0	0	0	0	0	501
16:45	9	0	27	12	48	0	159	55	28	242	0	0	0	56	56	4	11	115	0	130	0	0	0	0	0	476
Total	23	0	90	58	171	0	582	297	92	971	0	0	0	296	296	14	74	460	0	548	0	0	0	0	0	1986
17:00	1	0	28	23	52	0	186	77	26	289	0	0	0	46	46	3	13	101	0	117	0	0	0	0	0	504
17:15	2	0	27	16	45	0	186	80	23	289	0	0	0	44	44	3	30	82	0	115	0	0	0	0	0	493
17:30	9	0	33	16	58	0	170	71	15	256	0	0	0	53	53	1	19	87	0	107	0	0	0	0	0	474
17:45	2	0	23	10	35	0	177	48	20	245	0	0	0	56	56	1	22	91	0	114	0	0	0	0	0	450
Total	14	0	111	65	190	0	719	276	84	1079	0	0	0	199	199	8	84	361	0	453	0	0	0	0	0	1921
Grand Total	37	0	201	123	361	0	1301	573	176	2050	0	0	0	495	495	22	158	821	0	1001	0	0	0	0	0	3907
Apprch \%	10.2	0	55.7	34.1		0	63.5	28	8.6		0	0	0	100		2.2	15.8	82	0		0	0	0	0		
Total \%	0.9	0	5.1	3.1	9.2	0	33.3	14.7	4.5	52.5	0	0	0	12.7	12.7	0.6	4	21	0	25.6	0	0	0	0	0	

	VERMONT ST. Southbound					CESAR CHAVEZ ST. Westbound					US-101 OFF-RAMP Northbound					CESAR CHAVEZ ST. Eastbound					US-101 ON-RAMP Southeastbound					
Start Time	Left	Thru	Right	Hand Righ	App. Total	Left	Thru	Bear Right	Right	App. Total	Left	Bara Left	Thru	Right	App. Total	Hard Left	Left	Thru	Right	App. Total	Hard Left	Bear Left	Bar Right	Hardigigh	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45-Peak 1 of 1																										
Peak Hour for Entire Intersection Begins at 16:00																										
16:00	4	0	17	16	37	0	143	78	29	250	0	0	0	95	95	4	20	121	0	145	0	0	0	0	0	527
16:15	6	0	20	13	39	0	142	71	19	232	0	0	0	73	73	3	28	107	0	138	0	0	0	0	0	482
16:30	4	0	26	17	47	0	138	93	16	247	0	0	0	72	72	3	15	117	0	135	0	0	0	0	0	501
16:45	9	0	27	12	48	0	159	55	28	242	0	0	0	56	56	4	11	115	0	130	0	0	0	0	0	476
Total Volume	23	0	90	58	171	0	582	297	92	971	0	0	0	296	296	14	74	460	0	548	0	0	0	0	0	1986
\% App. Total	13.5	0	52.6	33.9		0	59.9	30.6	9.5		0	0	0	100		2.6	13.5	83.9	0		0	0	0	0		
PHF	. 639	. 000	. 833	. 853	. 891	. 000	. 915	. 798	. 793	. 971	. 000	. 000	. 000	. 779	. 779	. 875	. 661	. 950	. 000	. 945	. 000	. 000	. 000	. 000	. 000	. 942

All Traffic Data

APPENDIX F
 INTERSECTION LOS ANALYSIS

Potrero HOPE Development EIR
Wilbur Smith Associates

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

Volume Module:

Base Vol:	0	0	0	20	0	86	56	594	0	0	723	78
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	20	0	86	56	594	0	0	723	78
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	20	0	86	56	594	0	0	723	78
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	0	0	22	0	92	60	639		0	777	84
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	22	0	92	60	639	0	0	777	84
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	0	22	0	92	60	639	0	0	777	84

Saturation Flow Module: 190019001900 1900 19001900 1900 190019001900 Adjustment: $1.001 .00 \begin{array}{llllllllll}1.00 & 0.69 & 1.00 & 0.69 & 0.82 & 0.93 & 1.00 & 1.00 & 0.84 & 0.84\end{array}$ $\begin{array}{lllllllllllll}\text { Ad } \\ \text { Lanes: } & 0.00 & 0.00 & 0.00 & 0.19 & 0.00 & 0.81 & 0.17 & 1.83 & 0.00 & 0.00 & 2.71 & 0.29\end{array}$
 Capacity Analysis Module

Vol/Sat:	0.00	0.00	0.00	$\underset{* * * *}{0.09}$	0.00	0.09	$\underset{* * * *}{0.23}$	0.20	0.00	0.00	0.18	0.18

Green/Cycle: 0.00 0.00 $0.000 .250 .00 \quad 0.25 \quad 0.64 \quad 0.64 \quad 0.00 \quad 0.00 \quad 0.48 \quad 0.48$ Volume/Cap: $0.000 .00 \quad 0.00 \quad 0.340 .00 \quad 0.34 \quad 0.34 \quad 0.31 \quad 0.00 \quad 0.00 \quad 0.38 \quad 0.38$ | Delay/Veh: | 0.0 | 0.0 | 0.0 | 25.7 | 0.0 | 25.7 | 15.7 | 6.4 | 0.0 | 0.0 | 12.8 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| User DelAdj: | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | $\begin{array}{lllllllllllll}\text { AdjDel/Veh: } & 0.0 & 0.0 & 0.0 & 25.7 & 0.0 & 25.7 & 15.7 & 6.4 & 0.0 & 0.0 & 12.8 & 12.8\end{array}$ LOS by Move:

HCM2kAvgQ:
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative
Intersection \#2 Cesar Chavez/Pennsylvania/NB I-280 Off-Ramp

Lanes:
------------|

Base Vol:	186	143	282	84	0	412	314	391	0	0	162	36
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	186	143	282	84	0	412	314	391	0	0	162	36
Added Vol:	0	0	0	\bigcirc	0	0	0	0	0	0	0	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	186	143	282	84	0	412	314	391	0	0	162	36
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.0
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.0
PHF Volume:	194	149	294	88	0	429	327	407	0	0	169	
Reduct Vol:	0	0	\bigcirc	0	0	0	0	-	\bigcirc	0	0	
Reduced Vol:	194	149	294	88	0	429	327	407	0	0	169	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.0
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.0
FinalVolume:	194	149	294	88	0	429	327	407	0	0	169	

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.94	0.99	0.83	0.94	1.00	0.66	0.94	0.94	1.00	1.00	0.94	1.00
Lanes:	1.00	1.00	1.00	1.00	0.00	1.00	1.00	2.00	0.00	0.00	2.00	1.00
Final Sat.:	1787	1881	1579	1787	0	1263	1787	3574	0	0	3574	1900
Capacity Analysis Module:												
Vol/Sat:	0.11	0.08	0.19	0.05	0.00	0.34	0.18	0.11	0.00	0.00	0.05	0.00
Crit Moves:												
Green/Cycle:	0.24	0.24	0.24	0.13	0.00	0.36	0.23	0.46	0.00	0.00	0.23	0.00
Volume/Cap:	0.44	0.32	0.76	0.37	0.00	0.94	0.80	0.25	0.00	0.00	0.21	0.00
Delay/Veh:	32.1	29.8	44.8	39.9	0.0	57.6	48.3	15.4	0.0	0.0	28.7	0.0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	32.1	29.8	44.8	39.9	0.0	57.6	48.3	15.4	0.0	0.0	28.7	0.0
LOS by Move:	C	C	D	D	A	E	D	B	A	A	C	A
HCM2kAvgQ:	5	4	9	3	0	16	11	4	0	0	2	0

Note: Queue reported is the number of cars per lane.

Level Of Service Computation Repor

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#3 Pennsylvania/SB I-280 Off-Ramp

Volume Module:
Base Vol:

Base Vol:	0	201	0	0	291	0	0	0	0	483	0	49
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	201	0	0	291	0	0	0	0	483	0	49
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	201	0	0	291	0	0	0	0	483	0	49
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.00
PHF Volume:	0	216	0	0	313	-	0	0	0	519	0	0
Reduct Vol:	0	0	0	0	,	0	0	0	0	0	\bigcirc	0
Reduced Vol:	0	216	0	\bigcirc	313	0	0	\bigcirc	0	519	-	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	0	216	0	0	313	0	0	0	0	519	0	0
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	2.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	2.00	0.00	1.00
Final Sat.:	0	1082	0	0	590	0	0	0	0	1096	0	667
Capacity Analysis Module:												
Vol/Sat:	xxxx	0.20	xxxx	xxxx	0.53	xxxx	xxxx	xxxx	xxxx	0.47	xxxx	0.00
Crit Moves:		****			****							
Delay/Veh:	0.0	10.6	0.0	0.0	15.2	0.0	0.0	0.0	0.0	14.6	0.0	0.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	10.6	0.0	0.0	15.2	0.0	0.0	0.0	0.0	14.6	0.0	0.0
LOS by Move:		B		*	C					B	*	
ApproachDel:		10.6			15.2			xxxxx			14.6	
Delay Adj:		1.00			1.00			xxxxx			1.00	
ApprAdjDel:		10.6			15.2			xxxxx			14.6	
LOS by Appr:		B			C			*			B	
AllWayAvgQ:	0.0	0.2	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.8	0.0	0.0

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#4 25th/Indiana Streets/NB I-280

-----------|

Base Vol:	30	289	11	0	0	0	93	146	0	0	179	104
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	30	289	11	0	0	0	93	146	0	0	179	104
Added Vol:	0	0	0	\bigcirc	0	0	0	0	0	\bigcirc	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	30	289	11	\bigcirc	0	0	93	146	0	0	179	104
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	32	311	12	0	0	0	100	157	0	0	192	112
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	32	311	12	0	0	0	100	157	0	0	192	112
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	32	311	12	0	0	0	100	157	0	0	192	112
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.18	1.75	0.07	0.00	0.00	0.00	0.39	0.61	0.00	0.00	0.63	0.37
Final Sat.:	106	1037	40	0	0	-	256	402	0	0	445	258
Capacity Analysis Module:												
Vol/Sat:	0.30	0.30	0.30	xxxx	xxxx	xxxx	0.39	0.39	xxxx	xxxx	0.43	0.43
Crit Moves:	****											
Delay/Veh:	11.0	10.9	10.7	0.0	0.0	0.0	11.4	11.4	0.0	0.0	11.4	11.4
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	11.0	10.9	10.7	0.0	0.0	0.0	11.4	11.4	0.0	0.0	11.4	11.4
LOS by Move:	B	B	B		*		B	B	*		B	B
ApproachDel:		10.9	xxyxxx				11.4			11.4		
Delay Adj:		1.00	xxxxx				1.00			1.00		
ApprAdjDel:		10.9	xxxxxx				11.4			11.4		
LOS by Appr:		B			*			B			B	
AllWayAvgQ:	0.4	0.4	0.4	0.0	0.0	0.0	0.6	0.6	0.6	0.7	0.7	0.7

$\begin{array}{lllllllllllllllll} & 0.4 & 0.4 & 0.4 & 0.0 & 0.0 & 0.0 & 0.6 & 0.6 & 0.6 & 0.7 & 0.7 & 0.7\end{array}$
Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Potrero HOPE Development EIR Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#5 25th/Connecticut

Volume Modu												
Base Vol:	3	33	88	0	0	0	24	66	22	34	43	22
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	3	33	88	0	0	0	24	66	22	34	43	22
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	3	33	88	0	0	0	24	66	22	34	43	22
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
PHF Volume:	4	39	105	0	0	0	29	79	26	40	51	26
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	4	39	105	0	0	0	29	79	26	40	51	26
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	4	39	105	0	0	0	29	79	26	40	51	26
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.02	0.27	0.71	0.00	0.00	0.00	0.21	0.59	0.20	0.34	0.44	0.22
Final Sat.:	21	229	610	0	0	0	176	484	161	280	354	181
Capacity Analysis Module:												
Vol/Sat:	0.17	0.17	0.17	xxxx	xxxx	xxxx	0.16	0.16	0.16	0.14	0.14	0.14
Crit Moves:												
Delay/Veh:	7.8	7.8	7.8	0.0	0.0	0.0	8.0	8.0	8.0	8.0	8.0	8.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	7.8	7.8	7.8	0.0	0.0	0.0	8.0	8.0	8.0	8.0	8.0	8.0
LOS by Move:	A	A	A				A	A	A	A	A	A
ApproachDel:		7.8			xxxx			8.0			8.0	
Delay Adj:		1.00			$x x x x$			1.00			1.00	
ApprAdjDel:		7.8			xxxx			8.0			8.0	
LOS by Appr:		A			*			A		A		
		0.2	. 2	0. 0	0.0	0.0		0.2	9,		0.2	

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario Wed Oct 3, 2012 11:34:47 Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#6 25th/Dakota
3.2 Worst Case Level Of Service: A[9.6] 9

Street Name:	Dakota North Bound			South Bound					25th	reet					
Approach:				East Bound	West Bound										
Movement:	L - T - R						L - T - R				$-\quad T \quad R$		L -	T	- R
Control:	Stop Sign			Stop Sign			Uncontrolled			Uncontrolled					
Rights:	Include			Include			Include			Include					
Lanes:	0	00	0	0	0 1!	0	01	10	0	00	0	10			
Volume Module:															
Base Vol:	0	0	0	35	0	52	25	125	0	0	45	35			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Initial Bse:	0	0	0	35	0	52	25	125	0	0	45	35			
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0			
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0			
Initial Fut:	0	0	0	35	0	52	25	125	0	0	45	35			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97			
PHF Volume:	0	0	0	36	0	54	26	129	0	0	46	36			
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0			
FinalVolume:	0	0	0	36	0	54	26	129	0	0	46	36			

Critical Gap Module
Critical Gp:xxxxx xxxx xxxxx $\quad 6.4$ 6.5 $\begin{array}{llll}\text { 6.2 } & 4.1 & \text { xxxx } x x x x x ~ x x x x x ~ x x x x ~ x x x x x ~\end{array}$ FollowUpTim:xxxxx xxxx xxxxx 3.5 4.0 3.3 2.2 xxxx xxxxx xxxxx xxxx xxxxx ----------|--
 Potent Cap.: xxxx xxxx xxxxx 748 661-1005 1528 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: \quad xxxx xxxx xxxxx 73864910051528 xxxx xxxxx $15 x x x$ xxxx xxxxx Volume/Cap: xxxx xxxx xxxx $0.050 .00 \quad 0.05$ 0.02 xxxx xxxx xxxx xxxx xxxx
evel Of Service Module
 Control Del:xxxxx xxxx xxxxx xxxxx xxxx xxxxx 7.4 xxxx xxxxx xxxxx xxxx xxxxx LOS by Move: * * * * * * A * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 Shared LOS:

ApproachLOS: A * * * * *
Note: Queue reported is the number of cars per lane.

Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)
$* *$
Intersection \#7 23rd/Dakota
*** $4.2 \quad$ Worst Case Level Of Service: A[9.2]

Street Name:	Dakota							23rd								
Approach:	North Bound			South Bound				East Bound					West Bound			
Movement:	L	T	R	L	T	-	R	L	-	T	-	R	L	T	-	R
Control:	Stop Sign			Stop Sign				Uncontrolled					Uncontrolled			
Rights:		Include		Include				Include					Include			
Lanes:	0	0 1! 0	0	0	0	0	0	0	0	0	1	0	0	10	0	0

Base Vol:	47	0	15	0	0	0	0	17	58	20	16	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	47	0	15	0	0	0	0	17	58	20	16	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	47	0	15	0	0	0	0	17	58	20	16	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
PHF Volume:	49	0	16	0	0	0	0	18	60	21	17	0
Reduct Vol:	\bigcirc	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	49	0	16	0	0	0	0	18	60	21	17	0

Critical Gap Module:
Critical Gp: 6.4 6.5 6.2 xxxxx xxxx xxxxx xxxxx xxxx xxxxx 4.1 xxxx xxxxx FollowUpTim: 3.5 4.0 3.3 xxxxx xxxx xxxxx xxxxx xxxx xxxxx 2.2 xxxx xxxxx Capacity Module: $\begin{array}{lrrrlllllll}\text { Cnflict Vol: } & 106 & 106 & 48 & \text { xxxx xxxx xxxxx } & \text { xxxx } & \text { xxxx } & \text { xxxxx } & 78 & \text { xxxx xxxxx } \\ \text { Potent Cap.: } & 896 & 788 & 1027 & \text { xxxx }\end{array}$
 Volume/Cap: $0.060 .00 \quad 0.02$ xxxx xxxx xxxx xxxx xxxx xxxx 0.01 xxxx xxxx

 Shared Cap.: xxxx 917 xxxxx xxxx xyxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx SharedQueue: xxxxx 0.2 xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx 0.0 xxxx xxxxx

 $\begin{array}{lrrrr}\text { ApproachDel: } & 9.2 & \text { XXXXXX } & \text { XXXXX } \\ \text { ApproachLos: } & \text { A } & \text { *XXXXX }\end{array}$

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#8 23rd/Wisconsin

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Potrero HOPE Development EIR Wilbur Smith Associates

Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#9 20th/Arkansas

Volume Module Base Vol:			9			15	6	104	6	20	140	13
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	3	16	9	6	21	15	6	104	6	20	140	13
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	\bigcirc	0	0	0	0
Initial Fut:	3	16	9	6	21	15	6	104	6	20	140	13
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
PHF Volume:	3	19	10	7	24	17	7	121	7	23	163	15
Reduct Vol:	0	0	0	\bigcirc	0	0	0	0	0	0	0	0
Reduced Vol:	3	19	10	7	24	17	7	121	7	23	163	15
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	3	19	10	7	24	17	7	121	7	23	163	15
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.11	0.57	0.32	0.14	0.50	0.36	0.05	0.90	0.05	0.12	0.81	0.07
Final Sat.:	80	428	241	108	378	270	43	741	43	97	682	63
Capacity Analysis Module:												
Vol/Sat:	0.04	0.04	0.04	0.06	0.06	0.06	0.16	0.16	0.16	0.24	0.24	0.24
Crit Moves:	****				****		****				****	
Delay/Veh:	7.7	7.7	7.7	7.7	7.7	7.7	8.1	8.1	8.1	8.5	8.5	8.5
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	7.7	7.7	7.7	7.7	7.7	7.7	8.1	8.1	8.1	8.5	8.5	8.5
LOS by Move:	A	A	A	A	A	A	A	A	A	A	A	A
ApproachDel:		7.7			7.7			8.1			8.5	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		7.7			7.7			8.1			8.5	
LOS by Appr:		A			A			A			A	
AllWayAvgQ:	. 0	0.0	. 0		0.1			0. 2			0.3	

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#10 22nd/Missouri Street
Average Delay (sec/ven) :

Street Name: Approach:	North		Missouri Street				22nd Street						
Movement:	L	- T	R	L	T	R	L	- T	R	L	- T		R
Control: Rights:	Uncontrolled Include			Uncontrolled Include			Stop Sign Include			Stop Sign Include			
anes:		01	0	0	0	10	0	0	01	0	0	0	
Base Vol:	0	30	0	0	25	1	0	0	1	0	0		
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		. 00
Initial Bse:	0	30	0	0	25	1	0	0	1	0	0		
Added Vol:	0	0	0	0	0	0	0	0	0	0	0		
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0		
Initial Fut:	0	30	0	0	25	1	0	0	1	0	0		
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		. 00
PHF Adj:	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		. 64
PHF Volume:	0	47	0	0	39	2	0	0	2	0	0		
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0		
nalVolume:	0	47	0	0	39	2	0	0	2	0	0		0

ritical Gap Module
Critical Gp:xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 6.2 xxxxx xxxx xxxxx FollowUpTim: xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 3.3 xxxxx xxxx xxxxx apacity Module:
Cnflict Vol: $x x x x$ xxxx xxxyx $x x x x$ xxxx xxxxx xxxx xxxx 40 xxxx xxxx xxxxx
 Move Cap.: \quad xxxx xxxx xxyxx $x x x x$ xxxx xxxxx xxxx xxxx 1037 xxxx xxxx xxxxx Volume/Cap: xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0.00 xxxx xxxx xxxx
evel of Service Module

 Los by Move: * * * * * * * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT
 haredqueue: $X X X X X$ XXXX XXXXX XXXXX XXXX XXXXX XXXXX XXXX XxXXX XXXXX XXXX XXXXX Shrd ConDel: xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx

ApproachDel:	xxxxxx	xxxxxx	8.5	xxxxxx
ApproachLOS:	*	*	A	*

Note: Queue reported is the number of cars per lane.
ote. Queur reported is the nuber of cars per lane.

Potrero HOPE Development EIR
Wilbur Smith Associates

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#11 Potrero/23rd

Volume Module:

Base Vol:	0	570	60	85	985	23	27	41	48	86	31	161
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	570	60	85	985	23	27	41	48	86	31	161
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	570	60	85	985	23	27	41	48	86	31	161
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	613	65	91	1059	25	29	44	52	92	33	173
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	613	65	91	1059	25	29	44	52	92	33	173
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	613	65	91	1059	25	29	44	52	92	33	173

$\begin{array}{llllllllllll}\text { Saturation Flow Module: } \\ \text { Sat/Lane: } & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\ 1900\end{array}$ Adjustment: $1.000 .93 \quad 0.75 \quad 0.930 .91 \quad 0.91 \quad 0.93 \quad 0.93 \quad 0.93$ $\begin{array}{lrllllllllll}\text { Lanes: } & 0.00 & 2.00 & 1.00 & 1.00 & 1.95 & 0.05 & 0.23 & 0.35 & 0.42 & 0.74 & 0.26 \\ 1.00\end{array}$
 Capacity Crit Moves
**** $0.08_{* * * *}^{0.11}$
$\begin{array}{lllllllllllll}\text { Green/Cycle: } & 0.00 & 0.43 & 0.43 & 0.11 & 0.54 & 0.54 & 0.11 & 0.11 & 0.11 & 0.18 & 0.18 & 0.18 \\ \text { Volume/Cap: } & 0.00 & 0.40 & 0.10 & 0.47 & 0.58 & 0.58 & 0.63 & 0.63 & 0.63 & 0.45 & 0.45 & 0.62\end{array}$ Delay/Veh: $\begin{array}{lllllllllllll}0.0 & 18.3 & 15.5 & 45.2 & 14.9 & 14.9 & 52.8 & 52.8 & 52.8 & 35.3 & 35.3 & 40.2\end{array}$ $\begin{array}{lrlllllllllll}\text { User DelAdj: } & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ \text { AdjDel/Veh: } & 0.0 & 18.3 & 15.5 & 45.2 & 14.9 & 14.9 & 52.8 & 52.8 & 52.8 & 35.3 & 35.3 & 40.2\end{array}$ LOS by Move: A \quad B \quad B \quad D \quad B \quad B \quad D \quad D \quad D \quad D $\begin{array}{llllllll}\text { D }\end{array}$ HCM2kAvgQ:

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Potrero HOPE Development EIR
 Wilbur Smith Associates

Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#12 Cesar Chavez/Vermont

Street Name: Approach:	Vermont North Bound			Street South Bound			Cesar Chavez StreetEast Bound					
Movement:		T	- R		- T	R		T	R	L	T	R
Control: Rights:	Yield Sign Include			Stop Sign			Uncontrolled Include			Uncontrolled Include		
nes:		0	0		0 1!	0	10	02	0		1	0
se Vol:	0	0	0	23	0	148	88	460	0	0	879	92
owth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	23	0	148	88	460	0	0	879	92
ded Vol:	\bigcirc	0	0	\bigcirc	0	0	0	0	0	0	0	0
asserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	23	0	148	88	460	0	0	879	92
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	0	24	0	157	94	489	0	0	935	98
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
nalVolume:	0	0	0	24	0	157	94	489	0	0	935	98

Critical Gap Module:
Critical Gp:xxxxx xxxx xxxxx $\begin{array}{llllll}6.8 & 6.5 & 6.9 & 4.1 & \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ FollowUpTim:xxxxx xxxx xxxxx 3.5 4.0 3.3 2.2 xxxx xxxxx xxxxx xxxx xxxxx --------------
 Potent Cap.: xxxx xxxx xxxxx 131 168 5091033 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: \quad xxxx xxxx xxxxx 117 85 509 681 xxxx xxxxx $\begin{array}{llllll}\text { xxxx xxxx xxxxx }\end{array}$ Volume/Cap: xxxx xxxx xxxx $0.210 .00 \quad 0.31 \quad 0.14$ xxxx xxxx xxxx xxxx xxxx

Level Of Service Module:

 LoS by Move: * * ${ }^{*}{ }^{*}{ }^{*}$ LTR - RT LT ${ }^{*}{ }^{*}{ }^{*}$ LT - TR - RT Movement: LT - LTR - RT LT -

 Shared LOS:

Note: Queue reported is the number of cars per lane.

Potrero HOPE Development EIR
 Wilbur Smith Associates

Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#13 Cesar Chavez/US 101 Off-Ramp \qquad

Street Name: Approach: Movement:	North		US 101 Off-RampBoundSouth					Bound		Cesar Chavez Street														
													Ou											
	L	T						T	R	L	-	T		R	L	-	T		R	L	-	T	-	R
Control:		ield	Sign			Yiel	d	Sign			Unco	ntr	oll			Unc	nt	ol						
Rights:			clude				ncl	lude				ncl					nc	ud						
Lanes:	0	00	0	1	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0					

Mod												
Growth Adj:	1.00	1. 00	1.00	1. 00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1. 00
Initial Bse:	0	0	296	0	0	\bigcirc	0	483	0	0	971	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	296	0	0	0	0	483	0	0	971	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	315	0	0	0	0	514	0	0	1033	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	315	0	0	-	0	514	0	0	1033	0

Crical Gap Module
Critical Gp:xxxxx xxxx 6.9 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: xxxxx xxxx 3.3 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx Capacity Module:
 Potent Cap: xxxx xxxx 748 xxxy xxxx xxxx xxxx xxxx xxxxx xxxx xxxx xxxyx Move Cap.: \quad xxxx xxxx 748 xxxx xxxx xxxxx Volume/Cap: xxxx xxxx 0.42 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx Level of Service Module:
2Way95thQ: xxxx xxxx 2.1 xxxx xyxx xxxxx xxxx xxxx xxxxx xxxx xyxx xyxxx
 Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 Shared LOS:

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#1001 25th/Texas Street
0.1 Worst Case Level Of Service: A[9.3]

Base Vol:	0	0	0	1	0	1	1	159	0	0	80	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	1	0	1	1	159	0	0	80	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	1	0	1	1	159	0	0	80	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
PHF Volume:	0	0	0	1	0	1	1	164	0	0	82	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	0	1	0	1	1	164	0	0	82	\bigcirc

Critical Gap Module
Critical Gp:xxxxx xxxx xxxxx $\quad 6.4$ 6.5 $\quad 6.2$ 4.1 xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: $x x x x x$ xxxx xxxxx $\begin{array}{lllll}3.5 & 4.0 & 3.3 & 2.2 & \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ Capacity Module
 Potent Cap.: xxxx xxxx xxxxx $744658 \quad 983-1528$ xxxx xxxxx xxxx xxxx xxxxx Move Cap.: \quad xxxx xxxx xxxxx $744657 \quad 9831528$ xxxx xxxxx xxxx xxxx xxxxx Volume/Cap: xxxx xxxx xxxx 0.000 .00 0.00 0.00 xxxx xxxx xxxx xxxx xxxx

Level Of Service Module
 Control Del:xxxxx xxxx xxxxx xxxxx xxxx xxxxx 7.4 xxxx xxxxx xxxxx xxxx xxxxx LOS by Move: * * * * * * A * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

\qquad
Note: Queue reported is the number of cars per lane.

Potrero HOPE Development EIR Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

Volume Module:												
Base Vol:	0	0	0	20	0	86	56	594	0	0	723	78
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	20	0	86	56	594	0	0	723	78
Added Vol:	0	0	0	2	0	76	240	1	\bigcirc	\bigcirc	0	30
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	22	0	162	296	595	0	0	723	108
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	0	0	24	0	174	318	640	0	0	777	116
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	24	0	174	318	640	0	0	777	116
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	-	24	0	174	318	640	0	0	777	116

Saturation Flow Module: $1900190019001900 \quad 19001900$ 1900 $19001900-1900$
Adjustment: 19001.00 1.00 0.681 .00 0.68 0.730 .92 $\begin{array}{lllllllllllll}\text { Adjustment: } & 1.00 & 1.00 & 1.00 & 0.68 & 1.00 & 0.68 & 0.73 & 0.92 & 1.00 & 1.00 & 0.83 & 0.83 \\ \text { Lanes: } & 0.00 & 0.00 & 0.00 & 0.12 & 0.00 & 0.88 & 0.66 & 1.34 & 0.00 & 0.00 & 2.61 & 0.39\end{array}$ $\begin{array}{lrrrrrrrrrrrr}\text { Lanes: } & 0.00 & 0.00 & 0.00 & 0.12 & 0.00 & 0.88 & 0.66 & 1.34 & 0.00 & 0.00 & 2.61 & 0.39 \\ \text { Final Sat.: } & 0 & 0 & 0 & 155 & 0 & 1141 & 921 & 2329 & 0 & 0 & 4131 & 617\end{array}$ Capacity Analysis Module

Vol/Sat:											
Crit Moves:	0.00	0.00	0.00	$\underset{* * * *}{0.15}$	0.00	0.15	$\underset{* * * *}{0.35}$	0.27	0.00	0.00	0.19
****	0.19										

Green/Cycle: $0.000 .00 \quad 0.00 \quad 0.250 .00 \quad 0.25 \quad 0.64 \quad 0.64 \quad 0.00 \quad 0.00 \quad 0.48 \quad 0.48$
 Delay/Veh: $\begin{array}{llrrrrrrrrrr} & 0.0 & 0.0 & 0.0 & 32.6 & 0.0 & 32.6 & 15.6 & 7.3 & 0.0 & 0.0 & 13.0 \\ 13.0\end{array}$ $\begin{array}{lrrrrrrrrrrrr}\text { AdjDel/Veh: } & 0.0 & 0.0 & 0.0 & 32.6 & 0.0 & 32.6 & 15.6 & 7.3 & 0.0 & 0.0 & 13.0 & 13.0\end{array}$ LOS by Move:
HCM2kAvgQ:
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Mon Jan 30, 2012 15:19:44
Page 4-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#2 Cesar Chavez/Pennsylvania/NB I-280 Off-Ramp

-----------|

Base Vol:	186	143	282	84	0	412	314	391	0	0	162	365
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	186	143	282	84	0	412	314	391	0	0	162	365
Added Vol:	28	43	0	5	0	0	1	2	0	0	2	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	214	186	282	89	0	412	315	393	0	0	164	368
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.00
PHF Volume:	223	194	294	93	0	429	328	409	0	0	171	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	223	194	294	93	0	429	328	409	0	0	171	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.0
FinalVolume:	223	194	294	93	0	429	328	409	0	0	171	

Saturation F	W	dule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.94	0.99	0.83	0.94	1.00	0.66	0.94	0.94	1.00	1.00	0.94	1.00
Lanes:	1.00	1.00	1.00	1.00	0.00	1.00	1.00	2.00	0.00	0.00	2.00	1.00
Final Sat.:	1787	1881	1579	1787	0	1263	1787	3574	0	0	3574	1900
Capacity Analysis Module												
Vol/Sat:	0.12	0.10	0.19	0.05	0.00	0.34	0.18	0.11	0.00	0.00	0.05	0.00
Crit Moves:	****					****		****				
Green/Cycle:	0.24	0.24	0.24	0.13	0.00	0.36	0.23	0.46	0.00	0.00	0.23	0.00
Volume/Cap:	0.51	0.42	0.76	0.39	0.00	0.94	0.81	0.25	0.00	0.00	0.21	0.00
Delay/Veh:	33.6	31.5	44.8	40.4	0.0	57.6	48.5	15.4	0.0	0.0	28.8	0.0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	33.6	31.5	44.8	40.4	0.0	57.6	48.5	15.4	0.0	0.0	28.8	0.0
LOS by Move:	C	C	D	D	A	E	D	B	A	A	C	A
HCM2kAvgQ:	6		9	3	0	16	11	4	0	0	2	0

Note: Queue reported is the number of cars per lane.

Potrero HOPE Development EIR

 Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#3 Pennsylvania/SB I-280 Off-Ramp

Volume Module:
Base Vol:

Base Vol:	0	151	0	0	218	0	0	0	0	483	0	49
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	151	0	0	218	0	0	0	0	483	0	49
Added Vol:	0	1	0	0	1	0	0	0	0	151	0	3
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	152	\bigcirc	0	219	0	0	0	0	634	0	52
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.00
PHF Volume:	0	163	0	0	235		0	0	0	682	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	163	0	-	235	0	0	0	0	682	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	0	163	-	-	235	-	0	0	0	682	0	0

Saturation Flow Module:											
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00											
Lanes:	0.00	2.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	2.00	0.00
Final Sat.:	0	1044	0	0	574	0	0	0	0	1159	0

Capacity Ana Vol/Sat:	ysis	0.16	xxxx	xxxx	0.41	xxxx	xxxx	xxxx	xxxx	0.59	xxxx	0.00
Crit Moves:		****										
Delay/Veh:	0.0	10.5	0.0	0.0	13.1	0.0	0.0	0.0	0.0	17.0	0.0	0.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	10.5	0.0	0.0	13.1	0.0	0.0	0.0	0.0	17.0	0.0	0.0
LOS by Move:		B	*	*	B			*		C	*	
ApproachDel:		10.5			13.1			xxxxx			17.0	
Delay Adj:		1.00			1.00			xxxxx			1.00	
ApprAdjDel:		10.5			13.1			xxxxx			17.0	
LOS by Appr:		B			B			*			C	
AllWayAvgQ:	0.0	0.2	0.0	0.6	0.6	0.6	0.0	0.0	0.0	1.3	0.0	0.0

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Mon Jan 30, 2012 15:19:44
Page 6-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#4 25th/Indiana Streets/NB I-280

----------|-

Base Vol:	30	289	11	0	0	0	93	146	0	0	179	104
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	30	289	11	0	0	0	93	146	0	0	179	104
Added Vol:	1	0	0	0	0	0	78	10	0	0	12	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	31	289	11	0	0	0	171	156	0	0	191	104
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	33	311	12	0	0	0	184	168	0	0	205	112
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	33	311	12	0	0	0	184	168	0	0	205	112
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	33	311	12	0	0	0	184	168	0	0	205	112

saturation Flow Module: 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 00

Final Sat.:	105	986	38	0	0	0	341	311	0	0	439

Capacity Analysis Module:

Vol/Sat:	0.32	0.32	0.31	xxxx	xxxx	xxxx	0.54	0.54	xxxx	xxxx	0.47	0.47
Crit Moves:												
Delay/Veh:	11.6	11.4	11.3	0.0	0.0	0.0	14.2	14.2	0.0	0.0	12.3	12.3
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	11.6	11.4	11.3	0.0	0.0	0.0	14.2	14.2	0.0	0.0	12.3	12.3
LOS by Move:	B	B	B		*		B	B			B	B
ApproachDel:		11.4			xxxxx			14.2			12.3	
Delay Adj:		1.00			xxxxx			1.00			1.00	
ApprAdjDel:		11.4			xxxxx			14.2			12.3	
LOS by Appr:		B			*			B			B	
AllWayAvgQ:	0.4	0.4	0.4	0.0	0.0	0.0	1.1	1.1	1.1	0.8	0.8	0.8

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Page 7-1
Potrero HOPE Development EIR Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#5 25th/Connecticut

Base Vol:	3	33	88	0	0	0	24	61	22	34	36	22
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	3	33	88	0	0	0	24	61	22	34	36	22
Added Vol:	44	25	140	3	19	1	3	50	9	46	65	4
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	47	58	228	3	19	1	27	111	31	80	101	26
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
PHF Volume:	56	69	271	4	23	1	32	132	37	95	120	31
Reduct Vol:	0	0	0	0	0		0	0	0	0	0	0
Reduced Vol:	56	69	271	4	23	1	32	132	37	95	120	31
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	56	69	271	4	23	1	32	132	37	95	120	31
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.14	0.17	0.69	0.13	0.83	0.04	0.16	0.66	0.18	0.39	0.49	0.12
Final Sat.:	104	128	504	75	472	25	104	426	119	252	318	82
Capacity Analysis Module:												
Vol/Sat:	0.54	0.54	0.54	0.05	0.05	0.05	0.31	0.31	0.31	0.38	0.38	0.38
Crit Moves:						****	****				****	
Delay/Veh:	12.5	12.5	12.5	8.8	8.8	8.8	10.3	10.3	10.3	11.0	11.0	11.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	12.5	12.5	12.5	8.8	8.8	8.8	10.3	10.3	10.3	11.0	11.0	11.0
LOS by Move:	B	B	B	A	A	A	B	B	B	B	B	B
ApproachDel:		12.5			8.8			10.3			11.0	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		12.5			8.8			10.3			11.0	
LOS by Appr:		B			A			B			B	
AllWayAvgQ:	1.0	1.0	1.0	0.0	0.0	0.0	0.4	0.4	0.4	0.5	0.5	0.5

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Mon Jan 30, 2012 15:19:45
Page 8-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#6 25th/Texas Street
Wor*

Street Name: Approach:	North Bound			Stree Sou	uth B	und		ast B	25th und		West Bound	und
Movement:		T	R		T	R	L	T	R	L	T	R
Control: Rights:	Stop Sign Include			Stop SignInclude			Uncontrolled			Uncontrolled		
Lanes:	0	00	0	0	0 1!	0	0	10	0			10
Volume Module:												
Base Vol:	0	0	0	68	0	6	2	159	0	0	80	48
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	68	0	6	2	159	0	0	80	48
Added Vol:	0	0	0	58	0	8	37	114	0	0	143	69
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	126	0	14	39	273	0	0	223	117
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
PHF Volume:	0	0	0	130	0	14	40	281	0	0	230	121
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	0	130	0	14	40	281	0	0	230	121

Critical Gap Module.
Critical Gp:xxxxx xxxx xxxxx $\quad 6.4$ 6.5 $\begin{array}{llll}\text { 6.2 } & \text { 4.1 } & \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ FollowUpTim: xxxxx xxxx xxxxx $\begin{array}{lllll}3.5 & 4.0 & 3.3 & 2.2 \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ Capacity Module:

 Volume/Cap: xxxx xxxx xxxx $0.310 .00 \quad 0.02$ 0.03 xxxx xxxx xxxx xxxx xxxx

Level Of Service Module:
2Way95thQ: xxxx xxxx xxxxx xxxx xxxx xxxxx 0.1 xxxx xxxxx xxxx xxxx xxxxx
 LOS by Move: * * * * * * A * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT
 SharedQueue: xxxxx xxxx xxxxx xxxxx 1.4 xxxxx 0.1 xxxx xxxxx xxxxx xxxx xxxxx
 Shared LOS:

ApproachLOS: \quad C
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Page 9-1

> Potrero HOPE Development EIR Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)
$* *$
Intersection \#7 23rd/Missouri \qquad

*********************** Missouri St 23rd St
 Volume Module:
Base Vol:

Base Vol:	35	15	0	0	20	16	17	0	44	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	35	15	0	0	20	16	17	0	44	0	0	\bigcirc
Added Vol:	8	47	0	0	38	8	17	0	12	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	43	62	0	0	58	24	34	0	56	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
PHF Volume:	45	65	0	0	60	25	35	0	58	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	45	65	0	0	60	25	35	0	58	0	0	0

Critical Gap Module
Critical Gp: 7.1 6.5 xxxxx xxxxx $6.5 \quad 6.2 \quad 4.1$ xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: $\begin{array}{llllll}3.5 & 4.0 & \text { xxxxx xxxxx } & 4.0 & 3.3 & 2.2 \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ Capacity Module:

 $\begin{array}{lllllllll}\text { Potent Cap.: } & 831 & 794 & \text { xxxxx } & \text { XXXX } & 765 & 900 & 900 & \text { xxxx } \\ \text { Move Cap.: } & 734 & 762 & \text { xxxxx } & \text { xxxx } & 734 & 900 & 900 & \text { xxxx } \\ \text { Mxxxx } & \text { xxxx } & \text { XXXX }\end{array}$

 Movement: LT - LTR - RT ${ }^{*} \mathrm{LT}^{*}-\mathrm{LTR}^{*}-\mathrm{RT}^{*} \mathrm{LT}^{\text {A }}$ - LTR - RT ${ }^{*} \mathrm{LT}^{*}$ - LTR - RT Shared Cap.: 750 xxxx xxxxx xxxx xxxx 776 xxxx xxxx xxxxx xxxx xxxx xxxxx SharedQueue: 0.5 xxxx xxxxx xxxxx xxxx 0.4 xxxxx xxxx xxxxx xxxxx xxxx xxxxx
 Shared LOS: B 10.6 10.2 B \quad xxxxxx

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM Mon Jan 30, 2012 15:19:45

Page 10-1

Potrero HOPE Development EIR
 Wilbur Smith Associates

Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#8 23rd/Wisconsin

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Page 11-1

> Potrero HOPE Development EIR Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#9 20th/Arkansas

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Mon Jan 30, 2012 15:19:45
Page 12-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#10 Missouri/22nd

Street Name: Approach:	North		Missouri Bound	Street			22nd Street					
Movement:		- T	- R		T	R		- T	- R	L	- T	R
Control: Rights:	Uncontrolled			Uncontrolled			Stop Sign			Stop Sign		
Lanes:		01	0	00	0	10		0	01	0	0	0
Volume Module:												
Base Vol:	0	30	0	0	25	1	0	0	1	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	30	0	0	25	1	0	0	1	0	0	0
Added Vol:	0	16	0	0	31	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	46	0	0	56	1	0	0	1	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	46	0	0	56	1	0	0	1	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	46	0	0	56	1	0	0	1	0	0	0

Critical Gap Module:
Critical Gp:xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 6.2 xxxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 3.3 xxxxx xxxx xxxxx

 Move Cap.: $\quad x x x x$ xxxx xxxxx $x x x x$ xxxx xxxxx $x x x x$ xxxx 1016 xxxx xxxx xxxxx Volume/Cap: xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0.00 xxxx xxxx xxxx

Level Of Service Module:

 LOS by Move: * * * * * * * * A * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 Shrd ConDel: xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx

ApproachDel:	xxxxxx	xxxxxx	8.5	xxxxxx
ApproachLOS:	*	*	A	*

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Page 13-1
Potrero HOPE Development EIR Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#11 Potrero/23rd

ume Module:												
Base Vol:	0	570	60	85	985	23	27	41	48	86	31	161
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	570	60	85	985	23	27	41	48	86	31	161
Added Vol:	0	0	6	43	0	-	0	12	0	3	7	24
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	570	66	128	985	23	27	53	48	89	38	185
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	613	71	138	1059	25	29	57	52	96	41	199
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	613	71	138	1059	25	29	57	52	96	41	199
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	613	71	138	1059	25	29	57	52	96	1	199

Saturation Flow Module:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
1900	1900									

Capacity Analysis Module:

Green/Cycle: $0.00 \begin{array}{lllllllll}0.43 & 0.43 & 0.11 & 0.54 & 0.54 & 0.11 & 0.11 & 0.11 & 0.18 \\ 0.18 & 0.18\end{array}$
Volume/Cap: $0.000 .40 \quad 0.12 \quad 0.70 \quad 0.58$
Delay/Veh: $\begin{array}{lllllllllllll}0.0 & 18.3 & 15.6 & 57.3 & 14.9 & 14.9 & 56.7 & 56.7 & 56.7 & 35.8 & 35.8 & 43.9\end{array}$
$\begin{array}{lrlllllllllll}\text { User DelAdj: } & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ \text { AdjDel/Veh: } & 0.0 & 18.3 & 15.6 & 57.3 & 14.9 & 14.9 & 56.7 & 56.7 & 56.7 & 35.8 & 35.8 & 43.9\end{array}$
$\begin{array}{lrrrrrrrrrrr}\text { Adj Del/Veh: } & 0.0 & 18.3 & 15.6 & 57.3 & 14.9 & 14.9 & 56.7 & 56.7 & 56.7 & 35.8 & 35.8 \\ \text { LOS by Move: } & \text { A } & \text { B } & \text { B } & \text { E } & \text { B } & \text { B } & \text { E } & \text { E } & \text { E } & \text { D } & \text { D }\end{array}$
HCM2kAvgQ:

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Mon Jan 30, 2012 15:19:45
Page 14-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#12 Cesar Chavez/Vermont $\underset{* ~}{\text { Average }}$

Street Name:	Vermont North Bound			StreetSouth Bound			Cesar Chavez Street								
Approach:				East Bound	West Bound										
Movement:	L - T - R							T	R		T	- R	L	T	R
Control:	Stop Sign			Stop Sign			Uncontrolled			Uncontrolled					
Rights:	Include			Include			Include			Include					
Lanes:		00	0		0 1!	0	1	02	0	0	1	0			
Volume Module:															
Base Vol:	0	0	0	23	0	148	88	460	0	0	879	92			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Initial Bse:	0	0	0	23	0	148	88	460	0	0	879	92			
Added Vol:	\bigcirc	\bigcirc	0	0	0	29	12	31	\bigcirc	0	76	\bigcirc			
PasserByVol:	0	0	0	0	0	0	0	,	0	0	0	0			
Initial Fut:	0	0	\bigcirc	23	0	177	100	491	0	0	955	92			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94			
PHF Volume:	0	0	0	24	0	188	106	522	0	0	1016	98			
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0			
FinalVolume:	0	0	0	24	0	188	106	522	0		1016	98			

Critical Gap Module:
Critical Gp:xxxxx xxxx xxxxx $\begin{array}{llllll}6.8 & 6.5 & 6.9 & 4.1 & \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ FollowUpTim: xxxxx xxxx xxxxx $\begin{array}{llllll}3.5 & 4.0 & 3.3 & 2.2 & \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ Capacity Module:
Cnflict Vol: xxxx xxxx xxxxx $15391800 \quad 557 \quad 1114$ xxxx xxxxx \quad xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx $108 \quad 81 \quad 479 \quad 634$ xxxx xxxxx $\begin{array}{llllll}\text { xxxx } & \text { xxxx xxxxx }\end{array}$ Move Cap.: \quad xxxx xxxx xxxxx $\begin{array}{lllllllll}94 & 67 & 479 & 634 & \text { xxxx xxxxx } & \text { xxxx xxxx xxxxx }\end{array}$

Level Of Service Module:
2Way95thQ: xxxx xxxx xxxxx xxxx xxxx xxxxx 0.6 xxxx xxyxx xxxx xxxx xxxxx

 Movement: LT - LTR - RT LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx xxxx 326 xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx
 Shared LOS:

**
Note: Queue reported is the number of cars per lane.

Potrero HOPE Development EIR
Wilbur Smith Associates Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#13 Cesar Chavez/US 101 Off-Ramp ***************************************

Street Name: Approach:	North Bound			ff-RampSouth Bound			Cesar Chavez Street East Bound West Bound					
Movement:		T	R	L	T	R	L	T	- R	L	- T	R
Control: Rights:	Yield Sign			Yield Sign			Uncontrolled Include			Uncontrolled Include		
Lanes:	0	0	01	00	0	0	0	02	0	0	02	0
Volume Module:												
Base Vol:	0	0	296	0	0	0	0	483	0	0	971	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	296	0	0	0	0	483	0	0	971	0
Added Vol:	0	0	210	0	0	0	0	31	0	0	76	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	506	0	0	0	0	514	0	0	1047	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	538	0	0	0	0	547	0	0	1114	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	538	0	0	0	0	547	0	0	1114	0

Critical Gap Module:
Critical Gp:xxxxx xxxx 6.9 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: xxxxx xxxx 3.3 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx ------------|--
 Potent Cap: xxxx xxxx 730 xxxy xxxx xxxx xxxx xxxx xxxxx xxxx xxxx xxxyx
 $\begin{array}{llrlllllll}\text { Move Cap.: } & \text { xxxx } & \text { xxxx } & 730 & \text { xxxx } & \text { xxxx } & \text { xxxxx } & \text { xxxx } & \text { xxxx } & \text { xxxxx } \\ \text { Volume/Cap: } & \text { xxxx } & \text { xxxx } & 0.74 & \text { xxxx } \\ \text { xxxx } & \text { xxxx } & \text { xxxxx }\end{array}$ Volume/Cap: xxxx xxxx 0.74 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx Level of Service Module:
2Way95thQ: \quad xxxx xxxx 6.6 xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx
 LOS by Move: ${ }_{*}^{*}{ }_{*}^{*}$ Movement: LT - LTR - RT LT - LTR - RT \quad LT - LTR - RT \quad LT - LTR - RT

 Shared LOS:

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Fri Jan 13, 2012 11:03:43
Page 3-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

Volume Module:

Base Vol:	0	0	0	20	0	86	56	594	0	0	723	78
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	\bigcirc	20	0	86	56	594	0	0	723	78
Added Vol:	0	0	0	1	0	50	153	0	0	0	0	21
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	\bigcirc	0	0	21	0	136	209	594	0	0	723	99
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	0	0	23	0	146	225	639	0	0	777	106
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	23	0	146	225	639	0	0	777	106
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	0	23	0	146	225	639	0	0	777	106

Saturation Flow Module: 190019001900190019001900 1900 190019001900 Adjustment: 1.001 .00 1.00 $0.681 .00 \quad 0.680 .700 .921 .00$ $\begin{array}{lllllllllllll}\text { Adjustment: } & 1.00 & 1.00 & 1.00 & 0.68 & 1.00 & 0.87 & 0.52 & 1.48 & 0.00 & 0.00 & 2.64 & 0.36\end{array}$ $\begin{array}{lrrrrrrrrrrrr} & 0 & 0 & 174 & 0 & 1124 & 691 & 2588 & 0 & 0.00 & 4181 & 572\end{array}$ Capacity Analysis Module Vol/Sat:
Crit Moves: $\begin{array}{lllllllllll}0.00 & 0.00 & 0.00 & \underset{* * * *}{0.13} & 0.00 & 0.13 & \underset{* * * *}{0.33} & 0.25 & 0.00 & 0.00 & 0.19\end{array} 0.19$
Green/Cycle: $0.000 .00 \quad 0.00 \quad 0.25 \quad 0.00 \quad 0.25 \quad 0.64 \quad 0.64 \quad 0.00 \quad 0.00 \quad 0.48 \quad 0.48$ $\begin{array}{lllllllllllll}\text { Delay/Veh: } & 0.00 & 0.00 & 0.00 & 0.51 & 0.00 & 0.51 & 0.54 & 0.39 & 0.00 & 0.00 & 0.39 & 0.39\end{array}$ User DelAdj: $1.00 \begin{array}{lrrrrrrrrrr} & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 1.00\end{array}$ $\begin{array}{lllllllllllll}\text { AdjDel/Veh: } & 0.0 & 0.0 & 0.0 & 29.7 & 0.0 & 29.7 & 13.7 & 7.0 & 0.0 & 0.0 & 13.0 & 13.0\end{array}$ LOS by Move:
HCM2kAvgQ:
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Fri Jan 13, 2012 11:03:43
Page 4-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#2 Cesar Chavez/Pennsylvania/NB I-280 Off-Ramp

-----------|

Base Vol:	186	143	282	84	0	412	314	391	0	0	162	,
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	186	143	282	84	0	412	314	391	0	0	162	365
Added Vol:	20	26	0	3	0	0	0	1	0	0	2	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	206	169	282	87	0	412	314	392	0	0	164	36
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.0
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.0
PHF Volume:	215	176	294	91	0	429	327	408	0	0	171	
Reduct Vol:	0	0	0	\bigcirc	0	0	0	0	\bigcirc	\bigcirc	0	
Reduced Vol:	215	176	294	91	0	429	327	408	0	0	171	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.0
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.
FinalVolume:	215	176	294	91	0	429	327	408	0	0	171	

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.94	0.99	0.83	0.94	1.00	0.66	0.94	0.94	1.00	1.00	0.94	1.00
Lanes:	1.00	1.00	1.00	1.00	0.00	1.00	1.00	2.00	0.00	0.00	2.00	1.00
Final Sat.:	1787	1881	1579	1787	0	1263	1787	3574	0	0	3574	1900
Capacity Analysis Module:												
Vol/Sat:	0.12	0.09	0.19	0.05	0.00	0.34	0.18	0.11	0.00	0.00	0.05	0.00
Crit Moves:	****							****				
Green/Cycle:	0.24	0.24	0.24	0.13	0.00	0.36	0.23	0.46	0.00	0.00	0.23	0.00
Volume/Cap:	0.49	0.38	0.76	0.38	0.00	0.94	0.80	0.25	0.00	0.00	0.21	0.00
Delay/Veh:	33.1	30.7	44.8	40.2	0.0	57.6	48.3	15.4	0.0	0.0	28.8	0.0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	33.1	30.7	44.8	40.2	0.0	57.6	48.3	15.4	0.0	0.0	28.8	0.0
LOS by Move:	C	C	D	D	A	E	D	B	A	A	C	A
HCM2kAvgQ:	6		9	3	0	16	11	4	0	0	2	0

Note: Queue reported is the number of cars per lane.

Existing + Proj PM Fri Jan 13, 2012 11:03:44

Page 5-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#3 Pennsylvania/SB I-280 Off-Ramp

Volume Module:
Base Vol:

Base Vol:	0	151	0	0	218	0	0	0	0	483	\bigcirc	49
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	151	0	0	218	0	0	0	0	483	0	49
Added Vol:	0	1	0	0	0	0	0	0	0	97	0	2
PasserByVol:	0	0	\bigcirc	0	0	\bigcirc	0	0	0	0	0	0
Initial Fut:	0	152	0	0	218	0	0	0	0	580	0	51
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.00
PHF Volume:	0	163	0	0	234	0	0	0	0	624	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	163	0	0	234	0	0	0	0	624	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	0	163	0	0	234	0	0	0	0	624	0	0
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	2.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	2.00	0.00	1.00
Final Sat.:	0	1064	0	0	582	0	0	0	0	1162	0	716
Capacity Analysis Module:												
Vol/Sat:	xxxx	0.15	xxxx	xxxx	0.40	xxxx	xxxx	xxxx	xxxx	0.54	xxxx	0.00
Crit Moves:												
Delay/Veh:	0.0	10.3	0.0	0.0	12.9	0.0	0.0	0.0	0.0	15.5	0.0	0.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	10.3	0.0	0.0	12.9	0.0	0.0	0.0	0.0	15.5	0.0	0.0
LOS by Move:	*	B	*	*	B	*		*	*	C	*	
ApproachDel:		10.3			12.9			xxxx			15.5	
Delay Adj:		1.00			1.00			xxxx			1.00	
ApprAdjDel:		10.3			12.9			xxxx			15.5	
LOS by Appr:		B			B			*			C	
AllWayAvgQ:	0.0	0.2	0.0	0.6	0.6	0.6	0.0	0.0	0.0	1.1	0.0	0.0

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Fri Jan 13, 2012 11:03:44
Page 6-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#4 25th/Indiana Streets/NB I-280

Volume Module:

Base Vol:	30	289	11	0	0	0	93	146	0	0	179	104
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	30	289	11	0	0	0	93	146	0	0	179	104
Added Vol:	0	0	0	0	0	0	52	7	0	0	8	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	30	289	11	0	0	0	145	153	0	0	187	104
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	32	311	12	0	0	0	156	165	0	0	201	112
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	32	311	12	0	0	0	156	165	0	0	201	112
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	32	311	12	0	0	0	156	165	0	0	201	112
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.18	1.75	0.07	0.00	0.00	0.00	0.49	0.51	0.00	0.00	0.64	0.36
Final Sat.:	103	1004	39	0	0	0	318	336	0	0	441	246
Capacity Analysis Module:												
Vol/Sat:	0.31	0.31	0.31	xxxx	xxxx	xxxx	0.49	0.49	xxxx	xxxx	0.46	0.46
Crit Moves:	****							****				
Delay/Veh:	11.4	11.2	11.1	0.0	0.0	0.0	13.1	13.1	0.0	0.0	12.0	12.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	11.4	11.2	11.1	0.0	0.0	0.0	13.1	13.1	0.0	0.0	12.0	12.0
LOS by Move:	B	B	B				B	B	*	*	B	B
ApproachDel:		11.2	xxxxxx			13.1			12.0			
Delay Adj:		1.00	xxxxx			1.00			1.00			
ApprAdjDel:		11.2	xxxxx				13.1			12.0		
LOS by Appr:		B			*			B			B	
AllWayAvgQ:	0.4	0.4	0.4	0.0	0.0	0.0	0.9	0.9	0.9	0.8	0.8	0.8

$\begin{array}{lllllllllllllll} & 0.4 & 0.4 & 0.4 & 0.0 & 0.0 & 0.0 & 0.9 & 0.9 & 0.9 & 0.8 & 0.8 & 0.8\end{array}$
Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Potrero HOPE Development EIR

 Wilbur Smith AssociatesLevel Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#5 25th/Connecticut

Volume Module:				33	88	0	0	0	24	61	22	34
Base Vol:	3	36	36									
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	3	33	88	0	0	0	24	61	22	34	36	22
Added Vol:	22	20	86	2	13	1	3	36	5	30	44	4
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	25	53	174	2	13	1	27	97	27	64	80	26
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
PHF Volume:	30	63	207	2	15	1	32	115	32	76	95	31
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	30	63	207	2	15	1	32	115	32	76	95	31
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	30	63	207	2	15	1	32	115	32	76	95	31

Saturation	Flow Module:										
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00											
Lanes:	0.10	0.21	0.69	0.12	0.82	0.06	0.18	0.64	0.18	0.38	0.47

Lan	0.10	0.21	0.69	0.12	0.82	0.06	0.18	0.64	0.18	0.38	0.47	0.15
Final Sat	77	162	533	79	515	40	27	455	127	266	333	108

Vol/Sat:	0.39	0.39	0.39	0.03	0.03	0.03	0.25	0.25	0.25	0.29	0.29	0.29
Crit Moves:												
Delay/Veh:	10.0	10.0	10.0	8.3	8.3	8.3	9.3	9.3	9.3	9.6	9.6	9.6
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	10.0	10.0	10.0	8.3	8.3	8.3	9.3	9.3	9.3	9.6	9.6	9.6
LOS by Move:	A	A	A	A	A	A	A	A	A	A	A	A
ApproachDel:		10.0			8.3			9.3			9.6	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		10.0			8.3			9.3			9.6	
LOS by Appr:		A			A			A			A	
AllWayAvgQ:	0.6	0.6	0.6	0.0	0.0	0.0	0.3	0.3	0.3	0.4	0.4	0.4

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Fri Jan 13, 2012 11:03:4
Page 8-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#6 25th/Texas Street
Average Delay (sec/ven) :

Street Name: Approach:	North Bound			Stree Sou	South Bound	ound		East Bound	25th pund	treet	West Bound	und
Movement:		- T	R	L	T	R	L	T	R	L	-	R
Control: Rights:	Stop Sign Include			Stop Sign Include			Uncontrolled Include			Uncontrolled Include		
anes:	0	00	00	0	0 1!	0	0	10	0	0		0
ume Module:												
ase Vol:	0	0	0	68	0	6	2	159	0	0	80	48
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	68	0	6	2	159	0	0	80	48
Added Vol:	0	0	0	34	0	4	20	80	0	0	93	40
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	102	0	10	22	239	0	0	173	88
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
PHF Volume:	0	0	0	105	0	10	23	246	0	0	178	91
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	0	105	0	10	23	246	0	0	178	91

Critical Gap Module
Critical Gp:xxxxx xxxx xxxxx $\quad 6.4$ 6.5 $\quad 6.2$ 4.1 xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx $\quad 3.5$ 4.0 $3.3 \quad 2.2$ xxxx xxxxx xxxxx xxxx xxxxx Capacity Module:
 Potent Cap.: xxxx xxxx xxxxx 523 466 Move Cap.: \quad xxxx xxxx xxxxx 516 458 $821 \quad 1306$ xxxx xxxxx \quad xxxx xxxx xxxxx Volume/Cap: xxxx xxxx xxxx 0.20 0.00 0.01
evel Of Service Module
 ontrol Del:xxxxx xxxx xxxxx xxxxx xxxx xxxxx OS by Move: * * * * * * A * * * * Movement: LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx xxxx 534 xxxxx xxxx xyxx xxxxx xxxx xxxx xxxxx SharedQueue: xxxxx xxxx xxxxx xxxxx 0.8 xxxxx 0.1 xxxx xxxxx xxxxx xxxx xxxxx
 Shared LOS:

**
Note: Queue reported is the number of cars per lane.
Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)
 \qquad Worst Case Level Of Service: B[10.1]

Base Vol:	35	15	0	0	20	16	17	0	44	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	35	15	0	0	20	16	17	0	44	0	0	0
Added Vol:	4	27	0	0	22	5	10	0	7	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	39	42	0	0	42	21	27	0	51	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
PHF Volume:	41	44	0	0	44	22	28	0	53	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	41	44	0	0	44	22	28	0	53	0	0	\bigcirc

l Gap Module:
Critical Gp: 7.1 6.5 xxxxx xxxxx $6.5 \quad 6.2 \quad 4.1$ xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: 3.5 4.0 xxxxx xxxxx $4.0 \quad 3.3 \quad 2.2$ xxxx xxxxx xxxxx xxxx xxxxx Capacity Module:
Cnflict Vol: 11683 xxxxx $8 x$ xxx $1090 \quad 0 \quad$ xxxx xxxxx 0 xxxx xxxx xxxxx

 $\begin{array}{lllllllllllll}\text { Volume/Cap: } & 0.05 & 0.06 & \text { xxxx } & \text { xxxx } & 0.06 & 0.02 & 0.03 & \text { xxxx } & \text { xxxx }\end{array}$ Level of Service Module:
2Way95thQ: xxxx xxxx xxxxx xxxx xxxx xxxxx 0.1 xxxx xxxxx xxxx xxxx xxxxx Control Del: XXXXX XXXX XXXXX XXXXX XXXX XXXXX 9.1 XXXX XXXXX XXXXX XXXX XXXXX LOS by Move: * * * * * * A * * * * * Movement: LT - LTR - RT Shared Cap.: 787 xxxx xxxxx xxxx xxxx 801 xxxx xxxx xxxxx xxxx xxxx xxxxx SharedQueue: 0.4 xxxx xxxxx xxxxx xxxx 0.3 xxxxx xxxx xxxxx xxxxx xxxx xxxxx
 Shared LOS: B * * * * A * * * * *

ApproachDel:	10.1	9.9	xxxxxx	xxxxxx
ApproachLOS:	B	A	*	*

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Fri Jan 13, 2012 11:03:44
Page 10-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#8 23rd/Wisconsin

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Page 11-1

> Potrero HOPE Development EIF Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#9 20th/Arkansas

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Fri Jan 13, 2012 11:03:44
Page 12-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#10 Missouri/22nd

Street Name: Approach:	North		Missouri Street				22nd Street						
Movement:		- T	R		- T	R		- T	- R		T		
Control: Rights:	Uncontrolled Include			Uncontrolled			Stop Sign Include			Stop Sign Include			
Lanes:		10	0	0	0	10	0	00	01	0		0	
Volume Module:													
Base Vol:	25	30	0	0	25	1	0	0	1	0	0		
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		. 00
Initial Bse:	25	30	0	0	25	1	0	0	1	0	0		
Added Vol:	0	10	0	0	19	0	0	0	0	0	0		
PasserByVol:	0	0	0	0	0	0	\bigcirc	0	0	0	0		
Initial Fut:	25	40	0	0	44	1	0	0	1	0	0		
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		. 00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		. 00
PHF Volume:	25	40	0	0	44	1	0	0	1	\bigcirc	0		
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0		
inalVolume:	25	40	0	0	44	1	0	0	1	0	0		

Critical Gap Module:
Critical Gp: 4.1 xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 6.2 xxxxx xxxx xxxxx FollowUpTim: 2.2 xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 3.3 xxxxx xxxx xxxxx
enflict Vol 45 xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx $45 \quad$ xxxx xxxx xxxxx Potent Cap.: 1576 xxxx xxxxx \quad xxxx \quad xxxx xxxxx \quad xxxx xxxx 1031 xxxx xxxx xxxxx Move Cap.: 1576 xxxx xxxxx \quad xxxx xxxx xxxxx \quad xxxx xxxx 1031 xxxx xxxx xxxxx Volume/Cap: 0.02 xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0.00 xxxx xxxx xxxx
evel of Service Module:

 LOS by Move: A * * * * * * * A * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT
 Shrd ConDel: 7.3 xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxyx xxxxx xxxxx xxxx xxxxx Shared LOS: A * * * *

Note: Queue reported is the number of cars per lane.

* ${ }^{2}$ Queue reported is the number of cars per lane. .

Page 13-1

> Potrero HOPE Development EIF Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#11 Potrero/23rd

Volume Module:		0	570	60	85	985	23	27	41	48	86	31
Base Vol:	0	500	161									
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	570	60	85	985	23	27	41	48	86	31	161
Added Vol:	0	0	4	28	0	0	0	8	0	2	5	16
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	570	64	113	985	23	27	49	48	88	36	177
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	613	69	122	1059	25	29	53	52	95	39	190
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	613	69	122	1059	25	29	53	52	95	39	190
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	613	69	122	1059	25	29	53	52	95	39	190

Saturation Flow Module:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
1900	1900									

Capacity Analysis Module:

Vol/Sat:	0.00	0.17	0.05	0.07	$\underset{* * * *}{0.31}$	0.31	0.07	$\underset{* * * *}{0.07}$	0.07	$\underset{* * * *}{0.09}$	0.09
Crit Moves:	0.12										

Green/Cycle: 0.000 .43 0.43 $0.11 \begin{array}{llllllll} & 0.54 & 0.54 & 0.11 & 0.11 & 0.11 & 0.18 & 0.18 \\ 0.18\end{array}$

Delay/Veh: $\begin{array}{llllllllllll}0.0 & 18.3 & 15.6 & 51.9 & 14.9 & 14.9 & 55.3 & 55.3 & 55.3 & 35.7 & 35.7 & 42.4\end{array}$
$\begin{array}{lrllllllllll}\text { User DelAdj: } & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ \text { AdjDel/Veh: } & 0.0 & 18.3 & 15.6 & 51.9 & 14.9 & 14.9 & 55.3 & 55.3 & 55.3 & 35.7 & 35.7 \\ 42.4\end{array}$
LOS by Move: $\begin{array}{rlrlrrrrr}\text { A } & \text { B } & \text { B } & \text { D } & \text { B } & \text { B } & \text { E } & \text { E } & \text { E }\end{array}$
HCM2kAvgQ:

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Existing + Proj PM
Fri Jan 13, 2012 11:03:4
Page 14-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#12 Cesar Chavez/Vermont
$\underset{* ~}{\text { Average }}$

Street Name: Approach:	Vermont North Bound			Street South Bound			Cesar Chavez StreetEast Bound					
Movement:		- T	- R		T	R	L	T	- R	L	- T	R
Control: Rights:		Stop Sign		Stop Sign			Uncontrolled			Uncontrolled		
Lanes:	0	00	0	0	0 1!	0	1	02	0	0	1	10
Volume Module:												
Base Vol:	0	0	0	23	0	148	88	460	0	0	879	92
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	23	0	148	88	460	0	0	879	92
Added Vol:	0	0	0	0	0	20	8	20	0	0	50	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	23	0	168	96	480	0	0	929	92
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	0	24	0	179	102	511	0	0	988	98
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	0	24	0	179	102	511	0	0	988	98

Critical Gap Module
Critical Gp:xxxxx xxxx xxxxx $\begin{array}{llllll}6.8 & 6.5 & 6.9 & 4.1 & x x x x & x x x x x \\ \text { xxxxx } & \text { xxxx xxxxx }\end{array}$ FollowUpTim:xxxxx xxxx xxxxx 3.5 4.0 $3.3 \quad 2.2$ xxxx xxxxx xxxxx xxxx xxxxx Capacity Module:
 Potent Cap. : xxxx xxxx xxxxx 11686489650 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: \quad xxxx xxxx xxxxx $102 \quad 73$ 489 650 xxxx xxxxx \quad xxxx xxxx xxxxx Volume/Cap: xxxx xxxx xxxx 0.24 0.00 0.37 0.16 xxxx xxxx xxxx xxxx xxxx

Level of Service Module

 Los by Move: ** LT - LTR - RT LT - LTR - RT LT - LTR - RT
 SharedQueue: xxxxx xxxx xxxxx xxxxx 3.8 xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx Shrd ConDel: xxxxx xxxx xxxxx xxxxx 31.0 xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx Shared LOS:

Note: Queue reported is the number of cars per lane.

Potrero HOPE Development EIR
Wilbur Smith Associates Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#13 Cesar Chavez/US 101 Off-Ramp ***

Critical Gap Module:
Critical Gp:xxxxx xxxx 6.9 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: xxxxx xxxx 3.3 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx -allow Capacity Module:
 Potent Cap.: xxxx xxxx 737 xxxx xxxx xxxxx xxxx xxxx xxxxx Move Cap.: \quad xxxx xxxx 737 xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx
 -----------|---------
2Way95thQ: xxxx xxxx 4.4 xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx

 Movement: LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx xxxx xxxx xxxxx xyxx xxxx xxxxx xxxx xxxx xxxxx SharedQueue: xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx
 Shared LOS:

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario Thu Jan 19, 2012 13:27:54

Page 3-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

Volume Module:

Base Vol:	0	0	0	35	0	298	227	1129	0	0	1337	164
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	35	0	298	227	1129	0	0	1337	164
Added Vol:	0	0	0	0	\bigcirc		0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	35	0	298	227	1129	0	0	1337	164
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	0	0	38	-	320	244	1214	0	0	1438	176
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	38	0	320	244	1214	0	0	1438	176
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	0	38	0	320	244	1214	0	0	1438	176

Saturation Flow Module:
Sat/Lane:
1900
1900 $1900190019001900 \quad 19001900$ $\begin{array}{llllllllllll}\text { Adjustment: } & 1.00 & 1.00 & 1.00 & 0.68 & 1.00 & 0.68 & 0.67 & 0.93 & 1.00 & 1.00 & 0.84 \\ 0.83\end{array}$ $\begin{array}{lllllllllllll}\text { Final Sat.: } & 0 & 0 & 0 & 136 & 0 & 1159 & 422 & 2928 & 0 & 0 & 4243 & 520\end{array}$ Capacity Analysis Module

Vol/Sat:	0.00	0.00	0.00	$\underset{* * *}{0.28}$	0.00	0.28	$\underset{* * * *}{0.58}$	0.41	0.00	0.00	0.34
Crit Moves:	0.34										

Green/Cycle: 0.00 0.00 0.00 0.25 $0.00 \quad 0.25$ 0.64 $0.64 \quad 0.00$ 0.00 $0.48 \quad 0.48$ Volume/Cap: $0.000 .00 \quad 0.00 \quad 1.09 \quad 0.00 \quad 1.09$ $\begin{array}{lrrrrrrrrrrr}\text { Delay/Veh: } & 0.0 & 0.0 & 0.0 & 104.5 & 0.0 & 104.5 & 39.3 & 9.8 & 0.0 & 0.0 & 17.2 \\ 17.2\end{array}$ $\begin{array}{llllllllllllll}\text { AdjDel/Veh: } 0.0 & 0.0 & 0.0 & 104.5 & 0.0 & 104.5 & 39.3 & 9.8 & 0.0 & 0.0 & 17.2 & 17.2\end{array}$ Los by Move:
HCM2kAvgQ:
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario
Thu Jan 19, 2012 13:27:54
Page 4-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#2 Cesar Chavez/Pennsylvania/NB I-280 Off-Ramp

-----------|

Base Vol:	410	260	450	90	0	400	560	820	0	0	740	501
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	410	260	450	90	0	400	560	820	0	0	740	501
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	410	260	450	90	0	400	560	820	0	0	740	501
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.00
PHF Volume:	427	271	469	94	0	417	583	854	0	0	771	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	427	271	469	94	0	417	583	854	0	0	771	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	427	271	469	94	0	417	583	854	0	0	771	0

Saturation Flow Module:											
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900

Capacity Analysis Module:
$\begin{array}{llllllllllll}\text { Vol/Sat: } & 0.24 & 0.14 & 0.30 & 0.05 & 0.00 & 0.33 & 0.33 & 0.24 & 0.00 & 0.00 & 0.22\end{array} 0.00$ Crit Moves:
Green/Cycle: $0.24 \quad 0.24 \quad 0.24 \quad 0.13 \quad 0.00 \quad 0.39 \quad 0.26 \quad 0.46 \quad 0.00 \quad 0.00 \quad 0.20 \quad 0.00$ $\begin{array}{llllllllllll}\text { Volume/Cap: } & 0.98 & 0.59 & 1.21 & 0.39 & 0.00 & 0.85 & 1.28 & 0.52 & 0.00 & 0.00 & 1.08 \\ 0.00\end{array}$ Delay/Veh: $\begin{array}{lllllllllllllllllllll}71.6 & 35.5 & 152.2 & 40.5 & 0.0 & 41.6 & 174.4 & 18.7 & 0.0 & 0.0 & 92.8 & 0.0\end{array}$ User DelAdj: $1.001 .00 \begin{array}{lllllllllll} & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$
 LoS by Move: E D F HCM2kAvgQ: $17 \quad 7 \quad 26$

Note: Queue reported is the number of cars per lane

Default Scenario Thu Jan 19, 2012 13:27:54

Page 5-1
Potrero HOPE Development EIR Wilbur Smith Associates

Level Of Service Computation Repor

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#3 Pennsylvania/SB I-280 Off-Ramp

Base Vol:	0	301	0	0	549	0	0	0	0	728	0	55
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	301	0	0	549	0	0	0	0	728	0	55
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	301	0	0	549	0	\bigcirc	0	0	728	0	55
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.00
PHF Volume:	0	324	0	0	590	0	0	0	0	783	0	0
Reduct Vol:	0	0	0	0	-	0	0	0	0	0	0	0
Reduced Vol:	0	324	0	0	590	0	0	0	0	783	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	0	324	0	0	590	0	0	0	0	783	0	0
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	2.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	2.00	0.00	1.00
Final Sat.:	0	957	0	0	538	0	0	0	0	972	0	574
Capacity Analysis Module:												
Vol/Sat:	xxxx	0.34	xxxx	xxxx	1.10	xxxx	xxxx	xxxx	xxxx	0.80	xxxx	0.00
Crit Moves:					****							
Delay/Veh:	0.0	13.9	0.0	0.0	92.8	0.0	0.0	0.0	0.0	33.9	0.0	0.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	13.9	0.0	0.0	92.8	0.0	0.0	0.0	0.0	33.9	0.0	0.0
LOS by Move:	*	B		*	F			*	*	D	*	
ApproachDel:		13.9			92.8			xxxx			33.9	
Delay Adj:		1.00			1.00			xxxxx			1.00	
ApprAdjDel:		13.9			92.8			xxxxx			33.9	
LOS by Appr:		B			F			*			D	
AllWayAvgQ:	0.0	0.5	0.0	12.4	12.4	12.4	0.0	0.0	0.0	3.2	0.0	0.0

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario
Thu Jan 19, 2012 13:27:54
Page 6-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#4 25th/Indiana Streets/NB I-280

Volume Modul												
Base Vol:	45	635	23	0	0	0	145	224	0	0	184	110
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	45	635	23	0	-	0	145	224	0	0	184	110
Added Vol:	0	\bigcirc	0	0	\bigcirc	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	45	635	23	0	0	0	145	224	0	0	184	110
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	48	683	25	0	0	0	156	241	0	0	198	118
Reduct Vol:	0	0	0	\bigcirc	0	0	0	0	0	0	0	0
Reduced Vol:	48	683	25	0	0	0	156	241	0	0	198	118
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	48	683	25	0	0	0	156	241	0	0	198	118
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.13	1.81	0.06	0.00	0.00	0.00	0.39	0.61	0.00	0.00	0.63	0.37
Final Sat.:	70	1003	37	0	0	0	225	347	0	0	363	217
Capacity Analysis Module:												
Vol/Sat:	0.69	0.68	0.68	xxxx	xxxx	xxxx	0.69	0.69	xxxx	xxxx	0.54	0.54
Crit Moves:	****							****				
Delay/Veh:	21.8	21.4	20.9	0.0	0.0	0.0	21.5	21.5	0.0	0.0	15.7	15.7
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	21.8	21.4	20.9	0.0	0.0	0.0	21.5	21.5	0.0	0.0	15.7	15.7
LOS by Move:	C	C	C			*	C	C		*	C	C
ApproachDel:		21.4	xxxxxx				21.5			15.7		
Delay Adj:		1.00	xxxxx				1.00			1.00		
ApprAdjDel:		21.4	xxxxxx				21.5			15.7		
LOS by Appr:		C			*			C			C	
AllWayAvgQ:	1.9	1.8	1.8	0.0	0.0	0.0	2.0	2.0	2.0	1.1	1.1	1.1

$\begin{array}{llllllllllllll} & 1.9 & 1.8 & 1.8 & 0.0 & 0.0 & 0.0 & 2.0 & 2.0 & 2.0 & 1.1 & 1.1 & 1.1\end{array}$
Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario Thu Jan 19, 2012 13:27:54

Page 7-1

Potrero HOPE Development EIR

 Wilbur Smith Associates
Level Of Service Computation Repor

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#5 25th/Connecticut

Base Vol:	20	105	112	0	0	0	26	67	92	124	54	24
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	20	105	112	0	0	0	26	67	92	124	54	24
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	20	105	112	\bigcirc	0	0	26	67	92	124	54	24
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
PHF Volume:	24	125	133	0	0	0	31	80	110	148	64	29
Reduct Vol:	0	0	0	\bigcirc	0	0	0	0	0	0	0	0
Reduced Vol:	24	125	133	0	0	0	31	80	110	148	64	29
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	24	125	133	0	0	0	31	80	110	148	64	29
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.08	0.44	0.48	0.00	0.00	0.00	0.14	0.36	0.50	0.61	0.27	0.12
Final Sat.:	62	324	346	0	0	0	105	270	371	434	189	84
Capacity Analysis Module:												
Vol/Sat:	0.39	0.39	0.39	xxxx	xxxx	xxxx	0.30	0.30	0.30	0.34	0.34	0.34
Crit Moves:		****					****				****	
Delay/Veh:	10.3	10.3	10.3	0.0	0.0	0.0	9.4	9.4	9.4	10.2	10.2	10.2
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	10.3	10.3	10.3	0.0	0.0	0.0	9.4	9.4	9.4	10.2	10.2	10.2
LOS by Move:	B	B	B			*	A	A	A	B	B	B
ApproachDel:		10.3			xxxxx			9.4			10.2	
Delay Adj:		1.00			xxxxx			1.00			1.00	
ApprAdjDel:		10.3			xxxxx			9.4			10.2	
LOS by Appr:		B			*			A			B	
AllWayAvgQ:	0.5	0.5	0.5	0.0	0.0	0.0	0.4	0.4	0.4	0.5	0.5	0.5

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario
Thu Jan 19, 2012 13:27:54
Page 8-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#6 25th/Dakota

Street Name: Approach:	Dakota North Bound			Stree So	South Bound	ound	East Bound			treet	West Bound	und
Movement:		- T	R		T	R	L	T	R	L	-	R
Control: Rights:	Stop Sign Include			Stop Sign Include			Uncontrolled Include			Uncontrolled Include		
Lanes:	0	00	00	0	0 1!	0	0	10	0	0	00	0
ume Module:												
se Vol:	0	0	0	74	0	61	27	146	0	0	114	47
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	74	0	61	27	146	0	0	114	47
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	74	0	61	27	146	0	0	114	47
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
PHF Volume:	0	0	-	76	0	63	28	151	0	0	118	48
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	0	76	0	63	28	151	0	0	118	48

ritical Gap Module
Critical Gp:xxxxx xxxx xxxxx $\quad 6.4$ 6.5 $\begin{array}{llll}6.2 & 4.1 & \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ FollowUpTim:xxxxx xxxx xxxxx $\begin{array}{llllll}3.5 & 4.0 & 3.3 & 2.2 \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ Capacity Module:
Cnflict Vol: xxxx xxxx xxxxx $\begin{array}{lllll}348 & 348 & 142 & 166 & \text { xxxx xxxxx } \\ \text { xxxx } & \text { xxxx xxxxx }\end{array}$ Potent Cap.: xxxx xxxx xxxxx 653 579 011 Move Cap.: \quad xxxx xxxx xxxxx $643 \quad 567911 \quad 1424$ xxxx xxxxx $\quad 9 x x x$ xxxx xxxxx Volume/Cap: xxxx xxxx xxxx 0.120 .00 0.07 0.02 xxxx xxxx xxxx xxxx xxxx
evel Of Service Module
 Control Del: $x \times X X X$ XXXX XXXXX XXXXX XXXX XXXXX $\quad .6$ XXXX XXXXX XXXXX XXXX XXXXX OS by Move: * * * * * Movement: LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx xxxx 742 xxxxx xxxx xyxx xxxxx xxxx xxxx xxxxx SharedQueue:xxxxx xxxx xxxxx xxxxx 0.7 xxxxx 0.1 xxxx xxxxx xxxxx xxxx xxxxx

ApproachDel: xxxxxx $\quad 11.0 \quad$ B \quad Bxxxxx \quad xxxxx

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario Thu Jan 19, 2012 13:27:54

Page 9-1

Potrero HOPE Development EIR

 Wilbur Smith Associates
Level Of Service Computation Repor

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#7 23rd/Dakota
Average Delay (sec/veh) : 5.9 Worst Case Level Of Service: B[10.1]

Street Name: Approach: Movement:	Dakota						23rd					
	North Bound			South Bound			East Bound			West Bound		
		- T	R		- T	R		- T	R		- T	R
Control:	Stop Sign			Stop Sign			Uncontrolled			Uncontrolled		
Rights:	Include			Include			Include			Include		
Lanes:		10	0		0	10		0 1!	0		0 1!	0
Volume Module:												
Base Vol:	61	15	0	0	24	36	17	0	103	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	61	15	0	0	24	36	17	0	103	0	\bigcirc	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	\bigcirc	\bigcirc
Initial Fut:	61	15	0	0	24	36	17	0	103	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
PHF Volume:	64	16	0	0	25	38	18	\bigcirc	107	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	64	16	0	0	25	38	18	0	107	0	0	0

Critical Gap Module
 FollowUpTim: 3.5 4.0 xxxxx xxxxx $4.0 \quad 3.3 \quad 2.2$ xxxx xxxxx xxxxx xxxx xxxxx Capacity Module:

 Level of Service Module.
2Way95thQ: xxxx xxxx xxxxx xxxx xxxx xxxxx 0.1 xxxx xxxxx xxxx xxxx xxxxx Control Del:xxxxx xxxx xxxxx xxxxx xxxx xxxxx 9.1 xxxx xxxxx xxxxx xxxx xxxxy Los by Move: * * * * * * A * * * * * * Movement: LT - LTR - RT Shared Cap.: 790 xxxx xxxxx xxxx xxxx 827 xxxx xxxx xxxxx xxxx xxxx xxxxx SharedQueue: 0.3 xxxx xxxxx xxxxx xxxx 0.2 xxxxx xxxx xxxxx xxxxx xxxx xxxxx
 Shared LOS: B * * * * A * * * * *

ApproachDel:	10.1	9.7	xxxxx	xxxxxx
ApproachLOS:	B	A	*	*

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario Thu Jan 19, 2012 13:27:55

Page 10-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#8 23rd/Wisconsin

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario Thu Jan 19, 2012 13:27:55

Page 11-1

Potrero HOPE Development EIR

 Wilbur Smith Associates
Level Of Service Computation Repor

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#9 20th/Arkansas

olume Modu												
Base Vol:	10	33	9	12	36	30	11	107	14	27	214	16
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	10	33	9	12	36	30	11	107	14	27	214	16
Added Vol:	0	0	0	0	0	0	0		0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	\bigcirc	0
Initial Fut:	10	33	9	12	36	30	11	107	14	27	214	16
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
PHF Volume:	12	38	10	14	42	35	13	124	16	31	249	19
Reduct Vol:	0	0	0	0	0	0	0	0	\bigcirc	0	0	0
Reduced Vol:	12	38	10	14	42	35	13	124	16	31	249	19
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	12	38	10	14	42	35	13	124	16	31	249	19

Saturation	Flow Module:										
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00											
Lanes:	0.19	0.64	0.17	0.15	0.47	0.38	0.08	0.81	0.11	0.11	0.83
Final Sat.:	129	424	116	107	321	267	64	619	81	83	662

662 ----- - -

Vol/Sat:	0.09	0.09	0.09	0.13	0.13	0.13	0.20	0.20	0.20	0.38	0.38	0.38
Crit Moves:				****								
Delay/Veh:	8.4	8.4	8.4	8.4	8.4	8.4	8.6	8.6	8.6	10.0	10.0	10.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	8.4	8.4	8.4	8.4	8.4	8.4	8.6	8.6	8.6	10.0	10.0	10.0
LOS by Move:	A	A	A	A	A	A	A	A	A	A	A	A
ApproachDel:		8.4			8.4			8.6			10.0	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		8.4			8.4			8.6			10.0	
LOS by Appr:		A			A			A			A	

Note: Queue reported is the number of cars per lane
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario Thu Jan 19, 2012 13:27:55

Page 12-1

otrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#10 22nd/Missouri Street
Average Delay (sec/ven) :

Street Name: Approach:	North		Missouri Bound	Street			22nd Street					
Movement:	T		- R		T	R		- T	- R			- R
Control: Rights:	UncontrolledInclude			Uncontrolled Include			Stop Sign Include			Stop Sign		
Lanes:	0	01	0	0	00	0		00	01	0	0	0
Volume Module:												
Base Vol:	0	107	0	0	77	1	0	0	1	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	107	0	0	77	1	0	0	1	0	0	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	107	0	0	77	1	0	\bigcirc	1	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
PHF Volume:	-	167	0	0	120	2	0	0	2	0	0	\bigcirc
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	167	0	0	120	2	0	0	2	0	0	0

ritical Gap Module
Critical Gp:xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 6.2 xxxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 3.3 xxxxx xxxx xxxxx
 Potent Cap.: xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx 903 xxxx xxxx xxxxx
 Volume/Cap: xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0.00 xxxx xxxx xxxx
evel Of Service Module

 LoS by Move: * * * * * * * A * *
Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 Shrd ConDel:xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx

ApproachDel: $\underset{\text { ApproachLos: }}{\text { xxxxx }} \underset{*}{\text { xxxxxx }}$

Note: Queue reported is the number of cars per lane.

Default Scenario Thu Jan 19, 2012 13:27:55

Page 13-1
Potrero HOPE Development EIR Wilbur Smith Associates

Level of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#11 Potrero/23rd

Volume Module:
Base Vol:

Base Vol: Growth Adj: Added Vol: Added Vol: PasserByVol $\begin{array}{llrrrrrrrrrrr}\text { Initial Fut: } & 0 & 083 & 100 & 105 & 1256 & 19 & 24 & 37 & 43 & 96 & 29 & 179\end{array}$ $\begin{array}{lllllllllllll}\text { User Adj: } & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ \text { PHF Adj: } & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93\end{array}$ $\begin{array}{lrrrrrrrrrrrr} \\ \text { PHF Adj: } & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\ \text { PHF Volume: } & 0 & 1057 & 108 & 113 & 1351 & 20 & 26 & 40 & 46 & 103 & 31 & 192\end{array}$ PRF Volume: Reduct Vol: $\begin{array}{lrrrrrrrrrrr}\text { Reduced Vol: } & 0 & 1057 & 108 & 113 & 1351 & 20 & 26 & 40 & 46 & 103 & 31 \\ \text { PCE Adj: } & 192\end{array}$ \begin{tabular}{llllllllllll}
PCE Adj: \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

MLF Adj: \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

FinalVolume: \& 0 \& 1057 \& 108 \& 113 \& 1351 \& 20 \& 26 \& 40 \& 46 \& 103 \& 31

\hline

 $\begin{array}{lrllllllllll}\text { Saturation } & \text { Flow Module: } \\ \text { Sat/Lane: } & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900\end{array} 1900$ $\begin{array}{lllllllllllll}\text { Adjustment: } & 1.00 & 0.93 & 0.75 & 0.93 & 0.91 & 0.91 & 0.93 & 0.93 & 0.93 & 0.82 & 0.82 & 0.82\end{array}$

Final Sat.: \& 0 \& 0.038 \& 1422 \& 1769 \& 3409 \& 52 \& 409 \& 631 \& 733 \& 1200

\hline
\end{tabular} Capacity Analysis Module:

Vol/Sat:	0.00	0.30	0.08	0.06	$\underset{* * * *}{0.40}$	0.40	$\underset{* * * *}{0.06}$	0.06	0.06	$\underset{* * * *}{0.09}$
Crit Moves:	0.09	0.12								

Green/Cycle: 0.000 .43 0.43 $0.11 \begin{array}{llllllll} & 0.54 & 0.54 & 0.11 & 0.11 & 0.11 & 0.18 & 0.18 \\ 0.18\end{array}$ Volume/Cap: 0.000 .69 Delay/Veh: $\begin{array}{llllllllllll}0.0 & 23.2 & 16.2 & 49.6 & 18.0 & 18.0 & 49.3 & 49.3 & 49.3 & 35.8 & 35.8 & 42.8\end{array}$ $\begin{array}{lrllllllllll}\text { User DelAdj: } & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ \text { AdjDel/Veh: } & 0.0 & 23.2 & 16.2 & 49.6 & 18.0 & 18.0 & 49.3 & 49.3 & 49.3 & 35.8 & 35.8 \\ 42.8\end{array}$
 HCM2kAvgQ:

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario
Thu Jan 19, 2012 13:27:55
Page 14-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#12 Cesar Chavez/Vermont
Average Delay (sec/veh): 248.2 Worst Case Level Of Service: F[2187.5]

Street Name: Approach:	North Bound			South Bound			Cesar Chavez Street East Bound West Bound					
Movement:		- T	R		T	R		T	R	,	T	R
Control: Rights:	Stop Sign Include			Stop Sign Include			Uncontrolled Include			Uncontrolled Include		
Lanes:	0	00	0	0	0 1!	0	10	2	0	0	1	10
Volume Module:												
Base Vol:	0	0	0	148	0	148	88	560	0	0	1539	132
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	148	0	148	88	560	0	0	1539	132
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	148	\bigcirc	148	88	560	0	0	1539	132
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	0	157	0	157	94	596	0	0	1637	140
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	0	157	0	157	94	596	0	0	1637	140

ritical Gap Module
Critical Gp:xxxxx xxxx xxxxx $\begin{array}{llllll}6.8 & 6.5 & 6.9 & 4.1 & x x x x & x x x x x \\ \text { xxxxx } & \text { xxxx xxxxx }\end{array}$ FollowUpTim:xxxxx xxxx xxxxx 3.5 4.0 $3.3 \quad 2.2$ xxxx xxxxx xxxxx xxxx xxxxx Capacity Module:
Cnflict Vol: xxxx xxxx xxxxx $21932490 \quad 889 \quad 1778$ xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx $40 \quad 30 \quad 290178$ xxxx xxxxx xxxx xxxx xxxxx Move Cap.: \quad xxxx xxxx xxxxx 3122290334 xxxx xxxxx xxxx xxxx xxxxx Volume/Cap: xxxx xxxx xxxx 5.00 0.00 0.54 0.26 xxxx xxxx xxxx xxxx xxxx
evel of Service Module

 Los by Move: * * * * * * ${ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}$ Movement: LT - LTR - RT Shared Cap.: Xxxx Xxxx Xxxxx xxxx 57 Xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx
 Shared LOS:
ApproachDel: xxxxxx $\quad 2187.5 \quad \underset{*}{\text { ApproachLOS: }}$
**
Note: Queue reported is the number of cars per lane.

Default Scenario Thu Jan 19, 2012 13:27:55

Page 15-1

Potrero HOPE Development EIR

 Wilbur Smith AssociatesLevel Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#13 Cesar Chavez/US 101 Off-Ramp
Average Delay (sec/veh): 23.0 Worst Case Level of Service

Street Name: Approach:	North		US 101 Off-RampBoundSouth Bound							Cesar East Bound				Cha	Street				
Movement:	L	T	-	R	L	-	T	-	R					R	L	-	T	-	R
Control:	Yield SignInclude					Yield Sign Include				UncontrolledInclude					Uncontrolled Include				
Rights:																			
Lanes:	0	00	0	1	0	0	0	0	0	0	0	2		0	0	0	2	0	0

Mod												
Growth Adj:	1.00	1. 00	1.00	1. 00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1. 00
Initial Bse:	0	0	671	0	0	0	0	708	0	0	1671	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	671	0	0	0	0	708	0	0	1671	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	714	0	0	0	0	753	0	0	1778	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	714	0	0	-	0	753	0	0	1778	0

Critical Gap Module
Critical Gp:xxxxx xxxx 6.9 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: xxxxx xxxx 3.3 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx Capacity Module:
Cnflict Vol: xxxx xxxx 377 xxxx xyxx xxxxx xxxx xxxx xxxxx xxxx xxyx xxyxx Potent Cap.: xxxx xxxx 627 xxxx xxxx xxxxx $\begin{array}{llllll}\text { fxxx } & \text { xxxx } & \text { xxxxx } & \text { xxxx } & \text { xxxx xxxxx }\end{array}$
 Volume/Cap: xxxx xxxx 1.14 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx Level Of Service Module:
2Way95thQ: xxxx xxxx 22.7 xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx
 LOS by Move: * * F Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 Shrd ConDel:xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx xyxxx xxxx xxxxx Shared LOS:

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario Thu Jan 19, 2012 13:27:55

Page 16-1

Potrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#1001 25th/Texas Street
treet Name:
0.1

Worst Case Level Of Service: B[10.3]

Street Name:	Texas Street						25th Street					
Approach:	North Bound			South Bound			East Bound			West Bound		
Movement:		T	R		T	R	L	T	R	L	T	R
Control: Rights:	Stop Sign Include			Stop Sign			Uncontrolled Include			Uncontrolled Include		
Lanes:	0	0	0	0	0 1!	0	0	10	0	0	01	0
Volume Module:												
Base Vol:	0	0	0	2	0	1	1	219	0	0	161	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	2	0	1	1	219	0	0	161	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	2	0	1	1	219	0	0	161	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
PHF Volume:	0	0	0	2	0	1	1	226	0	0	166	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	0	2	0	1	1	226	0	0	166	0

ritical Gap Module
Critical Gp:xxxxx xxxx xxxxx $\quad 6.4$ 6.5 $\quad 6.2$ 4.1 xxxx xxxxx xxxxx xxxx xxxxx
 apacity Module:

 Volume/Cap: xxxx xxxx xxxx 0.00 0.00 0.00 0.00 xxxx xxxx xxxx xxxx xxxx

Level Of Service Module:

Movement: LT - LTR - RT LT - LTR - RT
LT - LTR - RT LT - LTR - RT
 0.0 xxxx xxxxx xxxxx xxxx xxxxx Shared Los: ApproachDel
xxxxxx
10.3
B
7.5 XXXX XXXXX XXXXX XXXX XXXXX

ApproachLOS:
Note: Queue reported is the number of cars per lane.

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 3-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

Base Vol:	0	0	0	35	0	298	227	1129	0	0	1337	164
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	35	0	298	227	1129	0	0	1337	164
Added Vol:	0	0	0	2	0	77	253	1	0	0	0	34
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	37	0	375	480	1130	0	0	1337	198
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	0	0	40	0	403	516	1215	0	0	1438	213
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	40	0	403	516	1215	0	0	1438	213
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	0	40	0	403	516	1215	0	0	1438	213

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	1.00	1.00	0.68	1.00	0.68	0.78	0.92	1.00	1.00	0.83	0.83
Lanes:	0.00	0.00	0.00	0.09	0.00	0.91	0.60	1.40	0.00	0.00	2.61	0.39
Final Sat.:	0	0	0	116	0	1177	893	2451	0	0	4136	612
Capacity Analysis Module:												
Vol/Sat:	0.00	0.00	0.00	0.34	0.00	0.34	0.58	0.50	0.00	0.00	0.35	0.35
Crit Moves:						****	****				****	
Green/Cycle:	0.00	0.00	0.00	0.25	0.00	0.25	0.64	0.64	0.00	0.00	0.48	0.48
Volume/Cap:	0.00	0.00	0.00	1.35	0.00	1.35	1.12	0.77	0.00	0.00	0.72	0.72
Delay/Veh:	0.0	0.0	0.0	205.4	0.0	205.4	87.3	12.3	0.0	0.0	17.6	17.6
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	0.0	0.0	205.4	0.0	205.4	87.3	12.3	0.0	0.0	17.6	17.6
LOS by Move:	A	A	A	F	A	F	F	B	A	A	B	B
HCM2kAvge:	0	0	0	27	0	27	38	17	0	0	12	12

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 4-1

> Potrero HOPE Development EIR
> Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#2 Cesar Chavez/Pennsylvania/NB I-280 Off-Ramp

Cycle (sec):	90		Critical Vol./Cap. (X) :	1.075
Loss Time (sec) :	15	$(\mathrm{Y}+\mathrm{R}=5.0 \mathrm{sec})$	Average Delay (sec/veh) :	85.2
Optimal Cycle:	90		Level Of Service:	F

Approach:	North Bound			South Bound			East Bound			West Bound		
Movement :	L -	T	- R	L -	T	R	L	- T	- R	L	T	- R
Control: Rights:	Split Phase Include			Split Phase Ovl			Protected Include			Protected Ignore		
Min. Green:	22	22	22	12	12	12	18	41	41	18	18	18
Lanes:	10	- 1	0	10	0	01	10	,	0	00	- 2	01
Volume Module:												
Base Vol:	410	260	450	90	0	400	560	820	0	0	740	501
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	410	260	450	90	0	400	560	820	0	0	740	501
Added Vol:	31	44	0	5	0	0	1	2	0	0	3	3
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	441	304	450	95	0	400	561	822	0	0	743	504
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.00
PHF Volume:	459	317	469	99	0	417	584	856	0	0	774	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	459	317	469	99	0	417	584	856	0	0	774	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	459	317	469	99	0	417	584	856	0	0	774	0

Saturation	Flow Module:											
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.94	0.99	0.83	0.94	1.00	0.66	0.94	0.94	1.00	1.00	0.94	1.00
Lanes:	1.00	1.00	1.00	1.00	0.00	1.00	1.00	2.00	0.00	0.00	2.00	1.00
Final Sat.:	1787	1881	1579	1787	0	1263	1787	3574	0	0	3574	1900

Capacity Analysis Module:
Vol/Sat: $\quad 0.26 \quad 0.17 \quad 0.30$
$\begin{array}{llllllllll}* * * * \\ * * * * & 0.00 & 0.33 & 0.33 & 0.24 & 0.00 & 0.00 & 0.22 & 0.00\end{array}$ Green/Cycle: $\begin{array}{lllllllllllll}0.24 & 0.24 & 0.24 & 0.13 & 0.00 & 0.39 & 0.26 & 0.46 & 0.00 & 0.00 & 0.20 & 0.00\end{array}$
 Delay/Veh: $\begin{array}{llllllllllllllllllll} & 31.3 & 39.1 & 152.2 & 41.0 & 0.0 & 41.6 & 175.3 & 18.8 & 0.0 & 0.0 & 94.3 & 0.0\end{array}$ User DelAdj: $1.001 .00 \begin{array}{llllllllll} & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 1.00\end{array}$ AdjDel/Veh: 91.3 39.1 152.2 41.0 $0.0 \begin{array}{lllllllll} & 41.6 & 175.3 & 18.8 & 0.0 & 0.0 & 94.3 & 0.0\end{array}$ HCM2kAvge: \qquad 63
ote: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 5-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
$* ~$
Intersection \#3 Pennsylvania/SB I-280 Off-Ramp

me Module												
Base Vol:	0	226	0	0	412	0	0	0	0	728	0	55
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	226	0	0	412	0	0	0	0	728	0	55
Added Vol:	0	1	0	0	1	0	0	0	0	160	0	3
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	227	0	0	413	0	0	0	0	888	0	58
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.00
PHF Volume:	0	244	0	0	444	0	0	0	0	955	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	244	0	0	444	0	0	0	0	955	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	0	244	0	0	444	0	0	0	0	955	0	0
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	2.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	2.00	0.00	1.00
Final Sat.:	0	951	0	0	542	0	0	0	0	1028	0	612
Capacity Analysis Module:												
Vol/Sat:	xxxx	0.26	xxxx	xxxx	0.82	xxxx	xxxx	xxxx	xxxx	0.93	xxxx	0.00
Crit Moves:		****			****					****		
Delay/Veh:	0.0	12.7	0.0	0.0	32.8	0.0	0.0	0.0	0.0	50.1	0.0	0.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	12.7	0.0	0.0	32.8	0.0	0.0	0.0	0.0	50.1	0.0	0.0
LOS by Move:	*	B	*	*	D	*	*	*	*	F	*	
ApproachDel:		12.7			32.8			xxxx			50.1	
Delay Adj:		1.00			1.00			xxxxx			1.00	
ApprAdjDel:		12.7			32.8			xxxxx			50.1	
LOS by Appr:		B			D			*			F	
AllWayAvgQ:	0.0	0.3	0.0	3.5	3.5	3.5	0.0	0.0	0.0	5.8	0.0	

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 6-1

$$
\begin{gathered}
\text { Potrero HOPE Development EIR } \\
\text { Wilbur Smith Associates }
\end{gathered}
$$

| Level Of Service Computation Report | |
| :--- | :--- | :--- |
| 2000 HCM | 4-Way Stop Method (Future Volume Alternative) |

$$
(\mathrm{Y}+\mathrm{R}=4.0 \mathrm{sec}) \quad \begin{aligned}
& \text { Average Delay (} \mathrm{se} \\
& \\
& \text { Level Of Service }
\end{aligned}
$$

25th Street

Street Name: Approach:	North Indiana			South Bound			East Bound			West Bound		
Movement:		- T	- R		- T		L		-	L	T	-
Control: Rights:	Stop SignInclude			Stop SignInclude			Stop Sign Include			Stop Sign Include		
uanes:		10	0		00	00	0	10	00	0	00	10
ne Mod												
e Vol:	45	635	23	0	0	0	145	224	0	0	184	110
owth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ial Bse:	45	635	23	0	0	0	145	224	0	0	184	110
ded Vol:	1	0	0	0	0	0	82	11	0	0	13	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	46	635	23	0	0	0	227	235	0	0	197	110
er Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
F Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
HF Volume:	49	683	25	0	0	0	244	253	0	0	212	118
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
duced Vol:	49	683	25	0	0	0	244	253	0	0	212	118
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
nalVolume:	49	683	25	0	0	0	244	253	0	0	212	118

Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.13	1.80	0.07	0.00	0.00	0.00	0.49	0.51	0.00	0.00	0.64	0.36
inal Sat.	69	956	35	0	0	0	279	288	0	0	358	200

Capacity Analysis Module:

$* * * *$											
Delay/Veh:	24.6	24.1	23.6	0.0	0.0	0.0	37.9	37.9	0.0	0.0	17.6

Delay Adj:	24.6	24.1	23.6	0.0	0.0	0.0	37.9	37.9	0.0	0.0	17.6
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

 ApproachDel:

Dexxxx	24.1	37.9	17.6	
Delay Adj:	1.00	xxxxx	1.00	1.00

ApprAdjDel:	24.1	xxxxxx	1.00	1.00
Apres	$*$	37.9	17.6	

AllWayAvgQ: $\begin{array}{llllllllllll}2.2 & 2.1 & 2.1 & 0.0 & 0.0 & 0.0 & 4.5 & 4.5 & 4.5 & 1.3 & 1.3 & 1.3\end{array}$ Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 7-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
$* ~$

AllWayAvgQ: $\begin{array}{llllllllllllll}3.5 & 3.5 & 3.5 & 0.0 & 0.0 & 0.0 & 0.9 & 0.9 & 0.9 & 1.6 & 1.6 & 1.6\end{array}$ Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 8-1

Potrero HOPE Development EIR

Wilbur Smith Associates

Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#6 $25 \mathrm{th} /$ Texas Street

Average Delay (sec/veh): 6.2 Worst Case Level Of Service: D[30.1]															
Street Name: Approach: Movement:	Texas Street						25th Street								
	North Bound			South Bound			East Bound			West Bound					
	L	T	R	L	- T	-		- T		L	T				
Control: Rights: Lanes:	Stop Sign Include			Stop Sign			Uncontrolled			Uncontrolled					
					Incl										
	0	00	0					0 1!	0	0	10	0	0	0	10
ume Module:															
se Vol:	0	0	0	128	0	11	3	219	0	0	161	73			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Initial Bse:	0	0	0	128	0	11	3	219	0	0	161	73			
Added Vol:	0	0	0	58	0	8	37	122	0	0	153	69			
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0			
nitial Fut:	0	0	0	186	0	19	40	341	0	0	314	142			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
PhF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97			
PHF Volume:	0	0	0	192	0	20	41	352	0	0	324	146			
Reduct Vol:	0	0	0		0	0	0		0	0		0			
nalVolume:	0	0	0	192	0	20	41	352	0	0	324	146			

Citical Gap Module:
Critical Gp: xxxxx xxxx xxxxx $\quad 6.4 \quad 6.5 \quad 6.2 \quad 4.1$ xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: xxxx xxxx xxxxx $\begin{array}{lllll}3.5 & 4.0 & 3.3 & 2.2 \text { xxxx xxxx xxxxx xxxx xxxxx }\end{array}$

Capacity Module:
Cnflict Vol: xxxx xxxx xxxxx $831831 \quad 397 \quad 470$ xxxx xxxxx xxxx xxxx xxxx Potent Cap.: xxxx xxxx xxxxx $\begin{array}{llllllll} & 342 & 307 & 657 & 1102 & \text { xxxx xxxxx } & \text { xxxx xxxx xxxxx } \\ \text { mxxx xxxxx }\end{array}$ Volume/Cap: xxxx xxxx xxxx $0.58 \quad 0.00 \quad 0.03 \quad 0.04$ xxxx xxxx \quad xxxx xxxx xxxx -----------|----------
 0.04 xxxx xxxx xxxx xxxx \quad xxx

2Way95thQ: xxxx xxxx xxxx xxxx xxxx xxxxx Control Del: xxxxx xxxx xxxxx xxxxx xxxx xxxxx LOS by Move: ${ }_{*}^{*}{ }_{*}^{\text {a }} \underset{*}{*} \underset{*}{*}$ Movement: LT - LTR - RT LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx xxxx 348 xxxx $\begin{array}{llll}\text { Shared Cap.: xxxx xxxx xxxxx } & \text { xxxx } & 348 & \text { xxxxx } \\ \text { SharedQueue: xxxxx xxxx xxxxx }\end{array}$ Shared ConDel:xxxxx xxxx xxxxx xxxxx 30.1 xxxxx Shrd ConDel: xxxxx xxxx xxxxx xxxxx 30.1 xxxxx Shared LOS:
ApproachDel: xxxxxx 30.1

Note: Queue reported is the number of cars per lane.

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 9-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#7 23rd/Missouri

Average Delay (sec/veh): 7.8 Worst Case Level Of Service: B [11.1]												
Street Name: Approach: Movement :		Missouri St					23rd St					
	North Bound			South Bound			East Bound			West Bound		
	L	- T	- R	L	- T	- R	L	- T	- R	L	- T	- R
Control:	Stop Sign Include			Stop SignInclude			UncontrolledInclude			UncontrolledInclude		
Rights:												
Lanes:		1	0	0	0	10	0	0 1!	0	0	1!	
Volume Module:												
Base Vol:	46	15	0	0	24	36	17	0	77	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	46	15	0	0	24	36	17	0	77	0	0	0
Added Vol:	8	48	0	0	38	8	17	0	12	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	54	63	0	0	62	44	34	0	89	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
PHF Volume:	56	66	0	0	65	46	35	0	93	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	56	66	0	0	65	46	35	0	93	0	0	0

Critical Gap Module:
Critical Gp: $7.1 \quad 6.5$ xxxxx $\operatorname{xxxxx} \quad 6.5 \quad 6.2 \quad 4.1$ xxxx xxxxx xxxx xxxx xxxx FollowUpTim: $\begin{array}{llllll}3.5 & 4.0 \text { xxxxx xxxxx } & 4.0 & 3.3 & 2.2 \text { xxxx xxxxx xxxx xxxx xxxxx }\end{array}$ Capacity Module:
Cnflict Vol: 172117 xxxxx xxx 164 0 $0 \quad 0 \quad \operatorname{xxx}$ xxxxx xxxx xxxx xxxxy Potent Cap.: $795 \quad 777$ xxxxx $\begin{array}{llllllll} & 7 x \times x & 733 & 900 & 900 & \text { xxxx xxxxx } & \text { xxxx xxxx xxxxx }\end{array}$
 Volume/cap: 0.080 .09 xxxx \quad xxxx $0.090 .05 \quad 0.04$ xxxx xxxx xxxx xxxx xxxx
Level Of Service Module:

 LOS by Move: ${ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{\text {A }}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}$ Shared Cap.: 714 xxxx xxxxx xxxx xxxx 773 xxxx xxxx xxxxx xxxx xxxx xxxxx SharedQueue: 0.6 xxxx xxxxx xxxxx xxx 0.5 xxxxx xxxx xxxxx xxxxx xxxx xxxxx Shrd ConDel: 11.1 xxxx xxxxx xxxxx xxxx 10.4 xxxxx xxxx xxxxx xxxxx xxxx xxxxx Shared LOS: \quad B $\quad * \quad * \quad \underset{*}{*} \underset{*}{\text { * }}$
ApproachDel: 11.1 xexxxx 10.4 xxxxx
Approachlos: B

B
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 10-1
Potrero HOPE Development EIR
Wilbur Smith Associates

Saturation Flow Module:
Adjustment:
1.00
1.00
1.00
:---

Capacity Analysis Module:
Vol/Sat: $\quad \begin{array}{rllllllllll}0.25 & 0.25 & 0.21 & 0.21 & \operatorname{xxxx} & \operatorname{xxxx} & \mathrm{xxxx} & \mathrm{xxxx} & 0.11 & \mathrm{xxxx} & 0.11\end{array}$

Delay/Veh:	0.0	8.3	8.3	8.5	8.5	0.0	0.0	0.0	0.0	8.0	0.0	8.0

Delay Adj: $\begin{array}{lllllllllllll}1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$ $\begin{array}{lrrrrrrrrrrrrrrrrrrrrr}\text { AdjDel/Veh: } & 0.0 & 8.3 & 8.3 & 8.5 & 8.5 & 0.0 & 0.0 & 0.0 & 0.0 & 8.0 & 0.0 & 8.0\end{array}$ OS by Move:
ApproachDel:
Delay Adj:
ApprAdjDel:
ApprAdjDel:
$\begin{array}{lrrrrrrrrrrrr}\text { AllWayAvgQ: } & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.0 & 0.0 & 0.0 & 0.1 & 0.1 & 0.1\end{array}$ Note: Queue reported is the number of cars per lane.

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 11-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
$* *$
Intersection \#9 20th/Arkansas

du												
Base Vol:	10	33	9	12	36	30	11	107	14	27	214	16
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	10	33	9	12	36	30	11	107	14	27	214	16
Added Vol:	2	4	1	4	9	0	0	2	4	3	1	3
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	12	37	10	16	45	30	11	109	18	30	215	19
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
PHF Volume:	14	43	12	19	52	35	13	127	21	35	250	22
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	14	43	12	19	52	35	13	127	21	35	250	22
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	14	43	12	19	52	35	13	127	21	35	250	22
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.20	0.63	0.17	0.18	0.49	0.33	0.08	0.79	0.13	0.11	0.82	0.07
Final Sat.:	134	412	111	120	337	225	60	592	98	88	634	56
Capacity Analysis Module:												
Vol/Sat:	0.10	0.10	0.10	0.16	0.16	0.16	0.21	0.21	0.21	0.39	0.39	0.39
Crit Moves:		****			**			****			****	
Delay/Veh:	8.5	8.5	8.5	8.7	8.7	8.7	8.8	8.8	8.8	10.2	10.2	10.2
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	8.5	8.5	8.5	8.7	8.7	8.7	8.8	8.8	8.8	10.2	10.2	10.2
LOS by Move:	A	A	A	A	A	A	A	A	A	B	B	B
ApproachDel:		8.5			8.7			8.8			10.2	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		8.5			8.7			8.8			10.2	
LOS by Appr:		A			A			A			B	
AllWayAvge:	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.6	0.6	0.6

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 12-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#10 Missouri/22nd
相

Average Delay (sec/veh) :				0.0		Worst Case Level Of Service: A ${ }^{\text {c }}$ (8]							
Street Name:	North B		ssouri	Street			22nd Street						
Approach:			und	South B		und	East Bound			West Bound			
Movement :	L	- T	- R	L	- T	- R	L	- T	- R	L	T	-	
Control:	Uncontrolled Include			UncontrolledInclude			Stop SignInclude			Stop SignInclude			
Rights:													
Lanes:		01	0		00	1	0	00	01	0	0	0	0
Volume Module:													
Base Vol:	0	107	0	0	77	1	0	0	1	0	0		0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		. 00
Initial Bse:	0	107	0	0	77	1		0	1	0	0		0
Added Vol:	0	16	0	0	32	0		0	0	0	0		0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0		0
Initial Fut:	0	123	0	0	109	1	0	0	1	0	0		0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		. 00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
PHF Volume:	0	123	0	0	109	1	0	0	1	0	0		0
Reduct Vol:	0	0	0	0	0	0	0	0		0	0		0
FinalVolume:	0	123	0	0	109	1	0	0	1	0	0		0

Critical Gap Module:
Critical Gp:xxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx $\quad 6.2$ xxxxx xxxx xxxxx
 Capacity Module:

 Level Of Service Module:
2Way95thQ: xxxx xxxx xxxxx exxx xxxx xxxxx xxxx xxxx 0.0 xxxx xxxx xxxxx

 Movement: LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx fxxx xxxx xxxxx fxxy xxxx xxxxx xxxx xxxx xxxxx

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:53
Page 13-1
Potrero HOPE Development EIR
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#11 Potrero/23rd

Volume Modur												
Base Vol:	0	983	100	105	1256	19	24	37	43	96	29	179
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	983	100	105	1256	19	24	37	43	96	29	179
Added Vol:	0	0	7	46	0	0	0	13	0	4	7	25
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	983	107	151	1256	19	24	50	43	100	36	204
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	1057	115	162	1351	20	26	54	46	108	39	219
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	1057	115	162	1351	20	26	54	46	108	39	219
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	1057	115	162	1351	20	26	54	46	108	39	219
Saturation Flow Module:												
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	0.93	0.75	0.93	0.91	0.91	0.94	0.94	0.94	0.82	0.82	0.82
Lanes:	0.00	2.00	1.00	1.00	1.97	0.03	0.20	0.43	0.37	0.74	0.26	1.00
Final Sat	0	3538	1422	1769	3409	52	367	764	657	1148	413	1562
Capacity Analysis Module:												
Vol/Sat:	0.00	0.30	0.08	0.09	0.40	0.40	0.07	0.07	0.07	0.09	0.09	0.14
Crit Moves:					****			****			****	
Green/Cycle:	0.00	0.43	0.43	0.11	0.54	0.54	0.11	0.11	0.11	0.18	0.18	0.18
Volume/Cap:	0.00	0.69	0.19	0.83	0.73	0.73	0.63	0.63	0.63	0.53	0.53	0.79
Delay/Veh:	0.0	23.2	16.4	70.3	18.0	18.0	52.7	52.7	52.7	36.4	36.4	48.3
User Deladj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	23.2	16.4	70.3	18.0	18.0	52.7	52.7	52.7	36.4	36.4	48.3
LOS by Move:	A	C	B	E	B	B	D	D	D	D	D	D
HCM2kAvgQ:	0	13	2	7	16	16	4	4	4	5	5	8

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:54
Page 14-1

otrero HOPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#12 Cesar Chavez/Vermont
355.1 ,

Street Name: Approach:	Vermont North Bound			Street South Bound			Cesar Chavez StreetEast Bound								
				Stop SignInclude			Uncontrolled Include			Uncontrolled					
Rights:	Stop Sign Include							Inclu							
Lanes:	0	00	0	0	0 1!	0				10	2	00	0	0	
Volume Module:															
ase Vol:	0	0	0	148	0	148	88	560	0	0	1539	132			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Initial Bse:	0	0	0	148	0	148	88	560	0		1539	132			
Added Vol:	0	0	0	0	0	34	14	32	0	0	77	0			
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0			
Initial Fut:	0	0	0	148	0	182	102	592	0	0	1616	132			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94			
PHF Volume:	0	0	0	157	0	194	109	630	0		1719	140			
Reduct Vol:	0	0	0		0	0	0	0	0	0		-			
inalVolume:	0	0	0	157	0	194	109	630	0		1719	140			

Critical Gap Module:
Critical Gp:xxxxx xxxx xxxxx $\quad 6.8 \quad 6.5 \quad 6.9 \quad 4.1$ xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: xxxxx xxxx xxxxx $\begin{array}{lllll}3.5 & 4.0 & 3.3 & 2.2 \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$
Capacity Module
Cnflict Vol: xxxx xxxx xxxx $23212636 \quad 930 \quad 1860$ xxxx xxxxx \quad xxxx xxxx xxxx
 $\begin{array}{llllllll} \\ \text { Move Cap.: } & \text { xxxx xxxx xxxxx } & 24 & 16 & 273 & 329 \text { xxxx xxxxx } & \text { xxxx xxxx xxxxx } \\ \text { xxxx xxxx xxxxx }\end{array}$ Volume/Cap: xxxx xxxx xxxx $6.540 .00 \quad 0.71 \quad 0.33$ xxxx xxx \quad xxxx xxxx \quad xxx
Level Of Service Module:

 LOS by Move: ${ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{\text {C }}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}$ Movement: LT - LIR R SharedQueue: xxxxx xxxx xxxxx xxxxx 41.0 xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx
 hrd ConDel:xxxex xxxx xxxxx ApproachDel: xxxxxx 2976.5 xxxxxx xxxxxx
ApproachLOS: * F \quad F
Note: Queue reported is the number of cars per lane.

2030 Cumulative + Proj PM Mon Feb 6, 2012 14:14:54

$$
\begin{gathered}
\text { Potrero HOPE Development EIF } \\
\text { Wilbur Smith Associates }
\end{gathered}
$$

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#13 Cesar Chavez/US 101 Off-Ramp
Avt***

Street Name: Approach:	US 101North Bound			f-RampSouth Bound			Cesar Chavez Street East Bound West Bound					
Movement :	L	-	- R	L	T	-	L	- T	- R	L	T	- R
Control: Rights: Lanes:	Yield Sign Include			Yield SignInclude			Uncontrolled Include			Uncontrolled Include		
		00	01		- 0	0	0	02	0	0	2	00
Volume Module:												
Base Vol:	0	0	671	0	0	0	0	708	0	0	1671	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	671	0	0	0	0	708	0	0	1671	0
Added Vol:	0	0	222	0	0	0	0	32	0	0		0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	893	0	0	0	0	740	0		1748	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	950	0	0	0	0	787	0	0	1860	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0		0
FinalVolume:	0	0	950	0	0	0	0	787	0		1860	0

Critical Gap Module:
 FollowUpTim:xxxxx xxxx 3.3 xxxxx xxxx xxxx xxxx xxxx xxxxx xxxxx xxxx xxxxx ---------------------1 y Module:

 ------------|----------
2Way ${ }^{2} 5$ the: xxxx xxxx 49.5 xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx

 Shared Cap.: xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx

ApproachDel:
276.0
$\underset{*}{\text { x }}$
xyxexx
xxxxxx

ApproachLos:
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:11

Wilbur Smith Associates

Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

Base Vol:	0	0	0	35	0	298	227	1129	0	0	1337	164
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	35	0	298	227	1129	0	0	1337	164
Added Vol:	0	0	0	2	0	51	165	0	0	0	0	25
PasserByVol:	0	0	0	0	0	0	0	0	0	0	,	0
Initial Fut:	0	0	0	37	0	349	392	1129	0	0	1337	189
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PhF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	0	0	40	0	375	422	1214	0	0	1438	203
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	40	0	375	422	1214	0	0	1438	203
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	0	40	0	375	422	1214	0	0	1438	203

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	1.00	1.00	0.68	1.00	0.68	0.75	0.92	1.00	1.00	0.83	0.83
Lanes:	0.00	0.00	0.00	0.10	0.00	0.90	0.52	1.48	0.00	0.00	2.63	0.37
Final Sat.:	0	0	0	124	0	1169	745	2597	0	0	4160	588
Capacity Analysis Module:												
Vol/Sat:	0.00	0.00	0.00	0.32	0.00	0.32	0.57	0.47	0.00	0.00	0.35	0.35
Crit Moves:				****			****				****	
Green/Cycle:	0.00	0.00	0.00	0.25	0.00	0.25	0.64	0.64	0.00	0.00	0.48	0.48
Volume/Cap:	0.00	0.00	0.00	1.27	0.00	1.27	1.07	0.73	0.00	0.00	0.72	0.72
Delay/Veh:	0.0	0.0	0.0	170.1	0.0	170.1	66.7	11.3	0.0	0.0	17.5	17.5
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	0.0	0.0	170.1	0.0	170.1	66.7	11.3	0.0	0.0	17.5	17.5
LOS by Move:	A	A	A	F	A	F	E	B	A	A	B	B
HCM2kAvgQ:	0	0	0	23	0	23	32	15	0	0	12	12

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:11
Page 4-1

> Potrero HOPE Development EIR

Wilbur Smith Associates

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:11
Page 5-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)

Modu												
Base Vol:	0	226	0	0	412	0	0	0	0	728	0	55
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	226	0	0	412	0	0	0	0	728	0	55
Added Vol:	0	1	0	0	0	0	0	0	0	105	0	2
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	227	0	0	412	0	0	0	0	833	0	57
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.00
PHF Volume:	0	244	0	0	443	-	0	0	0	896	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	244	0	0	443	0	0	0	0	896	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	0	244	0	0	443	0	0	0	0	896	0	-
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	2.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	2.00	0.00	1.00
Final Sat.:	0	953	0	0	544	0	0	0	0	1028	0	613
Capacity Analysis Module:												
Vol/Sat:	xxxx	0.26	xxxx	xxxx	0.81	xxxx	xxxx	xxx	xxxx	0.87	xxx	0.00
Crit Moves:		****			****					****		
Delay/Veh:	0.0	12.6	0.0	0.0	32.1	0.0	0.0	0.0	0.0	40.3	0.0	0.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	12.6	0.0	0.0	32.1	0.0	0.0	0.0	0.0	40.3	0.0	0.0
LOS by Move:	*	B	*	*	D	*	*	*	*	E	*	*
ApproachDel:		12.6			32.1			xxxx			40.3	
Delay Adj:		1.00			1.00			xxxx			1.00	
ApprAdjDel:		12.6			32.1			xxxx			40.3	
LOS by Appr:		B			D			*			E	
AllWayAvge:		- 3			3.4		0.	0.0				

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:11
Page 6-1

$\begin{array}{lllllllllllllllll}\text { AllWayAvgQ: } & 2.1 & 2.0 & 2.0 & 0.0 & 0.0 & 0.0 & 3.4 & 3.4 & 3.4 & 1.2 & 1.2 & 1.2\end{array}$ Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:11
Page 7-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
$* ~$
Intersection \#5 25 th/Connecticu

 Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:12
Page 8-1

potrero HOPE Development EIR

Wilbur Smith Associates

Potrero HOPE Development EIR Wilbur Smith Associates																								
Level Of Service Computation Report 000 HCM Unsignalized Method (Future Volume Alter																								
Intersection \#6 25th/Texas Street																								
Average Delay (sec/veh) : 4.2 Worst Case Level Of Service: C[20.0]																								
Street Name:	Texas Street						25 th Street																	
Approach:	North Bound			South Bound			East Bound			West Bound														
Movement :		T	R	L	- T	- R	L	T	R	L	T													
Control:	Stop SignInclude			Stop SignInclude			UncontrolledInclude			UncontrolledInclude														
Rights:																								
Lanes:		00	0	0	1!	0	0	0	0	0	0	10												
Volume Module:																								
Base Vol:	0	0	0	128	0	11	3	219	0	0	161	73												
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00												
Initial Bse:	0	0	0	128	0	11	3	219	0	0	161	73												
Added Vol:	0	0	0	34	0	4	20	89	0	0	104	40												
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0												
Initial Fut:	0	0	0	162	0	15	23	308	0	0	265	113												
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00												
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97												
PHF Volume:	0	0	0	167	0	15	24	318	0	0	273	116												
Reduct Vol:	0	0	0		0	0	0		0	0		0												
FinalVolume:	0	0	0	167	0	15	24	318	0	0	273	116												

Critical Gap Module:
Critical Gp:xxxx xxxx xxxx $\begin{array}{llllll}6.4 & 6.5 & 6.2 & 4.1 & \text { xxxx xxxxx xxxx xxxx xxxxx }\end{array}$

Capacity Module
Cnflict Vol: xxxx xxxx xxxxx $\begin{array}{lllll}696 & 696 & 331 & 390 & \text { xxxx xxxxx } \\ \text { xxxx } & \text { xxxx xxxxx }\end{array}$
 Potent Cap.: xxxx xxxx xxxxx $411 \quad 368 \quad 715$ 1180 xxxx xxxx \quad xxxx xxxx xxxxx Volume/Cap: xxxx xxxx xxxx $0.410 .00 \quad 0.02 \quad 0.02$ xxxx xxxx xxxx xxxx xxxx Level Of Service Module: \qquad $.02 \mid 1$
2Way95thQ: xxxx xxxx xxxxx xxxx xxxx xxxxx
0.1 xxxx xxxxx xxxx xxxx xxxyx
 Movement: LT - LTR - RT LT - LTR - RT Shared Cap.: xxxx xxxx xxxx xxxy 420 xxxxx LT - LTR - RT LT - LTR - RT

 Shared LOS:

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:12
Page 9-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#7 23rd/Missouri

Average Delay (sec/veh): 7.2 Worst Case Level Of Service: B[10.5]												
Street Name: Approach:	Missouri St						23rd St					
	North Bound			South Bound			East Bound			West Bound		
Movement:		- T	- R		T	R		T	- R	L	- T	
				Stop Sign			UncontrolledInclude			Uncontrolled Include		
Control: Rights: Lanes:	Stop Sign Include											
	0	1	0	0	00	10	0	$1!$	0	0	0 1!	0
Volume Module:												
Base Vol:	46	15	0	0	24	36	17	0	77	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	46	15	0	0	24	36	17	0	77	0	0	
Added Vol:	4	27	0	0	23	5	10	0	7	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	50	42	0	0	47	41	27	0	84	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
PHF Volume:	52	44	0	0	49	43	28	0	88	0	0	0
Reduct Vol:	0	0	0	0		0	0	0	0	0	0	0
FinalVolume:	52	44	0	0	49	43	28	0	88	0	0	0

Critical Gap Module:
Critical Gp: 7.1 6.5 xxxxx xxxxx $6.5 \quad 6.2 \quad 4.1$ xxxx xxxxx xxxxx xxxx xxexx FollowUpTim: 3.5 4.0 xxxx xxxxx $4.0 \quad 3.3 \quad 2.2$ xxxx xxxxx xxxxx xxxx xxxxx
Capacity Module:
 Potent Cap.: 827794 xxxxx xxxx $751 \quad 900 \quad 900$ xxxx xxxxx xxxx xxxx xxxxx Volume/Cap: 0.070 .06 xxxx $\begin{array}{lllllllll} & \text { xxxx } & 0.07 & 0.05 & 0.03 & \text { xxxx } & \text { xxxx } & \text { xxxx xxxx } & \text { xxxx }\end{array}$ Level Of Service Module:
 2Way
 Movement: LT - LTR - RT Shared Cap.: 747 xxxx xxxxx xxxx xxxx 799 xxxx xxxx xxxxx xxxx xxxx xxxxx SharedQueue: 0.4 xxxx xxxxx xxxx xxxx 0.4 xxxxx xxxx xxxxx xxxxx xxxx xxxxx Shrd ConDel: 10.5 xxxx xxxxx xxxxx xxxx 10.1 xxxxx xxxx xxxxx xxxxx xxxx xxxxx Shared LOS: \quad B $\underset{*}{*} \underset{*}{*} \underset{*}{10.1}$
ApproachDel: 10.5 B $\quad 10.1 \quad \mathrm{~B} \quad$ xxxxx $\quad \star \quad$ xxxxx
ApproachLoS: B B B B * \quad B $\quad \stackrel{*}{*}$
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:12
Page 10-1

> Potrero HOPE Development EIR Wilbur Smith Associates

Wilbur Smith Associates

AllWayAvgQ: $\begin{array}{llllllllllll}0.3 & 0.3 & 0.3 & 0.2 & 0.2 & 0.2 & 0.0 & 0.0 & 0.0 & 0.1 & 0.1 & 0.1\end{array}$ Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:12
Page 11-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#9 20th/Arkansas

Base Vol:	10	33	9	12	36	30	11	107	14	27	214	16
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	10	33	9	12	36	30	11	107	14	27	214	16
Added Vol:	2	3	1	2	6	0	0	1	3	2	1	2
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	12	36	10	14	42	30	11	108	17	29	215	18
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
PHF Volume:	14	42	12	16	49	35	13	126	20	34	250	21
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	14	42	12	16	49	35	13	126	20	34	250	21
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	14	42	12	16	49	35	13	126	20	34	250	21
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.21	0.62	0.17	0.16	0.49	0.35	0.08	0.80	0.12	0.11	0.82	0.07
Final Sat.	137	410	114	112	335	239	61	599	94	87	644	54
Capacity Analysis Module:												
Vol/Sat:	0.10	0.10	0.10	0.15	0.15	0.15	0.21	0.21	0.21	0.39	0.39	0.39
Crit Moves:		****		****				****		****		
Delay/Veh:	8.5	8.5	8.5	8.6	8.6	8.6	8.7	8.7	8.7	10.2	10.2	10.2
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	8.5	8.5	8.5	8.6	8.6	8.6	8.7	8.7	8.7	10.2	10.2	10.2
LOS by Move:	A	A	A	A	A	A	A	A	A	B	B	B
ApproachDel:		8.5			8.6			8.7			10.2	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		8.5			8.6			8.7			10.2	
LOS by Appr:		A			A			A			B	
AllWayAvge:	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.6	0.6	0.6

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:12
Page 12-1

Potrero HOPE Development EIR

Wilbur Smith Associates

Potrero HOPE Development EIR Wilbur Smith Associates												
Level Of Service Computation Report												
2000 HCM Unsignalized Method (Future Volume Alternative)												
Intersection \#10 Missouri/22nd												

Average Delay (sec/veh) :				0.0		Worst Case Level Of Se				ice:	A [.7]
							22nd Street					
Street Name:	Missouri Street											
Approach:	North Bound			South Bound			East Bound			West Bound		
Movement:	L	- T	- R	L	- T	- R	L	- T	- R	L	- T	
Control:	UncontrolledInclude			Uncontrolled			Stop Sign			Stop Sign		
Rights:												
Lanes:	0	01	0		00	10	0	0	1	0	0	0
Volume Module:												
Base Vol:	0	107	0	0	77	1	0	0	1	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	107	0	0	77	1		0	1	0	0	
Added Vol:	0	11	0	0	20	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	118	0	0	97	1	0	0	1	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	118	0		97	1		0	1	0	0	0
Reduct Vol:	0		0	0		0	0	0	0	0	0	0
FinalVolume:	0	118	0	0	97	1	0	0	1	0	0	0

Critical Gap Module:
ritical Gp:xxxxx xxxx xxxxx xxxxx xxxx xyxx xxxxx xxxx $\quad 6.2$ xxxxx xxxx xxxxx
 Capacity Module:
Capacity Module:
Cotent Cap.: xxxx xxxx xxxxx xxxy xxx xxxy xxxx xxxx 98 xxxx xxxx xxxx Move Cap.: xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx 964 xxxx xxxx xxxxy
 Level Of Service Module: \qquad
 Control Del:xxxxx xxxx xxxxx xxxx xxxx xxxxx xxxxx xxxx 8.7 xxxx xxxx xxyx LOS by Move: * * * * * * * A * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 ApproachLOS:
$* *)$
Note: Queue reported is the number of cars per lane.
ote. Queue reported is the number or cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:12
Page 13-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#11 Potrero/23rd

Base Vol:	0	983	100	105	1256	19	24	37	43	96	29	9
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	983	100	105	1256	19	24	37	43	96	29	179
Added Vol:	0	0	4	30	0	0	0	9	0	2	5	17
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	983	104	135	1256	19	24	46	43	98	34	196
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	1057	112	145	1351	20	26	49	46	105	37	211
Reduct Vol:	0	0	0	0	0	0	0	0	0	-	0	0
Reduced Vol:	0	1057	112	145	1351	20	26	49	46	105	37	211
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	1057	112	145	1351	20	26	49	46	105	37	211
Saturation Flow Module:												
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	0.93	0.75	0.93	0.91	0.91	0.94	0.94	0.94	0.82	0.82	0.82
Lanes:	0.00	2.00	1.00	1.00	1.97	0.03	0.21	0.41	0.38	0.74	0.26	1.00
Final Sat.:	0	3538	1422	1769	3409	52	379	727	679	1158	402	1560
Capacity Analysis Module:												
Vol/Sat:	0.00	0.30	0.08	0.08	0.40	0.40	0.07	0.07	0.07	0.09	0.09	0.14
Crit Moves:					,		***			*		
Green/Cycle:	0.00	0.43	0.43	0.11	0.54	0.54	0.11	0.11	0.11	0.18	0.18	0.18
Volume/Cap:	0.00	0.69	0.18	0.74	0.73	0.73	0.61	0.61	0.61	0.51	0.51	0.76
Delay/Veh:	0.0	23.2	16.3	60.6	18.0	18.0	51.5	51.5	51.5	36.2	36.2	46.3
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	23.2	16.3	60.6	18.0	18.0	51.5	51.5	51.5	36.2	36.2	46.3
LOS by Move:	A	C	B	E	B	B	D	D	D	D	D	D
HCM2kAvgQ:	0	13	2	6	16	16	4	4	4	4	4	8

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:12
Page 14-1

otrero HOPE Development EIR

Wilbur Smith Associates

Potrero HOPE Development EIR Wilbur Smith Associates												
Level Of Service Computation Report												
Intersection \#12 Cesar Chavez/Vermont												
Average Delay (sec/veh): 317.9 Worst Case Level Of Service: F[2695.6]												
Street Name: Approach: Movement :	Vermont North Bound			Street South Bound			Cesar Chavez Street East Bound West Bound					
		- T	- R	L	- T	R						
Control: Rights: Lanes:	Stop SignInclude			Stop SignInclude			Uncontrolled Include			Uncontrolled Include		
		00	0	0	1!	0	1	2	0	0	1	0
Volume Module:												
Base Vol:	0	0	0	148	0	148	88	560	0	0	1539	132
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	148	0	148	88	560	0	0	1539	132
Added Vol:	0	0	0	0	0	24	10	20	0	0	51	0
PasserByVol:	0		0	0	0	0	0	0	0	0	0	0
Initial Fut:	0		0	148	0	172	98	580	0		1590	132
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	0	157	0	183	104	617	0	0	1691	140
Reduct Vol:	0	0	0		0	0	0	0	0	0		0
FinalVolume:	0	0	0	157	0	183	104	617	0	0	1691	140

Critical Gap Module:

Capacity Module
Cnflict Vol: xxxx xxxx xxxxx 227925879161832 xxxx xxxxx xxxx xxxx xxyxx
$\begin{array}{llrrrrrr} \\ \text { Cnflict Vol: xxxx xxxx xxxxx } & 2279 & 2587 & 916 & 1832 & \text { xxxx xxxxx } & \text { xxxx xxxx xxxxx } \\ \text { Potent Cap.: xxxx xxxx xxxxx } & 35 & 26 & 279 & 338 & \text { xxxx xxxxx } & \text { xxxx xxxx xxxx }\end{array}$ $\begin{array}{lllllll}\text { Potent Cap.: xxxx xxxx xxxxx } & 35 & 26 & 279 & 338 & \text { xxxx xxxxx } & \text { xxxx xxxx xxxx } \\ \text { Move Cap.: } & \text { xxxx xxxx xxxxx } & 26 & 18 & 279 & 338 & \text { xxxx xxxxx } \\ \text { xxxx xxxx xxxxx }\end{array}$ Volume/Cap: xxxx xxxx xxxx $5.990 .00 \quad 0.66 \quad 0.31$ xxxx xxxx xxxx xxxx xxxx Level Of Service Module:

 Los by Move: MT * - LTR - RT ${ }^{*}{ }^{*}$ - LTR - RT LT - LTR - RT ${ }^{*}$ LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx xxxx 51 xxxxx xxxx xxxx xxxxx xxxx xxxx xxxx Shared Cap.: xxxx xxxx xxxxx xxxx 31 xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx
SharedQueue: xxxxx xxxx xxxx xxxxx 39.4 xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx
 Shared LOS:

ApproachLOS: * F
Note: Queue reported is the number of cars per lane.
Note. Queue reported is the number of cars per lane.

2030 Cumulative + Proj PM Wed Oct 3, 2012 11:39:12
Page 15-1

Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#13 Cesar Chavez/US 101 Off-Ramp
Average Delay (sec/veh): 53.3 Worst Case Level Of Service: F[213.1]

Street Name: Approach: Movement:	US 101 North Bound			-Ramp South Bound			Cesar Chavez StreetEast Bound					
	L - T - R			L - T - R			L - T - R			L - T - R		
Control: Rights:	Yield Sign			Yield SignInclude			UncontrolledInclude			Uncontrolled		
Lanes:		0	01	Include			00	- 2	0	0	0	0
Volume Module:												
Base Vol:	0	0	671	0	0	0	0	708	0	0	1671	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	671	0	0	0	0	708	0	0	1671	0
Added Vol:	0	0	146	0	0	0	0	20	0	0		0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	817	0	0	0	0	728	0		1722	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	869	0	0	-	0	774	0	0	1832	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0		0
FinalVolume:	0	0	869	0	0	0	0	774	0	0	1832	0

Critical Gap Module:
Critical Gp:xxxxx xxxx 6.9 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxx FollowUpTim:xxxxx xxxx 3.3 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxyx
Capacity Module:

 Volume/Cap: xxxx xxxx 1.41 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx Level Of Service Module:
 Control Del:xxxxx xxxx 213.1 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx
 Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 ApproachDel:
213.1
$\underset{*}{\text { xxyxy }}$
$\underset{*}{\text { xxyxix }}$
xxexxx

Note: Queue reported is the number of cars per lane.

Traffix 7.9 .0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj + MiWed Oct 3, 2012 12:37:20
Page 3-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

Base Vol:	0	0	0	183	0	298	227	1129	0	0	1337	164
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	183	0	298	227	1129	0	0	1337	164
Added Vol:	0	0	0	2	0	77	253	1	0	0	0	34
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	185	0	375	480	1130	0	0	1337	198
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PhF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	0	0	199	0	403	516	1215	0	0	1438	213
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	199	0	403	516	1215	0	0	1438	213
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	0	199	0	403	516	1215	0	0	1438	213

Sat/Lane:	1900	1900	900	1900	1900	1900	1900	90	1900	900	1900	1900
Adjustment:	1.00	1.00	1.00	0.70	1.00	0.70	0.78	0.92	1.00	1.00	0.83	0.83
Lanes:	0.00	0.00	0.00	0.33	0.00	0.67	0.60	1.40	0.00	0.00	2.61	0.39
Final Sat.:	0	0	0	438	0	888	893	2451	0	0	4136	612
Capacity Analysis Module:												
Vol/Sat:	0.00	0.00	0.00	0.45	0.00	0.45	0.58	0.50	0.00	0.00	0.35	0.35
Crit Moves:						****	****				****	
Green/Cycle:	0.00	0.00	0.00	0.25	0.00	0.25	0.64	0.64	0.00	0.00	0.48	0.48
Volume/Cap:	0.00	0.00	0.00	1.79	0.00	1.79	1.12	0.77	0.00	0.00	0.72	0.72
Delay/Veh:	0.0	0.0	0.0	396.6	0.0	396.6	87.3	12.3	0.0	0.0	17.6	17.6
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	0.0	0.0	396.6	0.0	396.6	87.3	12.3	0.0	0.0	17.6	17.6
LOS by Move:	A		A	F	A	F	F	B	A	A	B	B
HCM2kAvgQ:	0	0	0	48	0	48	38	17	0	0	12	12

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj + MiWed Oct 3, 2012 12:37:20
Page 4-1
HOPE Development EIR
Wilbur Smith Associates
Potrero HOPE Development EIR
Wilbur Smith Associates

Street Name: Approach:	Pennsylvani North Bound			a Avenue South Bound			SB I-280 East Bound			fff-Ramp		
Movement :	L	- T	- R	L	T		L	T		L		- R
Control: Rights: Min. Gre		Permit	ted	Permitted			Split Phase Include			Split Phase Include		
anes:	0	02	0	0	01	00	0	0	0	2	0	1
Volume Module:												
Base Vol:	0	226	0	0	412	0	0	0	0	728	0	55
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
nitial Bse:	0	226	0	0	412	0	0	0	0	728	0	55
dded Vol:	0	1	0	0	1	0		0	0	160	0	3
PasserByVol:	0	0	0	0	0	0		0	0	0	0	0
Initial Fut:	0	227	0	0	413	0	0	0	0	888	0	58
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	244	0	0	444	0	0	0	0	955	0	62
Reduct Vol:	0		0	0		0	0	0	0	0	0	0
Reduced Vol:	0	244	0	0	444	0	0	0	0	955	0	62
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	244	0	0	444	0	0	0	0	955	0	62

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	0.85
Lanes:	0.00	2.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	2.00	0.00	1.00
Final Sat.:	0	3610	0	0	1900	0	0	0	0	3502	0	1615
Capacity Analysis Module:												
Vol/sat:	0.00	0.07	0.00	0.00	0.23	0.00	0.00	0.00	0.00	0.27	0.00	0.04
Crit Moves:					****					****		
Green/Cycle:	0.00	0.42	0.00	0.00	0.42	0.00	0.00	0.00	0.00	0.49	0.00	0.49
Volume/Cap:	0.00	0.16	0.00	0.00	0.56	0.00	0.00	0.00	0.00	0.56	0.00	0.08
Delay/Veh:	0.0	16.3	0.0	0.0	20.6	0.0	0.0	0.0	0.0	16.5	0.0	12.2
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	16.3	0.0	0.0	20.6	0.0	0.0	0.0	0.0	16.5	0.0	12.2
LOS by Move:	A	B	A	A	C	A	A	A	A	B	A	B
M2kAvgQ:	0	2	0	0	10	0	0	0	0	10	0	1

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj + MiWed Oct 3, 2012 12:37:20
Page 5-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
$* *$
Intersection \#4 25 th/Indiana Streets/NB I-280

Base Vol:	45	635	23	0	0	0	145	224	0	0	184	10
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	45	635	23	0	0	0	145	224	0	0	184	110
Added Vol:	1	0	0	0	0	0	82	11	0	0	13	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	46	635	23	0	0	0	227	235	0	0	197	110
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	49	683	25	0	0	0	244	253	0	0	212	118
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	49	683	25	0	0	0	244	253	0	0	212	118
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	49	683	25	0	0	0	244	253	0	0	212	118
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.13	1.80	0.07	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.64	0.36
Final Sat.:	69	957	35	0	0	0	470	503	0	0	336	188
Capacity Analysis Module:												
Vol/Sat:	0.72	0.71	0.71	xxxx	xxxx	xxxx	0.52	0.50	xxxx	xxxx	0.63	0.63
Crit Moves:	****						****				****	
Delay/Veh:	24.6	24.1	23.6	0.0	0.0	0.0	17.9	16.5	0.0	0.0	20.3	20.3
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	24.6	24.1	23.6	0.0	0.0	0.0	17.9	16.5	0.0	0.0	20.3	20.3
LOS by Move:	C	C	C	*	*	*	C	C	*	*	c	C
ApproachDel:		24.1			xxxxy			17.2			20.3	
Delay Adj:		1.00			xxxxx			1.00			1.00	
ApprAdjDel:		24.1			xxexx			17.2			20.3	
LOS by Appr:		C			*			C			C	
AllWayAvgQ:	2.2	2.1	2.1	0.0	0.0	0.0	1.0	0.9	0.0	1.5	1.5	1.5

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj + MiWed Oct 3, 2012 12:37:20
Page 6-1
Potrero HOPE Development EIR
Wilbur Smith Associates

2000 HCM Unsignalized Method (Future Volume Alternative)
ntersection \#12 Cesar Chavez/Vermont

Average Delay (sec/veh): 3.9 Worst Case Level Of Service: E[45.0]

Street Name: Approach:	North Bound ${ }^{\text {Vermont }}$			Street South Bound			Cesar Chavez StreetEast Bound					
Movement :		T	- R		T		L -	- T	R	L	T	
Control: Rights:	Stop Sign Include			Stop SignInclude			Uncontrolled Include			Uncontrolled Include		
Lanes:	0	00	00		00	01	10	- 2	00	0		10
Volume Module:												
Base Vol:	0	0	0	0	0	148	88	560	0	0	1539	132
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	0	0	148	88	560	0	0	1539	132
Added Vol:	0	0	0	0	0	34	14	32	0	0	77	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	0	0	182	102	592	0	0	1616	132
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	0	0	0	194	109	630	0	0	1719	140
Reduct Vol:	0	0	0	0	0	0	0	0	0	0		0
FinalVolume:	0	0	0	0	0	194	109	630	0		1719	140

Critical Gap Module:
Critical Gp:xxxxx xxxx xxxxx xxxxx xxxx 6.9 4.1 xxxx xxxxx xuxxx xxxx xxxxx

Capacity Module:
Cnflict Vol: xxxx xxxx xxxxx xxxx xxxx $930 \quad 1860$ xxxx xxyxx xxxx xxxx xxxxx

 Volume/Cap: xxxx xxxx xxxx xxxx xxxx 0.71 0.33 xxxx xxxx xxxx xxxx xxxx
Level Of Service Module:
2Way95thQ: xxxx xxxx xxxxx xxxx xxxx $4.9 \quad 1.4$ xxxx xxxxx xxxx xxxx xxxxx
 Mos by Move: ${ }^{*}$ - LTR - RT ${ }^{*}$ - LTR - RT ${ }^{\text {E }}$ LT - LTR - RT ${ }^{*}{ }^{*}$ - LTR - RT Shared Cap.: xxxx xxxx xxxxx fxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxy Shared Cap.: xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx xxxxx
SharedQueue: xxxxx xxxx xxxx xxxxx xxxx xxxxx xxxxx xxxx xxxx xxxxx xxxx xxxxx

xxxxxx
45.0
E
$\underset{\star}{\text { xxyxy }} \underset{\star}{\text { * }}$

ApproachLOS: * E * * * * *
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj + MiWed Oct 3, 2012 12:37:20

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj + MiWed Oct 3, 2012 12:41:33
Page 3-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

| Volume Module: | 0 | 0 | 0 | 183 | 0 | 298 | 227 | 1129 | 0 | 0 | 1337 | 164 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Base Vol: | | | | | | | | | | | | |
| Growth Adj: | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Initial Bse: | 0 | 0 | 0 | 183 | 0 | 298 | 227 | 1129 | 0 | 0 | 1337 | 164 |
| Added Vol: | 0 | 0 | 0 | 2 | 0 | 51 | 165 | 0 | 0 | 0 | 0 | 25 |
| PasserByVol: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Initial Fut: | 0 | 0 | 0 | 185 | 0 | 349 | 392 | 1129 | 0 | 0 | 1337 | 189 |
| User Adj: | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| PHF Adj: | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 |
| PHF Volume: | 0 | 0 | 0 | 199 | 0 | 375 | 422 | 1214 | 0 | 0 | 1438 | 203 |
| Reduct Vol: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced Vol: | 0 | 0 | 0 | 199 | 0 | 375 | 422 | 1214 | 0 | 0 | 1438 | 203 |
| PCE Adj: | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| MLF Adj: | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| FinalVolume: | 0 | 0 | 0 | 199 | 0 | 375 | 422 | 1214 | 0 | 0 | 1438 | 203 |
| - | | | | | | | | | | | | |

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	900	1900	1900
Adjustment:	1.00	1.00	1.00	0.70	1.00	0.70	0.75	0.92	1.00	1.00	0.83	0.83
Lanes:	0.00	0.00	0.00	0.35	0.00	0.65	0.52	1.48	0.00	0.00	2.63	0.37
Final Sat.:	0	0	0	460	0	867	745	2597	0	0	4160	588
Capacity Analysis Module:												
Vol/Sat:	0.00	0.00	0.00	0.43	0.00	0.43	0.57	0.47	0.00	0.00	0.35	0.35
Crit Moves:						****	****				****	
Green/Cycle:	0.00	0.00	0.00	0.25	0.00	0.25	0.64	0.64	0.00	0.00	0.48	0.48
Volume/Cap:	0.00	0.00	0.00	1.71	0.00	1.71	1.07	0.73	0.00	0.00	0.72	0.72
Delay/Veh:	0.0	0.0	0.0	358.9	0.0	358.9	66.7	11.3	0.0	0.0	17.5	17.5
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	0.0	0.0	358.9	0.0	358.9	66.7	11.3	0.0	0.0	17.5	17.5
LOS by Move:	A		A	F	A	F	E	B	A	A	B	B
HCM2kAvgQ:	0	0	0	44	0	44	32	15	0	0	12	12

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj + MiWed Oct 3, 2012 12:41:33
Page 4-1

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj + MiWed Oct 3, 2012 12:41:33
Page 5-1
Potrero HOPE Development EIR
Wilbur Smith Associates

Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#12 Cesar Chavez/Vermont

me Modul												
Base Vol:	0	0	0	0	0	148	88	560	0	0	1539	132
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	0	0	148	88	560	0	0	1539	132
Added Vol:	0	0	0	0	0	24	10	20	0	0	51	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	0	0	172	98	580	0	0	1590	132
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	0	0	0	183	104	617	0	0	1691	140
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	0	0	0	0	0	183	104	617	0	0	1691	140

Critical Gap Module:
Critical Gp:xxxxx xxxx xxxxx xxxxx xxxx 6.9 4.1 xxxx xxxxx xxxxx xxxx xxxx FollowUpTim: xxxxx xxxx xxxxx xxxx xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxx xxxxx Capacity Module:
Cnflict Vol: xxxx xxxx xxxxx xxxx xxxx $916 \quad 1832$ xxxx xxxxx xxyx xyxy xyxxu
 Volume/Cap: xxxy xxxy xxyx xxxx xxxx 0.66 ------------|-----------
 $\begin{array}{llllllll}\text { Control Del: xxxxx xxxx xxxxx xxxxx xxxx } & 39.6 & 20.4 & \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$

 SharedQueue: xxxxx mxxx xxxxx xxxxx mxxx mxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx
 Shrd ConDel:xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx

ApproachLOS:
$\underset{\star}{x \times x y}$
E
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2030 Cumulative + Proj + MiWed Oct 3, 2012 12:41:33
Page 6-1
Potrero HOPE Development EIR
Wilbur Smith Associates

Wilbur Smith Associates

2000 HCM Operations Method (Future Volume Alternative)
ntersection \#13 Cesar Chavez/US 101 Off-Ramp

Cycle (sec):	90		Critical Vol./Cap. (X) :	0.893
Loss Time (sec) :	8	$(\mathrm{Y}+\mathrm{R}=4.0 \mathrm{sec})$	Average Delay (sec/veh) :	23.8
Optimal Cycle:	90		Level Of Service:	C

Street Name: Approach: Movement:	US 101 North Bound			-Ramp ${ }_{\text {South }}$ Bound			Cesar Chavez StreetEast Bound					
	L	- T	R	L	- T	R	L			L	T	R
											Permitted Include	
Control: Rights: Min. Green: Lanes:	Split Phase Include			Split Phase Include			Permitted Include					
		0	-	0		0						
	0	0	2	0	0	00	0	0	00	0	0	00
Volume Module:												
Base Vol:	0	0	671	0	0	0	0	708	0	0	1671	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	671	0	0	0	0	708	0		1671	0
Added Vol:	0	0	146	0	0	0	0	20	0	0	51	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	0	0	817	0	0	0	0	728	0		1722	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	869	0	0	0	0	774	0		1832	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0		
Reduced Vol:	0	0	869	0	0	0	0	774	0		1832	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	869	0	0	0	0	774	0		1832	0

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	1.00	0.75	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Lanes:	0.00	0.00	2.00	0.00	0.00	0.00	0.00	2.00	0.00	0.00	2.00	0.00
Final Sat.:	0	0	2842	0	0	0	0	3610	0	0	3610	0

Capacity Analysis Module:
Vol/Sat: $\quad 0.000 .00 \quad 0.31$
Green/Cycle: $\begin{array}{llllllllllll}0.00 & 0.00 & 0.34 & 0.00 & 0.00 & 0.00 & 0.00 & 0.57 & 0.00 & 0.00 & 0.57 & 0.00\end{array}$ Volume/Cap: $\begin{array}{lllllllllllllll}0.00 & 0.00 & 0.89 & 0.00 & 0.00 & 0.00 & 0.00 & 0.38 & 0.00 & 0.00 & 0.89 & 0.00\end{array}$ Delay/Veh: $\begin{array}{lllllllllllll}0.0 & 0.0 & 38.5 & 0.0 & 0.0 & 0.0 & 0.0 & 10.8 & 0.0 & 0.0 & 22.4 & 0.0\end{array}$ User DelAdj: $1.001 .00 \begin{array}{lllllllllll} & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$ AdjDel/Veh: $\begin{array}{lllllllllllll}0.0 & 0.0 & 38.5 & 0.0 & 0.0 & 0.0 & 0.0 & 10.8 & 0.0 & 0.0 & 22.4 & 0.0\end{array}$ LOS by Move: A A D A A A A B A A C A $\begin{array}{lccccccccccc}\text { HCM2kAvgQ: } & 0 & 0 & 17 & 0 & 0 & 0 & 0 & 6 & 0 & 0 & 27 \\ 0\end{array}$

Note: Queue reported is the number of cars per lane.

Traffix 7.9 .0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

APPENDIX G FREEWAY AND RAMP ANALYSIS

FREEWAY ANALYSIS

\qquad

Analyst:	THuynh
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	South of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	5123	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1392	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1884	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
3
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1884	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	54.8	mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / l \mathrm{n}$
Density, D	34.4	
Level of service, LOS	D	
Overall results are not computed when free-flow speed is less than 55 mph.$$		

\qquad

Analyst:	THuynh
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	North of Indiana On-Ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	4644	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1262	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1281	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	
Density, D	22.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	C	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	THuynh
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	veh/h	
Peak-hour factor, PHF	6170	
Peak 15-min volume, v15	0.92	V
Trucks and buses	1677	$\%$
Recreational vehicles	3	$\%$
Terrain type:	0	Level
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1702	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1702	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	
Density, D	30.4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	THuynh
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	SB US 101
From/To:	North of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	8274	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2248	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	2282	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2282	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D		
Level of service, LOS	F	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst:	THuynh
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	NB I-280
From/To:	South of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	2394	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	651	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	880	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	880	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	55.0	mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	16.0	
Level of service, LOS	B	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst:	THuynh
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	SB I-280
From/To:	South of Pennsylvania off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	4375	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1189	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1609	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1609	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	55.0	mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	29.3	
Level of service, LOS	D	
Overall results are not computed when free-flow speed is less than 55 mph.$$		

\qquad

Analyst:	THuynh
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	NB I-280
From/To:	North of Indiana On-Ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	2669	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	725	V
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	\%
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	736	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	736	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	13.1	
Level of service, LOS	B	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst:	THuynh
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	SB I-280
From/To:	North of Pennsylvania off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	4877	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1325	V
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	\%
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1794	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1794	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	55.0	mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	32.6	
Level of service, LOS	D	
Overall results are not computed when free-flow speed is less than 55 mph.$$		

\qquad

Analyst:	THuynh
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	8426	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2290	V
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	\%
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	2324	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
1.00	interchange/mi
4	
Base	
60.0	mi / h
0.0	mi / h
0.0	mi / h
2.5	mi / h
1.5	mi / h
56.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	2324	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	THuynh
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	SB US 101
From/To:	North of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	6754	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1835	V
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	\%
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1863	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1863	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	55.8	mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	33.4	
Level of service, LOS	D	
Overall results are not computed when free-flow speed is less than 55 mph.$$		

\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	South of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+ Proposed Proj
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	5197	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1412	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1911	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
3
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1911	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	54.7	mi / h
Number of lanes, N	3	
Density, D	34.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	North of Indiana On-Ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+ Proposed Proj
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	4786	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1301	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1320	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
```

Free-flow speed, FFS $\quad 56.0 \mathrm{mi} / \mathrm{h}$
12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1320	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	
Density, D	23.6	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	C	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+ Proposed Proj
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	6316	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1716	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1742	

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
1.00	interchange/mi
4	
Base	
60.0	mi / h
0.0	mi / h
0.0	mi / h
2.5	mi / h
1.5	mi / h
56.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	1742	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	
Density, D	31.1	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	SB US 101
From/To:	North of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+ Proposed Proj
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	8351	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2269	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	2303	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2303	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D		
Level of service, LOS	F	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	South of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+ Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	5172	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1405	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1902	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
3
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1902	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	54.8	mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	34.7	
Level of service, LOS	D	
Overall results are not computed when free-flow speed is less than 55 mph.$$		

\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	North of Indiana On-Ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	4728	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1285	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1304	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
```

Free-flow speed, FFS $\quad 56.0 \mathrm{mi} / \mathrm{h}$
12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1304	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	
Density, D	23.3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	C	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	6258	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1701	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1726	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1726	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	
Density, D	30.8	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	SB US 101
From/To:	North of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	8322	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2261	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	2295	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
```

Free-flow speed, FFS $\quad 56.0 \mathrm{mi} / \mathrm{h}$
12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2295	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D		
Level of service, LOS	F	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: NB I-280
From/To:
South of Cesar Chavez off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
Existing (2010)+ Proposed Proj
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	2468	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	671	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	908	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	908	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	55.0	mi / h
Number of lanes, N	3	
Density, D	16.5	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	\mathbf{B}	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period:
PM Peak

SB I-280

South of Pennsylvania off-ramp
From/To:
City of San Francisco
Jurisdiction:
Existing (2010)+ Proposed Proj
Analysis Year:
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	4449	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1209	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1636	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	55.0	mi / h
Number of lanes, N	3	
Density, D	29.7	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	\mathbf{D}	

Level of service, LOS
D

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad
Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: NB I-280
From/To:
North of Indiana On-Ramp
Jurisdiction: City of San Francisco
Analysis Year: Existing (2010)+ Proposed Proj
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	2742	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	745	v
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Flow rate, vp	756	

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	756	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	
Density, D	13.5	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	\mathbf{B}	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: SB I-280
From/To:
Jurisdiction:
North of Pennsylvania off-ramp
City of San Francisco
Analysis Year: Existing (2010)+ Proposed Proj
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	5019	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1364	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1846	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1846	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	54.9	mi / h
Number of lanes, N	3	
Density, D	33.6	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	\mathbf{D}	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period:
PM Peak
Freeway/Direction:
NB US 101
From/To:
North of Cesar Chavez on-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
Existing (2010)+ Proposed Proj
Description: Potrero HOPE TIAR
Flow Inputs and Adjustments \qquad

Volume, V	8503	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2311	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	2345	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
1.00	interchange/mi
4	
Base	
60.0	mi / h
0.0	mi / h
0.0	mi / h
2.5	mi / h
1.5	mi / h
56.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	2345	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS		

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period:
PM Peak
Freeway/Direction:
SB US 101
From/To:
North of Cesar Chavez off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
Existing (2010)+ Proposed Proj
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	veh h	
Peak-hour factor, PHF	0.900	
Peak 15-min volume, v15	1875	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1903	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1903	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	55.7	mi / h
Number of lanes, N	4	
Density, D	34.2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	\mathbf{D}	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: NB I-280
From/To:
South of Cesar Chavez off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
Existing (2010)+ Alt 1
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	2440	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	663	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	897	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	897	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	55.0	mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	16.3	
Level of service, LOS	B	
Overall results are not computed when free-flow speed is less than 55 mph.$$		

\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: SB I-280
From/To:
South of Pennsylvania off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
Existing (2010)+Alt 1
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	4424	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1202	V
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	\%
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1627	
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1627	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	55.0	mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	29.6	
Level of service, LOS	D	
Overall results are not computed when free-flow speed is less than 55 mph.$$		

\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: NB I-280
From/To:
North of Indiana On-Ramp
Jurisdiction: City of San Francisco
Analysis Year: Existing (2010)+Alt 1
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	2713	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	737	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	748	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	748	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	13.4	
Level of service, LOS	B	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: SB I-280
From/To:
Jurisdiction:
North of Pennsylvania off-ramp
Analysis Year:
City of San Francisco
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	4961	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1348	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1824	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	55.0	mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	33.2	
Level of service, LOS	D	
Overall results are not computed when free-flow speed is less than 55 mph.$$		

\qquad

Analyst:	TCH
Agency or Company:	Wilbur Smith Associates
Date Performed:	$10 / 20 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	8474	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2303	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	2337	

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
1.00	interchange/mi
4	
Base	
60.0	mi / h
0.0	mi / h
0.0	mi / h
2.5	mi / h
1.5	mi / h
56.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	2337	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	
Density, D Level of service, LOS	F	pi / m

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	TCH
Agency or Company:	Wilbur Smith Associates
Date Performed:	$10 / 20 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	SB US 101
From/To:	North of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	6842	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1859	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1887	

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1887	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	55.7	mi / h
Number of lanes, N	4	
Density, D	33.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	South of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	7110	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1932	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	2615	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Number, (aflam
Free-ulow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
3
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2615	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	North of Indiana On-Ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	6450	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1753	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1779	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1779	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	
Density, D	31.8	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	11550	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	3139	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	3186	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	3186	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	SB US 101
From/To:	North of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	10910	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2965	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	3009	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	3009	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D		
Level of service, LOS	F	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst:	BPK
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	NB I-280
From/To:	South of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	6670	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1812	V
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	\%
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	2453	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2453	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	BPK
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	SB I-280
From/To:	South of Pennsylvania off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	7500	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2038	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	2758	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, $f N$
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2758	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	BPK
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	NB I-280
From/To:	North of Indiana On-Ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	6730	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1829	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
1.00	interchange/mi
4	
Base	
60.0	mi / h
0.0	mi / h
0.0	mi / h
2.5	mi / h
1.5	mi / h
56.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	1856	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	55.8	mi / h
Number of lanes, N	4	
Density, D	33.2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	BPK
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	SB I-280
From/To:	North of Pennsylvania off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	6760	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1837	v
Trucks and buses	3	\%
Recreational vehicles	0	\%
Terrain type:	Level	
Grade	0.00	\%
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	
Flow rate, vp	2486	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2486	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	BPK
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	10740	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2918	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
1.00	interchange/mi
4	
Base	
60.0	mi / h
0.0	mi / h
0.0	mi / h
2.5	mi / h
1.5	mi / h
56.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	2962	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	BPK
Agency or Company:	Wilbur Smith Associates
Date Performed:	$1 / 21 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	SB US 101
From/To:	North of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	10980	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2984	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	3028	

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	3028	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	
Density, D Level of service, LOS	F	$\mathrm{mi} / \mathrm{ln}$

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	South of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	7184	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1952	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	2642	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free flow Speed; FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
3
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2642	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	North of Indiana On-Ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	veh/h	
Peak-hour factor, PHF	6592	
Peak 15-min volume, v15	0.92	V
Trucks and buses	1791	$\%$
Recreational vehicles	3	$\%$
Terrain type:	0	Level
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1818	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
```

Free-flow speed, FFS $\quad 56.0 \mathrm{mi} / \mathrm{h}$
12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1818	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	55.9	mi / h
Number of lanes, N	4	
Density, D	32.5	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	11696	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	3178	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	3226	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	3226	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D		
Level of service, LOS	F	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	SB US 101
From/To:	North of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	10987	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2986	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	3030	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	3030	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / l \mathrm{n}$
Density, D		
Level of service, LOS	F	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	South of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	7159	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1945	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	2633	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2633	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / l \mathrm{n}$
Density, D Level of service, LOS		
Overall results are not computed when free-flow speed is less than 55 mph		

\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB I-280
From/To:	North of Indiana On-Ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	veh/h	
Peak-hour factor, PHF	6534	
Peak 15-min volume, v15	0.92	V
Trucks and buses	1776	$\%$
Recreational vehicles	3	$\%$
Terrain type:	0	Level
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	1802	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
```

Free-flow speed, FFS $\quad 56.0 \mathrm{mi} / \mathrm{h}$
12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1802	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	56.0	mi / h
Number of lanes, N	4	
Density, D	32.2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

 Overall results are not computed when free-flow speed is less than 55 mph .
 \qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	11638	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	3162	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	3210	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	3210	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D		
Level of service, LOS	F	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst:	TCH
Agency or Company:	CDM Smith
Date Performed:	$5 / 29 / 2012$
Analysis Time Period:	AM Peak
Freeway/Direction:	SB US 101
From/To:	North of Cesar Chavez off-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	10958	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2978	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	3022	

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
4
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	3022	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D		
Level of service, LOS	F	
Overall results are not computed when free-flow speed is less than 55 mph.		

\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: NB I-280
From/To:
South of Cesar Chavez off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR
Flow Inputs and Adjustments \qquad

Volume, V	6744	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1833	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2480	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period:
PM Peak

SB I-280

South of Pennsylvania off-ramp
City of San Francisco
2030 Cumulative+Proposed Proj
Analysis Year:
Description: Potrero HOPE TIAR
Flow Inputs and Adjustments \qquad

Volume, V	7574	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2058	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	2785	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2785	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: NB I-280
From/To:
North of Indiana On-Ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	6803	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1849	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1876	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
1.00	interchange/mi
4	
Base	
60.0	mi / h
0.0	mi / h
0.0	mi / h
2.5	mi / h
1.5	mi / h
56.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	1876	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	55.8	mi / h
Number of lanes, N	4	
Density, D	33.6	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	\mathbf{D}	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: SB I-280
From/To:
North of Pennsylvania off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	6902	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1876	v
Trucks and buses	3	\%
Recreational vehicles	0	\%
Terrain type:	Level	
Grade	0.00	\%
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	
Flow rate, vp	2538	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2538	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period:
PM Peak
Freeway/Direction:
NB US 101
From/To:
North of Cesar Chavez on-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	10817	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2939	v
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2983	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS		

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period:
PM Peak
Freeway/Direction:
SB US 101
From/To:
North of Cesar Chavez off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR
Flow Inputs and Adjustments \qquad

Volume, V	11126	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	3023	v
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
1.00	interchange/mi
4	
Base	
60.0	mi / h
0.0	mi / h
0.0	mi / h
2.5	mi / h
1.5	mi / h
56.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	3069	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: NB I-280
From/To:
South of Cesar Chavez off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	6716	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1825	V
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	$\%$
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	2470	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp		

Speed Inputs and Adjustments \qquad

```
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed: Base
    FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
```

12.0 ft
6.0 ft
1.00 interchange/mi
3
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2470	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: SB I-280
From/To:
South of Pennsylvania off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR
Flow Inputs and Adjustments \qquad

Volume, V	7549	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2051	V
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	\%
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	2776	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2776	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: NB I-280
From/To:
North of Indiana On-Ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR
Flow Inputs and Adjustments \qquad

Volume, V	6774	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1841	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	1868	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S	55.8	mi / h
Number of lanes, N	4	
Density, D	33.5	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period: PM Peak
Freeway/Direction: SB I-280
From/To:
North of Pennsylvania off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	6844	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	1860	V
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	0.00	
Grade	0.00	\%
Segment length	1.5	mi
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	2517	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:

FFS or BFFS

Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

3
Base
$60.5 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$3.0 \mathrm{mi} / \mathrm{h}$
$55.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2517	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D Level of service, LOS	F	

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst:	TCH
Agency or Company:	Wilbur Smith Associates
Date Performed:	$10 / 20 / 2011$
Analysis Time Period:	PM Peak
Freeway/Direction:	NB US 101
From/To:	North of Cesar Chavez on-ramp
Jurisdiction:	City of San Francisco
Analysis Year:	2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR	

Flow Inputs and Adjustments \qquad

Volume, V	10788	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	2932	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$
Flow rate, vp	2975	

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	2975	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	
Density, D Level of service, LOS	F	pi / m

Overall results are not computed when free-flow speed is less than 55 mph .
\qquad

Analyst: TCH
Agency or Company: Wilbur Smith Associates
Date Performed: 10/20/2011
Analysis Time Period:
PM Peak
Freeway/Direction:
SB US 101
From/To:
North of Cesar Chavez off-ramp
Jurisdiction:
City of San Francisco
Analysis Year:
2030 Cumulative+Alt 1
Description: Potrero HOPE TIAR

Flow Inputs and Adjustments \qquad

Volume, V	11068	veh/h
Peak-hour factor, PHF	0.92	
Peak 15-min volume, v15	3008	V
Trucks and buses	3	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Level	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	1.5	
Recreational vehicle PCE, ER	1.2	
Heavy vehicle adjustment, fHV	0.985	
Driver population factor, fp	1.00	$\mathrm{pc/h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS
12.0 ft
6.0 ft
1.00 interchange/mi

4
Base
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.5 \mathrm{mi} / \mathrm{h}$
$1.5 \mathrm{mi} / \mathrm{h}$
$56.0 \mathrm{mi} / \mathrm{h}$
Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	3053	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	56.0	mi / h
Average passenger-car speed, S		mi / h
Number of lanes, N	4	
Density, D Level of service, LOS	F	$\mathrm{mi} / \mathrm{ln}$

Overall results are not computed when free-flow speed is less than 55 mph .

RAMP ANALYSIS

HCS+: Ramps and Ramp Junctions Release 5.3

Analyst:	THuynh
Agency/Co.:	Wilbur Smith Associates
Date performed:	$1 / 21 / 2011$
Analysis time period:	PM Peak
Freeway/Dir of Travel.	

Date performed:
Analysis time
Wilbur Smith Associates
1/21/2011
NB I-280
Off-Ramp to C Chavez
Freeway/D
Junction:
Jurisdiction:
Analysis Year:
City of San Francisco
Existing (2010)
Description: Potrero HOPE TIAR
Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
${ }_{3}$ Diverge
60.0
2394 mph vph

Off Ramp Data \qquad
ide of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
ength of first accel/decel lane
Length of second accel/decel lane

Right	
2	
45.0	mph
731	vph
500	ft
500	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
Distance to adjacent ramp
Conversion to pc / h Under Base Conditions_

Junction Components	Freeway		Ramp		Adjacent Ramp	
Volume, V (vph)	2394		731			vph
Peak-hour factor, PHF	0.92		0.92			
Peak $15-\mathrm{min}$ volume, v15	651		199			v
Trucks and buses	3		3			\%
Recreational vehicles	0					\%
Terrain type:	Level		Level			
Grade	0.00	\%	0.00	\%		
Length	0.00	mi	0.00	mi		
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			
Heavy vehicle adjustment, fHV	0.985		0.985			
Driver population factor, fP	1.00		1.00			
Flow rate, vp	2641		806			pcph

vph
ft
\qquad
\qquad -

Volume, V (vph)
Peak-hour factor, PHF
Trucks and buses
Recreational vehicles

Grade

$\begin{array}{lll}0.00 & \frac{\circ}{0} & \frac{\circ}{0} \\ 0.00 & \mathrm{mi} & \mathrm{mi}\end{array}$
river population factor, fP
Flow rate, vp
.

$$
\begin{aligned}
& \mathrm{L}=\quad \text { (Equation 25-8 or 25-9) } \\
& \mathrm{P}=0.450 \text { Using Equation } 0 \\
& { }_{\mathrm{v}}^{\mathrm{v}}{ }_{12}^{\mathrm{FD}}=\underset{\mathrm{v}}{\mathrm{v}}+\underset{\mathrm{F}}{(\mathrm{v}-\mathrm{v})} \underset{\mathrm{R}}{\mathrm{P}} \underset{\mathrm{FD}}{ }=1632 \mathrm{pc} / \mathrm{h}
\end{aligned}
$$

Flow Entering Diverge Influence Area 16324400 No

HCS+: Ramps and Ramp Junctions Release 5.3

	Analyst:
Agiverge Analysis	
Agency/Co.:	THuynh
Date performed:	Wilbur Smith Associates
Analysis time period:	PM Peak
Freeway/Dir of Travel:	SB I-280

Analysis time period:
 Junction:
 Jurisdiction:
 SBf-R80 to Pennsylvania
 City of San Francisco

Existing (2010)
Description: Potrero HOPE TIAR
Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Diverge
3
60.0
4877 nph
Volume on freeway
ata_
ide of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
482	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
Conversion to pc / h Under Base Conditions_

vph
ft
\qquad

$$
\begin{aligned}
& \mathrm{L}=\quad \text { (Equation } 25-8 \text { or 25-9) } \\
& \mathrm{P}=0.601 \text { Using Equation } 5 \\
& \mathrm{v}_{12}^{\mathrm{FD}}=\underset{\mathrm{R}}{\mathrm{v}}+\underset{\mathrm{F}}{\left(\mathrm{v}-\mathrm{v}_{\mathrm{R}}\right) \underset{\mathrm{FD}}{\mathrm{P}}=3446 \mathrm{pc} / \mathrm{h} .}
\end{aligned}
$$

Flow Entering Diverge Influence Area 3446 N 4400 No

HCS+: Ramps and Ramp Junctions Release 5.3

	Merge Analysis
Analyst:	THuynh
Agency/Co.:	Wilbur Smith Associates
Date performed:	1/21/2011
Analysis time period:	PM Peak
Freeway/Dir of Travel:	NB I-280
Junction:	On-Ramp from Indiana
Jurisdiction:	City of San Francisco
Analysis Year:	Existing (2010)

City of San Francisco
Description: Potrero HOPE TIAR
Freeway Dat
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge
 3 60.0
 60.0 2303

 mph vphOn Ramp Data

Right	
1	
45.0	mph
366	vph
500	ft
	ft

Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane
Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
osition of adjacent Ramp
Distance to adjacent Ramp
Conversion to pc/h Under Base Conditions

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=17.0 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence B

HCS+: Ramps and Ramp Junctions Release 5.3

Analyst:	THerge Analysis_
Agency/Co.:	Wilbur Smith Associates
Date performed:	$1 / 21 / 2011$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	SB I-280
Junction:	On-Ramp from Pennsylvania
Jurisdiction:	City of San Francisco

Freeway/Dir
 Jurisdiction:
 City of San Francisco

Existing (2010)
Description: Potrero HOPE TIAR
Freeway Dat
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge
 3 60.0
 60.0 3605

 mph vphOn Ramp Data
Side of freeway
Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
770	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
osition of adjacent Ramp
Distance to adjacent Ramp
Conversion to pc / h Under Base Conditions

	Actual	Max Desirable	Violation?
v	2352	4600	No
R12			

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=26.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence $\quad \begin{gathered}\text { R }\end{gathered}$
_ Speed Estimation___

| Intermediate speed variable, | $M=0.372$ | |
| :--- | :---: | :--- | :--- |
| Space mean speed in ramp influence area, | $S^{S}=53.3$ | mph |
| Space mean speed in outer lanes, | $S^{R}=56.0$ | mph |
| Space mean speed for all vehicles, | $S^{0}=54.2$ | mph |

HCS+: Ramps and Ramp Junctions Release 5.3
Diverge Analysis_ \qquad

Analyst:	TCH
Agency/Co.:	Wilbur Smith Associates
Date performed:	10/20/2011
Analysis time period:	PM Peak

Date performed:
Analysis time pe
Wilbur Smith Associates
10/20/2011
PM Peak
NB I-280
Off-Ramp to Chavez
Freeway/Dir
Junction:
City of San Francisco
Existing (2010)+Proposed Proj
Jurisdiction: Hope tIAR

Freeway Data \qquad -
Type of analysis
Number of lanes in freeway
ree-flow speed on freeway
3
60.0
60.0
2468 mph vph
_Off Ramp Data
Side of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
2	
45.0	mph
805	vph
500	ft
500	ft

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist? No
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ram
vph
\qquad

Junction Components	Freewa		Ramp		Adjacent Ramp	
Volume, V (vph)	2468		805			vph
Peak-hour factor, PHF	0.92		0.92			
Peak $15-$ min volume, v15	671		219			v
Trucks and buses	3		3			\%
Recreational vehicles	0		0			\%
Terrain type:	Level		Level			
Grade	0.00	\%	0.00	\%	$\%$	
Length	0.00	mi	0.00	mi		
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			
Heavy vehicle adjustment, fHV	0.985		0.985			
Driver population factor, fP	1.00		1.00			
Flow rate, vp	2723		888			pcph

3 or av34 $>1.5 \mathrm{v}_{12}^{/ 2} \quad$ No
If yes, ${ }_{12 \mathrm{~A}}=1714$ (Equation 25-18)

Density,

$$
\mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{v}{ }_{12}
$$

$$
\mathrm{L}_{\mathrm{D}}
$$

HCS+: Ramps and Ramp Junctions Release 5.3
Diverge Analysis \qquad

Analyst:	TCH
Agency/Co.:	Wilbur Smith Associates
Date performed:	$10 / 20 / 2011$
Analysis time period:	PM Peak

Date performed:
Analysis time pe
Wilbur Smith Associates
10/20/2011
PM Peak
SB I-280
Off-Ramp to Pennsylvania
Freeway/Dir
Junction:
City of San Francisco
Jurisdiction:
Existing (2010)+Proposed Proj
Description: Potrero HOPE TIAR
Freeway Data \qquad
Type of analysis
Number of lanes in freeway
ree-flow speed on freeway
3
60.0
60.0
5019 mph vph
_Off Ramp Data
Side of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
624	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph
\qquad

Junction Components	Freewa		Ramp		Adjacent Ramp	
Volume, V (vph)	5019		624			vph
Peak-hour factor, PHF	0.92		0.92			
Peak $15-\mathrm{min}$ volume, v15	1364		170			
Trucks and buses	3		3			
Recreational vehicles	0		0			
Terrain type:	Level		Level			
Grade	0.00	\%	0.00	\%	\%	
Length	0.00	mi	0.00	mi	mi	
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			
Heavy vehicle adjustment, fHV	0.985		0.985			
Driver population factor, fP	1.00		1.00			
Flow rate, vp	5537		688			cph

Flow Entering Diverge Influence Area 3549 No as influence D

HCS+: Ramps and Ramp Junctions Release 5.3

	Merge Analysis_
Analyst:	TCH
Agency/Co.:	Wilbur Smith Associates
Date performed:	10/20/2011
Analysis time period:	PM Peak
Freesay	

Agency/Co.:

Wilbur Smith Associates
10/20/2011
PM Peak
NB I-280

On-Ramp from Indiana
 Freeway/Di
 City of San Francisco
 Jurisdiction:

Existing (2010)+Proposed Proj
Description: Potrero HOPE TIAR
Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge
 3 60.0
 60.0 2303

 mph vphOn Ramp Data
Side of freeway
Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
439	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ram
Junction Components

Volume, V (vph)
Peak-hour factor, PHF
eak $15-\mathrm{min}$ volume, v1
rucks and buses
Recreational vehicles
Grade
Grade
Length
rucks and buses PCE, ET
Recreational vehicle PCE, ER
Heavy vehicle adjustment, fHV
Driver population factor, fP
Flow rate, vp

Freeway	
2303	
2303	
0.92	
626	
3	
0	
Level	
	$\%$
1.5	mi
1.2	
0.985	
1.00	
2541	

	Ramp
	439
	0.92
	119
	3
	0
	Level
mi	
	1.5
	1.2
	0.985
	1.00
	484

Adjacent

Ramp
vph

v
\%
0

\circ
$\%$

$\begin{array}{cc}\circ & \% \\ \mathrm{mi} & \mathrm{mi}\end{array}$
mi
1.2
1.00

484

HCS+: Ramps and Ramp Junctions Release 5.3

	Merge Analysis__
Analyst:	TCH
Agency/Co.:	Wilbur Smith Associates
Date performed:	$10 / 20 / 2011$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	SB I-280

Analysis time period:
Freeway/Dir of Travel:
Junction:
PM Peak
SB T-280
On-Ramp from Pennsylvania
Jurisdiction:
City of San Francisco
Analysis Year:
Existing (2010)+Proposed Proj
Description: Potrero HOPE TIAR
Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge
 3 60.0
 60.0 3605

 mph vphOn Ramp Data
Side of freeway
Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
844	vph
500	ft
	ft

_Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
Position of adjacent Ramp
Distance to adjacent Ram

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=27.5 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence C

HCS+: Ramps and Ramp Junctions Release 5.3 Diverge Analysis \qquad

Analyst:	TCH
Agency/Co.:	Wilbur Smith Associates
Date performed:	$10 / 20 / 2011$
Analysis time period:	PM Peak

Date performed:
Analysis time pe
Wilbur Smith Associates
10/20/2011
PM Peak
NB I-280
Off-Ramp to C Chavez
Freeway/Di
City of San Francisco
Jurisdiction:
Existing (2010)+Alt 1
Analysis Year: Hope tIAR

Freeway Data \qquad -
Type of analysis
Number of lanes in freeway
ree-flow speed on freeway
3
60.0
60.0
2440 mph vph
_Off Ramp Data
Side of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
ength of first accel/decel lane
Length of second accel/decel lane

Right	
2	
45.0	mph
777	vph
500	ft
500	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent ramp
position of adjacent ramp
Distance to adjacent ramp
vph

Conversion to pc/h Under Base Conditions

Junction Components	Freeway		Ramp		Adjacent Ramp	
Volume, V (vph)	2440		777			vph
Peak-hour factor, PHF	0.92		0.92			
Peak $15-\mathrm{min}$ volume, v15	663		211			v
Trucks and buses	3		3			\%
Recreational vehicles	0		0			\%
Terrain type:	Level		Level			
Grade	0.00	\%	0.00	\%	\%	
Length	0.00	mi	0.00	mi		
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			
Heavy vehicle adjustment, fHV	0.985		0.985			
Driver population factor, fP	1.00		1.00			
Flow rate, vp	2692		857			pcph

If yes, ${ }^{2}{ }_{12 \mathrm{~A}}=1683 \quad$ (Equation 25-18)

Density,

$$
\mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{v}_{12}
$$

$$
\mathrm{L}_{\mathrm{D}}
$$

HCS+: Ramps and Ramp Junctions Release 5.3
Diverge Analysis \qquad

Analyst:	TCH
Agency/Co.:	Wilbur Smith Associates
Date performed:	$10 / 20 / 2011$
Analysis time period:	PM Peak
Fres	

Date performed:
Wilbur Smith Associates
10/20/2011
PM Peak
SB I-280
Off-Ramp to Pennsylvania
City of San Francisco
Freeway/Dir
Jurisdiction:
Existing (2010)+Alt
Description: Potrero HOPE TIAR
Freeway Data \qquad
Type of analysis
Number of lanes in freeway
ree-flow speed on freeway
3
60.0
60.0
4961 mph vph

Off Ramp Data \qquad
Ide of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
566	vph
500	ft
	ft

_Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
Distance to adjacent ramp
Conversion to pc / h Under Base Conditions_

Junction Components	Freewa		Ramp		Adjacent Ramp	
Volume, V (vph)	4961		566			vph
Peak-hour factor, PHF	0.92		0.92			
Peak $15-\mathrm{min}$ volume, v15	1348		154			v
Trucks and buses	3		3			\%
Recreational vehicles	0		0			\%
Terrain type:	Level		Level			
Grade	0.00	\%	0.00	\%	\%	
Length	0.00	mi	0.00	mi		
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			
Heavy vehicle adjustment, fHV	0.985		0.985			
Driver population factor, fP	1.00		1.00			
Flow rate, vp	5473		624			pcph

$$
\begin{aligned}
& \mathrm{L}=\quad \text { (Equation 25-8 or 25-9) } \\
& \mathrm{P}=0.594 \text { Using Equation } 5 \\
& \mathrm{v}_{12}^{\mathrm{FD}}=\underset{\mathrm{R}}{\mathrm{v}}+\underset{\mathrm{F}}{\left(\mathrm{v}-\mathrm{v}_{\mathrm{R}}\right) \underset{\mathrm{FD}}{\mathrm{P}}=3507 \mathrm{pc} / \mathrm{h} .}
\end{aligned}
$$

Level of Service Determination (if not F) Level of service for ramp-freeway junction areas of influence D

HCS+: Ramps and Ramp Junctions Release 5.3

Analyst:	Merge Analysis_
Agency/Co.:	TCH
Date performed:	Wilbur Smith Associates
Analysis time period:	PM Peak
Freeway/Dir of Travel:	NB I-280
Junction:	On-Ramp from Indiana

Jreeway/Dir
 Jurisdiction:
 Analysis Year:
 City of San Francisco

Description: Potrero HOPE TIAR \quad Existing (2010)+Alt 1
\qquad Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Merge
3
60.0
2303
2303
Volume on freeway
Data_
Side of freeway
Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
410	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
osition of adjacent Ramp
Distance to adjacent Ramp
Conversion to pc/h Under Base Conditions

 Level of service for ramp-freeway junction areas of influence B
[__Speed Estimation___

| Intermediate speed variable, | $M=0.304$ | |
| :--- | :---: | :--- | :--- |
| Space mean speed in ramp influence area, | $S^{S}=54.5$ | mph |
| Space mean speed in outer lanes, | $S^{R}=58.1$ | mph |
| Space mean speed for all vehicles, | $S^{0}=55.7$ | mph |

HCS+: Ramps and Ramp Junctions Release 5.3

	Merge Analysis__
Analyst:	TCH
Agency/Co.:	Wilbur Smith Associates
Date performed:	$10 / 20 / 2011$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	SB I-280
Junction:	On-Ramp from Pennsylvania

Freeway/D Junction:

Jurisdiction:
ylvania
Analysis Year:
cley or San Francisco
Description: Potrero HOPE TIAR
Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge
 3 60.0
 60.0 3605

 mph vphOn Ramp Data
Side of freeway
Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
819	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
osition of adjacent Ramp
Distance to adjacent Ramp

	Actual	Max Desirable	Violation?
v	2352	4600	No
R12			

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=27.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence $\quad \begin{gathered}\text { R }\end{gathered}$
_ Speed Estimation___

| Intermediate speed variable, | $M=0.377$ | |
| :--- | :---: | :--- | :--- |
| Space mean speed in ramp influence area, | $S^{S}=53.2$ | mph |
| Space mean speed in outer lanes, | $S^{R}=56.0$ | mph |
| Space mean speed for all vehicles, | $S^{0}=54.1$ | mph |

HCS+: Ramps and Ramp Junctions Release 5.3 Diverge Analysis \qquad

Analyst:	BPK
Agency/Co.:	Wilbur Smith Associates
Date performed:	$1 / 21 / 2011$
Analysis time period:	PM Peak

Date performed:
Wilbur Smith Associates
1/21/2011
PM Peak
PM Peak
NB I-280
Off-Ramp to C Chavez
Freeway/Di
City of San Francisco
Jurisdiction:
2030 Cumulative
Description: Potrero HOPE TIAR
Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
3
60.0
6670 mph
Volume on freeway
Data

Side of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
ength of first accel/decel lane
Length of second accel/decel lane

Right	
2	
45.0	mph
930	vph
500	ft
500	ft

_Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
Conversion to pc / h Under Base Conditions_

vph
ft
\qquad

$$
\square
$$

Adjacent
Adjacent
vph

$$
\begin{aligned}
& \mathrm{v} \\
& \frac{\circ}{\circ} \\
& \%
\end{aligned}
$$

mi

$$
\begin{aligned}
& \mathrm{L}=\text { (Equation 25-8 or 25-9) } \\
& \mathrm{P}=0.450 \text { Using Equation } 0 \\
& { }_{\mathrm{v}}^{\mathrm{v}}{ }_{12}^{\mathrm{FD}}=\underset{\mathrm{R}}{\mathrm{v}}+\underset{\mathrm{F}}{(\mathrm{v}-\mathrm{v})} \underset{\mathrm{R}}{\mathrm{P}} \underset{\mathrm{FD}}{ }=3876 \mathrm{pc} / \mathrm{h}
\end{aligned}
$$

Flow Entering Diverge Influence Area
6594400 No

HCS+: Ramps and Ramp Junctions Release 5.3
\qquad
Analyst:
Agency/Co.:
bate performed:
BPK
Wilbur Smith Associates
1/21/2011
1/21/2011
PM Peak
SB I-280
Off-Ramp to Pennsylvania
City of San Francisco
2030 Cumulative
Freeway/D
Jurisdiction
Description: Potrero HOPE TIAR
Freeway Data \qquad
ype of analysis
Number of lanes in freeway
Free-flow speed on freeway
3
60.0
6760 mph
Volume on freeway
ata
Right
Side of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

1	
45.0	mph
870	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph
\qquad Conversion to pc/h Under Base Conditions

Junction Components	Freewa		Ramp		Adjacent Ramp	
Volume, V (vph)	6760		870			vph
Peak-hour factor, PHF	0.92		0.92			
Peak $15-\mathrm{min}$ volume, v15	1837		236			v
Trucks and buses	3		3			\%
Recreational vehicles	0		0			\%
Terrain type:	Level		Level			
Grade	0.00	\%	0.00	\%		
Length	0.00	mi	0.00	mi		
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			
Heavy vehicle adjustment, fHV	0.985		0.985			
Driver population factor, fP	1.00		1.00			
Flow rate, vp	7458		960			pcph

yes, v avs

Flow Entering Diverge Influence Area
7584400

Density, $\quad D=4.252+0.0086 \mathrm{v}-0.009 \mathrm{~L}=40.7 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence F

HCS+: Ramps and Ramp Junctions Release 5.3
Merge Analysis

Analyst:	Merge Analysis_
Agency/Co.:	BPK
Date performed:	Wilbur Smith Associates
Analysis time period:	1/21/2011
Freeway/Dir of Travel:	PM Peak
I-280	

Analysis time period:
Freeway/Dir
1/21/201
NB I-280
On-Ramp from Indiana
Jurisdiction:
City of San Francisco
Description: Potrero HOPE TIAR
\qquad Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge
 3 60.0

On Ramp Data
Side of freeway
Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
990	vph
500	ft
	ft

_Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
position of adjacent Ramp
Distance to adjacent Ramp

	Actual	Max Desirable	Violation?
v	3746	4600	Yes
R12			

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=39.6 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence
___Speed Estimation___

Intermediate speed variable,	$M=0.768$	
Space mean speed in ramp influence area,	$S^{S}=46.2$	mph
Space mean speed in outer lanes,	$S^{R}=51.7$	mph
Space mean speed for all vehicles,	$S^{0}=48.0$	mph

HCS+: Ramps and Ramp Junctions Release 5.3
Merge Analysis

Analyst:	Merge Analysis_
Agency/Co.:	Wilbur Smith Associates
Date performed:	$1 / 21 / 2011$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	SB I-280
Junction:	On-Ramp from Pennsylvania

Junction:

1/21/2011
SB I-280
On-Ramp from Pennsylvania
City of San Francisco
Jurisdiction:
2030 Cumulative
Description: Potrero HOPE TIAR
Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge
 3 60.0
 60.0 5890

 mph vphOn Ramp Data_
Side of freeway
Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
1610	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
position of adjacent Ramp
Distance to adjacent Ramp
Conversion to pc/h Under Base Conditions

	Actual	Max Desirable	Violation?
v	3844	4600	Yes
R12			

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=45.4 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence
Speed Estimation____

Intermediate speed variable,	$M=1.352$	
Space mean speed in ramp influence area,	$S^{S}=35.7$	mph
Space mean speed in outer lanes,	$S^{R}=51.3$	mph
Space mean speed for all vehicles,	$S^{0}=39.5$	mph

HCS+: Ramps and Ramp Junctions Release 5.3
Diverge Analysis \qquad
TCH
Wilbur Smith Associates
10/20/2011
PM Peak
NB I-280
Off-Ramp to C Chavez
City of San Francisco
2030 Cumulative+Proposed Proj
Analyst:
gate performed:

HOPE TIAR
Freeway Data \qquad
Type of analysis
Number of lanes in freeway
ree-flow speed on freeway
Volume on freeway

Diverge	
3	
60.0	mph
6744	vph

Off Ramp Data \qquad
Side of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
2	
45.0	mph
1004	vph
500	ft
500	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent ramp
Position of adjacent ramp
Distance to adjacent ramp
vph

Conversion to pc/h Under Base Conditions

Junction Components	Freewa		Ramp		Adjacent Ramp	
Volume, V (vph)	6744		1004			vph
Peak-hour factor, PHF	0.92		0.92			
Peak $15-\mathrm{min}$ volume, v15	1833		273			v
Trucks and buses	3		3			\%
Recreational vehicles	0		0			\%
Terrain type:	Level		Level			
Grade	0.00	\%	0.00	\%	\%	
Length	0.00	mi	0.00	mi		
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			
Heavy vehicle adjustment, fHV	0.985		0.985			
Driver population factor, fP	1.00		1.00			
Flow rate, vp	7440		1108			pcph

Capacity Checks

Level of Service Determination (if not
Density

$$
\mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{v}_{12}-0.009 \mathrm{~L}=31 .
$$

Level of service for ramp-freeway junction areas of influence F
\qquad Speed Estimation \qquad
Intermediate speed variable,

D	$=0.398$	
S		
S	$=52.8$	mph
S^{R}	$=59.2$	mph
S^{0}	$=55.0$	mph

HCS+: Ramps and Ramp Junctions Release 5.3
Diverge Analysis \qquad
TCH
Wilbur Smith Associates
10/20/2011
PM Peak
SB I-280
Off-Ramp to Pennsylvania
City of San Francisco
2030 Cumulative+Proposed Proj
Analyst:
gate performed

HOPE TIAR
Freeway Data \qquad
Type of analysis
Number of lanes in freeway
ree-flow speed on freeway
Diverge
3
60.0
6902 mph
Volume on freeway
\qquad
\qquad
Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
1012	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent ramp
Position of adjacent ramp
Distance to adjacent ramp
vph

Conversion to pc / h Under Base Conditions
Junction Components

Volume, V (vph)
Peak-hour factor, PHF
peak $15-\mathrm{min}$ volume, v15
rucks and buses
Recreational vehicles
errain type
Length
rucks and buses PCE, ET
Recreational vehicle PCE, ER
Heavy vehicle adjustment, fHV
Driver population factor, fP
Flow rate, vp
Freeway

6902
0.92
1876
3
0
Level
0.00
$0.00 \quad$ m
1.5
1.2
0.985
1.00
7615

	Ramp
	1012
	0.92
	275
	3
	0
	Level
\%	0.00
mi	0.00
	1.5
	1.2
	0.985
	1.00
	1116

Adjacent Ramp Ramp vp ,
\circ
$\%$
$\%$
$\stackrel{\circ}{\circ}$

0.00	$\frac{\circ}{\circ}$	$\frac{\circ}{2}$
0.00	mi	mi

1.5 0.985

1116

Capacity Checks

$V_{F i}=V_{F}$	Actual	Maximum		LOS F?
	7615	6900		Yes
$\mathrm{v}_{\mathrm{FO}}=\mathrm{v}_{\mathrm{F}}-\mathrm{v}_{\mathrm{R}}$	6499	6900		No
v	1116	2100		No
R				
${ }^{\mathrm{v}} 3 \text { or }{ }^{\mathrm{v}} \text { av34 }$	$3131 \mathrm{pc} / \mathrm{h}$	(Equation	25-15	or 25-16)
Is v_{3} or $\mathrm{v}_{\text {av34 }}>$	> $2700 \mathrm{pc} / \mathrm{h}$?	Yes		
Is v v >	$>1.5 \mathrm{v}_{12} / 2$	No		
3 or av34				
If yes, v = 4915		(Equation	25-18)	
12A				

	Flow Entering	Diverge	Influence Area
Actual	Max	Desirable	Violation?
V	4915	4400	Yes

Density, $\quad D=4.252+0.0086 \mathrm{v}-0.009 \mathrm{~L}=42.0 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
R 12 R Level of service for ramp-freeway junction areas of influence F
\qquad Speed Estimation \qquad
Intermediate speed variable,

D	$=0.398$	
S	$=52.8$	mph
S		
R	$=59.2$	mph
0		54.9
S	mph	

HCS+: Ramps and Ramp Junctions Release 5.3
Merge Analysis \qquad
Analyst:
Agency/Co.:
Date performed:
TCH
Wilbur Smith Associates
10/20/2011
PM Peak
PM Peak
NB I-280
On-Ramp from Indiana
City of San Francisco
2030 Cumulative+Proposed Proj

Freeway/D

Jurisdiction: HOPE TIAR

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
ree-flow speed on freeway
Volume on freeway

Merge	
3	
60.0	mph
5740	vph

On Ramp Data \qquad
Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
1063	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
\qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
Position of adjacent Ramp
Distance to adjacent Ramp
vph

Conversion to pc/h Under Base Conditions
Junction Components

Volume, V (vph)
Peak-hour factor, PHF
Peak $15-\mathrm{min}$ volume, v15
rucks and buses
ecreational vehicles
Grrain type
Grade
Length
rucks and buses PCE, ET
Recreational vehicle PCE, ER
Heavy vehicle adjustment, fHV
Driver population factor, fP
Flow rate, vp

Freeway	
5740	
0.92	
1560	
3	
0	
Level	
	$\%$
1.5	mi
1.2	
0.985	
1.00	
6333	

	Ramp
	1063
	0.92
	289
	3
	0
	Level
mi	
mi	
	1.5
	1.2
	0.985
	1.00
	1173

Adjacent Ramp
vph

v
$\%$

$\stackrel{\circ}{\circ}$

$$
\begin{aligned}
& \mathrm{L}=\quad \text { (Equation 25-2 or 25-3) } \\
& \mathrm{P}^{\mathrm{EQ}}=0.591 \text { Using Equation } 1 \\
& \left.\mathrm{~V}_{12}^{\mathrm{FM}}=\mathrm{V} \underset{\mathrm{~F}}{(\mathrm{P}} \underset{\mathrm{FM}}{(\mathrm{P}}\right)=3746 \mathrm{pc} / \mathrm{h}
\end{aligned}
$$

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=40.2 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ tevel of service for ramp-freeway junction areas of influence
$\underline{\text { Speed Estimation___ }}$

Intermediate speed variable, Speed Estimation

M	$=0.810$
S	
S	$=45.4$
R	mph
S^{0}	$=51.7$
S^{0}	mph
S	$=47.4$
	mph

HCS+: Ramps and Ramp Junctions Release 5.3

	Merge Analysis___
Analyst: \quad TCH	

Analyst:
Date performed:
TCH
Wilbur Smith Associates
Date performed

Freeway/Dir

Freeway/Di
Jurisdiction:
10/20/2011
PM Peak
PM Peak
SB I-280
On-Ramp from Pennsylvania
City of San Francisco
2030 Cumulative+Proposed Proj
Description: Potrero HOPE TIAR
Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge	
3	
60.0	mph
5890	vph

\qquad On Ramp Data \qquad
Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
1684	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent Ramp
Position of adjacent Ramp
Distance to adjacent Ramp
\qquad Conversion to pc/h Under Base Condition

Junction Components
Volume, V (vph)
Peak-hour factor, PHF
peak $15-\mathrm{min}$ volume, v15
rucks and buses
eoreational vehicles
Grrain type
Grade
Length
rucks and buses PCE, ET
Recreational vehicle PCE, ER
Heavy vehicle adjustment, fHV
Driver population factor, fP
Flow rate, vp

Freeway	
5890	
0.92	
1601	
3	
0	
Level	
	$\%$
1.5	m
1.2	
0.985	
1.00	
6498	

Ramp		Adjacent Ramp	
1684			vph
0.92			
458			v
3			\%
0			\%
Level			
\%	\%		\%
mi	mi		mi
1.5			
1.2			
0.985			
1.00			
1858			pcph

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=46.0 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ evel of | R |
| :---: |

rvice for ramp-freewa

$$
12
$$

A
F
_Speed Estimation

Intermediate speed variable,
\qquad

M	$=1.444$	
S	$=34.0$	mph
S^{R}		
S^{2}	$=51.3$	mph
S^{0}	$=38.1$	mph

HCS+: Ramps and Ramp Junctions Release 5.3 Diverge Analysis \qquad

Analyst:	TCH
Agency/Co.:	Wilbur Smith Associates
Date performed:	$10 / 20 / 2011$
Analysis time period:	PM Peak

Date performed:
Analysis time pe
Wilbur Smith Associates
10/20/2011
PM Peak
NB I-280
Off-Ramp to C Chavez
Freeway/Di
Junction:
City of San Francisco
2030 Cumulative+Alt 1
Jurisdiction:
Analysis Year:

Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Diverge
3
60.0 mph
Vree-flum on freeway
60.0
6716 vph

Off Ramp Data \qquad
Side of freeway
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
ength of first accel/decel lane
Length of second accel/decel lane

Right	
2	
45.0	mph
976	vph
500	ft
500	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Volume on adjacent ramp
position of adjacent ramp
Distance to adjacent ramp
vph

Conversion to pc / h Under Base Conditions

Junction Components	Freeway		Ramp		Adjacent Ramp	
Volume, V (vph)	6716		976			ph
Peak-hour factor, PHF	0.92		0.92			
Peak $15-\mathrm{min}$ volume, v15	1825		265			
Trucks and buses	3		3			
Recreational vehicles	0		0			
Terrain type:	Level		Level			
Grade	0.00	\%	0.00	\%	\%	
Length	0.00	mi	0.00	mi	mi	
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			
Heavy vehicle adjustment, fHV	0.985		0.985			
Driver population factor, fP	1.00		1.00			
Flow rate, vp	7409		1077			cph

HCS+: Ramps and Ramp Junctions Release 5.3
Diverge Analysis \qquad

Analyst:	TCH
Agency/Co.:	Wilbur Smith Associates
Date performed:	$10 / 20 / 2011$
Analysis time period:	PM Peak

Date performed:
Wilbur Smith Associates
10/20/2011
PM Peak
SB I-280
Off-Ramp to Pennsylvania
City of San Francisco
Freeway/Dir
2030 Cumulative+Alt
Jurisdiction: Hope tIAR

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
3
60.0
6844 mph vph

Off Ramp Data

Data_	
Right	
1	
45.0	mph
954	vph
500	ft
	ft

ide of freewa
Number of lanes in ramp
ree-Flow speed on ramp
Volume on ramp
length of first accel/decel lane
Length of second accel/decel lane
Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
No
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
Distance to adjacent ramp
Conversion to pc / h Under Base Conditions_

Junction Components	Freeway		Ramp		Adjacent Ramp	
Volume, V (vph)	6844		954			vph
Peak-hour factor, PHF	0.92		0.92			
Peak $15-\mathrm{min}$ volume, v15	1860		259			v
Trucks and buses	3		3			\%
Recreational vehicles	-		0			\%
Terrain type:	Level		Level			
Grade	0.00	\%	0.00	\%	\%	
Length	0.00	mi	0.00	mi		
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			
Heavy vehicle adjustment, ffl	0.985		0.985			
Driver population factor, fP	1.00		1.00			
Flow rate, vp	7551		1053			pcph

$$
\begin{aligned}
& \mathrm{L}=\text { (Equation 25-8 or 25-9) } \\
& \mathrm{P}=0.523 \text { Using Equation } 5 \\
& \mathrm{v}_{12}^{\mathrm{FD}}=\underset{\mathrm{R}}{\mathrm{v}}+\underset{\mathrm{F}}{(\mathrm{v}-\underset{\mathrm{R}}{\mathrm{v}}) \underset{\mathrm{FD}}{\mathrm{P}}=4450 \mathrm{pc} / \mathrm{h} .}
\end{aligned}
$$

Flow Entering Diverge Influence Area
851 Max
Yes Level of service for ramp-freeway junction areas of influence F

HCS+: Ramps and Ramp Junctions Release 5.3

Analyst:	Merge Analysis_
Agency/Co.:	TCH
Date performed:	Wilbur Smith Associates
Analysis time period:	PM Peak
Freeway/Dir of Travel:	NB I-280
Junction:	On-Ramp from Indiana

Jreeway/Dir
 Jurisdiction: Analysis Year:

Description: Potrero HOPE TIAR
Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge
 3 60.0
 60.0 5740

 mph vphOn Ramp Data

Right	
1	
45.0	mph
1034	vph
500	ft
	ft

Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane
Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist? No
Volume on adjacent Ramp
osition of adjacent Ramp
Distance to adjacent Ramp
Conversion to pc / h Under Base Conditions

	Actual	Max Desirable	Violation?
v	3746	4600	Yes
R12			

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=39.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence
Speed Estimation____

Intermediate speed variable,	M	M	$=0.793$
Space mean speed in ramp influence area,	$S^{S}=45.7$	mph	
Space mean speed in outer lanes,	$S^{R}=51.7$	mph	
Space mean speed for all vehicles,	$S^{0}=47.6$	mph	

HCS+: Ramps and Ramp Junctions Release 5.3

Analyst:	Merge Analysis__
Agency/Co.:	TCH
Date performed:	Wilbur Smith Associates
Analysis time period:	10/20/2011
Freeway/Dir of Travel:	PM Peak
Junction:	On I-280
On-Ramp from Pennsylvania	

Junction:
 Jurisdiction: Analysis Year:
 City of San Fra
 2030 Cumulative+Alt 1

Description: Potrero HOPE TIAR
Freeway Data
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge
 3 60.0
 60.0 5890

 mph vphOn Ramp Data
Side of freeway
Number of lanes in ramp
ree-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right	
1	
45.0	mph
1659	vph
500	ft
	ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist? No
Volume on adjacent Ramp
position of adjacent Ramp
Distance to adjacent Ramp
Conversion to pc / h Under Base Conditions

	Actual	Max Desirable	Violation?
v	3844	4600	Yes
R12			

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=45.8 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence
Speed Estimation____

Intermediate speed variable,	M	$M=1.412$	
Space mean speed in ramp influence area,	$S^{S}=34.6$	mph	
Space mean speed in outer lanes,	$S^{R}=51.3$	mph	
Space mean speed for all vehicles,	$S^{0}=38.6$	mph	

APPENDIX H TRANSIT DATA AND ANALYSIS

TRANSIT SCREENLINES

FIGURE F-1
MUN TRANSIT SCREENLINES

F-8

Appendix F

FIGURE F-2
REGIONAL TRANSIT SCREENLINES

TRANSIT ANALYSIS

Potrero HOPE Transportation Study

Existing MUNI Line-by-Line Analysis (Weekday PM Peak Hour)

Route	Direction	Vehicle Type	Veh Capacity	Veh/Peak Hour	Peak Hour	Hourly Load	Capacity	Utilization	MLP
10 Townsend*	Inbound	MCS	63	3	2011 APC	186	189	98\%	Sansome/Filbert
10 Townsend*	Outbound	MCS	63	3	2011 APC	171	189	90\%	Sansome/California
19 Polk*	Inbound	MCS	63	4	2011 APC	172	252	68\%	7th/Howard
19 Polk*	Outbound	MCS	63	4	2011 APC	124	252	49\%	Polk/Sutter
22 Fillmore	Inbound	TCS	63	9	4PM - 5PM	328	567	58\%	16th/Folsom
22 Fillmore	Outbound	TCS	63	9	4PM - 5PM	327	567	58\%	Fillmore/Hayes
48 Quintara-24th Street	Inbound	MCS	63	6	2011 APC	175	378	46\%	24th/Folsom
48 Quintara-24th Street	Outbound	MCS	63	6	2011 APC	180	378	48\%	24th/Mission
T Third St	Inbound	LRV-1	119	6	4PM - 5PM	656	714	92\%	Embarcadero/Folsom
T Third St	Outbound	LRV-1	119	6	5PM - 6PM	554	714	78\%	Van Ness Station
53 Southern Heights	Inbound	MCS	63	2	$4 P M$ - $5 P M$	39	126	31\%	16th/Harrison
53 Southern Heights	Outbound	MCS	63	2	4PM - 5PM	38	126	30\%	16th/San Bruno

Vehicle Type	Capacity
ARTIC BUS (60')	94
COMBO BUS (40')	79
LRV (per train car)	119
NEIGHB. BUS (30')	45
STANDARD BUS (40')	63
STREETCAR	70

Notes: Source: SFMTA Fall 2006 - Spring 2007 TEP Monitoring Data, 2011 APC Data
For lines 10, 19, and 48, 2011 SFMTA APC Data was used.
Vehicles per peak hour - based on 2007 and 2011 Muni Timetable, TripActivity_RT_XX.xls; The number of vehicles operating during the identified peak hour was used based on the maximum load point (MLP) during the PM peak.
Hourly Load - calculated from PassengerActivity_ByHour_RT_XX.xls;. PM peak hour determined by analyzing MLP ridership between the hours of 4-5 PM and 5-6 PM. For 2011 APC Data, only the highest peak hour of passenger activity was shown.
Capacity is calculated by number of seats per transit vehicles multiplied by the frequency of buses/trains per one PM peak hour
Utilization is calculated by dividing the hourly load by hourly capacity.
*As 2011 APC data was used for the 10 Townsend and 19 Polk lines, 53 Southern Heights ridership in the TEP was not accounted for in this analysis (as the original assumption was that 53 ridership would be split between the 10 and 19 using 2007 TEP data). 2011 APC data should inherently account for this shift. The 53 Southern Heights ridership is included for reference and is italicized.

Potrero HOPE Transportation Study

Existing Muni Screenline Analysis (Weekday PM Peak Hour)

Screenline	Corridor	Existing Ridership	Existing Capacity	Existing Utilization	
Northeast	Kearny/Stockton Corridor	1,129	60%	2,010	56%
	All Other Lines	757	40%	1,589	48%
	Subtotal	1,886	100%	3,599	52%
Northwest	Geary Corridor	1,684	25%	2,230	76%
	California	1,413	21%	2,050	69%
	Sutter/Clement	565	9%	1,008	56%
	Fulton/Hayes	861	13%	1,260	68%
	Balboa	615	9%	1,247	49%
	Chestnut/Union	1,483	22%	2,328	64%
Southeast	Subtotal	6,621	100%	10,123	65%
	Third Street	554	12%	714	78%
	Mission Street	1,254	27%	2,350	53%
	San Bruno/Bayshore	1,671	36%	2,256	74%
	All Other Lines	1,189	25%	1,708	70%
Southwest	Subtotal	4,668	100%	7,028	66%
Total All SFMUNI	Screenlines	5,883	79%	6,783	87%
	Subway Lines	1,247	17%	2,140	58%
	Haight/Noriega	304	4%	700	43%

Source: SFMTA TEP, July 2008; SF Planning Department, 2009

Potrero HOPE Transportation Study

Existing Regional Screenline Analysis (Weekday PM Peak Hour)

Screenline Location		Existing Ridership	Existing Capacity	Existing Utilization	
East Bay	BART	20,067	86%	24,150	83%
	AC Transit	2,517	11%	4,193	60%
	Ferries	702	3%	1,519	46%
	Subtotal	23,286	100%	29,862	78%
North Bay	GGT buses	1,397	61%	2,205	63%
	GGT ferries	906	39%	1,700	53%
	Subtotal	2,303	100%	3,905	59%
South Bay	BART	10,202	80%	16,800	61%
	Caltrain	1,986	16%	3,250	61%
	SamTrans	575	5%	940	61%
Subtotal	12,763	100%	20,990	61%	
Total All Regional				$\mathbf{5 4 , 7 5 7}$	$\mathbf{7 0 \%}$

Source: SFMTA TEP, July 2008; SF Planning Department, 2009, 2012

Potrero HOPE TRANSPORTATION Study
Existing plus Proposed Project MUNI Line-by-Line Analysis (Weekday PM Peak Hour)

Route	Direction	Hourly Load	Project Trips	Existing plus Project Ridership	Utilization	MLP
10-Townsend*	Inbound	186	27	213	$\mathbf{1 1 3 \%}$	Sansome/Filbert
10-Townsend*	Outbound	171	52	223	$\mathbf{1 1 8} \%$	Sansome/California
19-Polk* *	Inbound	172	22	194	77%	7th/Howard
19-Polk*	Outbound	124	39	163	65%	Polk/Sutter
48-Quintara-24th Street	Inbound	175	28	203	54%	24th/Folsom
48-Quintara-24th Street	Outbound	180	17	197	52%	24th/Mission

Vehicle Type	Capacity
ARTIC BUS (60')	94
COMBO BUS (40')	79
LRV (per train car)	119
NEIGHB. BUS (30')	45
STANDARD BUS (40')	63
STREETCAR	70

Notes: Source: SFMTA Fall 2006 - Spring 2007 TEP Monitoring Data, 2011 APC data
Vehicles per peak hour - based on 2007 and 2011 Muni Timetable, TripActivity_RT_XX.xls; The number of vehicles operating during the identified peak hour was used based on the maximum load point (MLP) during the PM peak.
Hourly Load - calculated from PassengerActivity_ByHour_RT_XX.xls;. PM peak hour determined by analyzing MLP ridership between the hours of 4-5 PM and 5-6 PM.
Capacity is calculated by number of seats per transit vehicles multiplied by the frequency of buses/trains per one PM peak hour
Utilization is calculated by dividing the hourly load by hourly capacity.
*As 2011 APC data was used for the 10 Townsend and 19 Polk lines, 53 Southern Heights ridership in the TEP was not accounted for in this analysis (as the original assumption was that 53 ridership would be split between the 10 and 19 using 2007 TEP data. 2011 APC data should inherently account for this shift

Potrero HOPE TRANSPORTATION Study

Existing plus Project (Alternative 1) MUNI Line-by-Line Analysis (Weekday PM Peak Hour)

Route	Direction	Hourly Load	Project Trips	Existing plus Project Ridership	Utilization	MLP
10-Townsend*	Inbound	186	18	204	$\mathbf{1 0 8 \%}$	Sansome/Filbert
10-Townsend*	Outbound	171	32	203	$\mathbf{1 0 7 \%}$	Sansome/California
19-Polk* *	Inbound	172	13	185	73%	7th/Howard
19-Polk*	Outbound	124	24	148	59%	Polk/Sutter
48-Quintara-24th Street	Inbound	175	16	191	51%	24th/Folsom
48-Quintara-24th Street	Outbound	180	11	191	51%	24th/Mission

Vehicle Type	Capacity
ARTIC BUS (60')	94
COMBO BUS (40')	79
LRV (per train car)	119
NEIGHB. BUS (30')	45
STANDARD BUS (40')	63
STREETCAR	70

Notes: Source: SFMTA Fall 2006 - Spring 2007 TEP Monitoring Data, 2011 APC data
Vehicles per peak hour - based on 2007 and 2011 Muni Timetable, TripActivity_RT_XX.xls; The number of vehicles operating during the identified peak hour was used based on the maximum load point (MLP) during the PM peak.
Hourly Load - calculated from PassengerActivity_ByHour_RT_XX.xls;. PM peak hour determined by analyzing MLP ridership between the hours of 4-5 PM and 5-6 PM.
Capacity is calculated by number of seats per transit vehicles multiplied by the frequency of buses/trains per one PM peak hour
Utilization is calculated by dividing the hourly load by hourly capacity.
*As 2011 APC data was used for the 10 Townsend and 19 Polk lines, 53 Southern Heights ridership in the TEP was not accounted for in this analysis (as the original assumption was that 53 ridership would be split between the 10 and 19 using 2007 TEP data. 2011 APC data should inherently account for this shift

Potrero HOPE Transportation Study

Existing plus Proposed Project Muni Screenline Analysis (Weekday PM Peak Hour)

		Existing Conditions			Project Trips	Existing plus Project Conditions		
		Ridership	Capacity	Utilization		Ridership	Capacity	Utilization
Southeast	Third Street	554	714	78\%	39	593	714	83\%
	Mission Street	1,254	2,350	53\%	0	1,254	2,350	53\%
	San Bruno/Bayshore	1,671	2,256	74\%	0	1,671	2,256	74\%
	All Other Lines	1,189	1,708	70\%	91	1,280	1,708	75\%
	Subtotal	4,668	7,028	66\%	130	4,798	7,028	68\%

Potrero HOPE Transportation Study

Existing plus Project (Alternative 1) Muni Screenline Analysis (Weekday PM Peak Hour)

		Existing Conditions			Project Trips	Existing plus Project Conditions		
		Ridership	Capacity	Utilization		Ridership	Capacity	Utilization
Southeast	Third Street	554	714	78\%	24	578	714	81\%
	Mission Street	1,254	2,350	53\%	0	1,254	2,350	53\%
	San Bruno/Bayshore	1,671	2,256	74\%	0	1,671	2,256	74\%
	All Other Lines	1,189	1,708	70\%	56	1,245	1,708	73\%
	Subtotal	4,668	7,028	66\%	80	4,748	7,028	68\%

Potrero HOPE Transportation Study

Existing plus Proposed Project Regional Screenline Analysis (Weekday PM Peak Hour)

Screenline Location		Existing Ridership		Existing Capacity	Existing Utilization	Project Trips	Existing plus Project Ridership	Existing plus Project Utilization
East Bay	BART	20,067	86\%	24,150	83\%	7	20,074	83\%
	AC Transit	2,517	11\%	4,193	60\%	2	2,519	60\%
	Ferries	702	3\%	1,519	46\%	0	702	46\%
	Subtotal	23,286	100\%	29,862	78\%	9	23,295	78\%
North Bay	GGT buses	1,397	61\%	2,205	63\%	1	1,398	63\%
	GGT ferries	906	39\%	1,700	53\%	1	907	53\%
	Subtotal	2,303	100\%	3,905	59\%	2	2,305	59\%
South Bay	BART	10,202	80\%	16,800	61\%	9	10,211	61\%
	Caltrain	1,986	16\%	3,250	61\%	4	1,990	61\%
	SamTrans	575	5\%	940	61\%	1	576	61\%
	Subtotal	12,763	100\%	20,990	61\%	14	12,777	61\%
Total All Regional Screenlines		38,352		54,757	70\%	25	38,377	70\%

Source: SFMTA TEP, July 2008; SF Planning Department, 2009, 2012

Potrero HOPE Transportation Study

Existing plus Project (Alternative 1) Regional Screenline Analysis (Weekday PM Peak Hour)

Screenline Location		Existing Ridership		Existing Capacity	Existing Utilization	Project Trips	Existing plus Project Ridership	Existing plus Project Utilization
East Bay	BART	20,067	86\%	24,150	83\%	5	20,072	83\%
	AC Transit	2,517	11\%	4,193	60\%	2	2,519	60\%
	Ferries	702	3\%	1,519	46\%	0	702	46\%
	Subtotal	23,286	100\%	29,862	78\%	7	23,293	78\%
North Bay	GGT buses	1,397	61\%	2,205	63\%	1	1,398	63\%
	GGT ferries	906	39\%	1,700	53\%	1	907	53\%
	Subtotal	2,303	100\%	3,905	59\%	2	2,305	59\%
South Bay	BART	10,202	80\%	16,800	61\%	5	10,207	61\%
	Caltrain	1,986	16\%	3,250	61\%	2	1,988	61\%
	SamTrans	575	5\%	940	61\%	0	575	61\%
	Subtotal	12,763	100\%	20,990	61\%	7	12,770	61\%
Total All Regional Screenlines		38,352		54,757	70\%	16	38,368	70\%

Source: SFMTA TEP, July 2008; SF Planning Department, 2009, 2012

POTRERO HOPE TRANSPORTATION STUDY

2030 Cumulative and Cumulative plus Proposed Project Muni Line-by-Line Analysis (Weekday PM Peak Hour)

Route	Vehicle Capacity	Direction	Ridership	Exist Peak Hr \# of vehicles	Capacity	Utilization	Project 2030 Project Trips	2030 Cumulative				2030 Cumulative (incl. Project)			
								Ridership	Peak Hr \# of vehicles	Capacity	Utilization	Ridership	Peak Hr \# of vehicles	Capacity	Utilization
10 Townsend	63	Inbound	186	3	189	98\%	36	238	4	252	94\%	274	4	252	109\%
10 Townsend	63	Outbound	171	3	189	90\%	68	219	4	252	87\%	287	4	252	114\%
19 Polk	63	Inbound	172	4	252	68\%	0	220	6	378	58\%	220	6	378	58\%
19 Polk	63	Outbound	124	4	252	49\%	0	159	6	378	42\%	159	6	378	42\%
48 Quintara - 24th St	63	Inbound	175	6	378	46\%	30	224	4	252	89\%	254	4	252	101\%
48 Quintara - 24th St	63	Outbound	180	6	378	48\%	21	230	4	252	91\%	251	4	252	100\%

Vehicle Type	Capacity
ARTIC BUS (60')	94
COMBO BUS $\left(40^{\prime}\right)$	79
LRV (per train car)	119
NEIGHB. BUS $\left(30^{\prime}\right)$	45
STANDARD BUS $\left(40^{\prime}\right)$	63
STREETCAR	70

19 Polk Reallocation	Percentages
10 Townsend/Sansome	40%
22 Fillmore	20%
48 Quintara-24th Street	10%
K/T Ingleside/Third St	10%
*58 24th Street	20%
Total	100%

Notes: Source: SFMTA 2011 APC data
Vehicles per peak hour - based on 2011 Muni Timetable, TripActivity_RT_XX.xls; The number of vehicles operating during the identified peak hour was used based on the maximum load point (MLP) during the PM peak.
Hourly Load - calculated from PassengerActivity_ByHour_RT_XX.xls;. PM peak hour determined by analyzing MLP ridership between the hours
of 4-5 PM and 5-6 PM.

Capacity is calculated by number of seats per transit vehicles multiplied by the frequency of buses/trains per one PM peak hour
Utilization is calculated by dividing the hourly load by hourly capacity.
Analysis assumes TEP implementation by year 2030 and reallocation of the to-be-rerouted 19 Polk anticipated project ridership to other transit lines in the project study area.
The 58 24th Street line is a new route created by the TEP. It was not analyzed in line-by-line analysis due to the preliminary nature of the route, but was assumed
to acquire some of the reallocated ridership from the rerouted 19 Polk.

Potrero HOPE Transportation Study

2030 Cumulative and Cumulative plus Project (Alternative 1) Muni Line-by-Line Analysis (Weekday PM Peak Hour)

				Exis			Project		2030 Cum	lative		2030	Cumulativ	(incl. Pro	ject)
Route	Vehicle Capacity	Direction	Ridership	Peak Hr \# of vehicles	Capacity	Utilization	2030 Project Trips	Ridership	Peak Hr \# of vehicles	Capacity	Utilization	Ridership	Peak Hr \# of vehicles	Capacity	Utilization
10 Townsend	63	Inbound	186	3	189	98\%	23	238	4	252	94\%	261	4	252	104\%
10 Townsend	63	Outbound	171	3	189	90\%	42	219	4	252	87\%	261	4	252	103\%
19 Polk	63	Inbound	172	4	252	68\%	0	220	6	378	58\%	220	6	378	58\%
19 Polk	63	Outbound	124	4	252	49\%	0	159	6	378	42\%	159	6	378	42\%
48 Quintara - 24th St	63	Inbound	175	6	378	46\%	17	224	4	252	89\%	241	4	252	96\%
48 Quintara - 24th St	63	Outbound	180	6	378	48\%	13	230	4	252	91\%	243	4	252	97\%

Vehicle Type	Capacity
ARTIC BUS (60')	94
COMBO BUS (40')	79
LRV (per train car)	119
NEIGHB. BUS $\left(30^{\prime}\right)$	45
STANDARD BUS (40')	63
STREETCAR	70

19 Polk Reallocations	Percentages
10 Townsend/Sansome	40%
22 Fillmore	20%
48 Quintara-24th Street	10%
K/T Ingleside/Third St	10%
*58 24th Street	20%
Total	100%

Notes: Source: SFMTA 2011 APC data
Vehicles per peak hour - based on 2011 Muni Timetable, TripActivity_RT_XX.xls; The number of vehicles operating during the identified peak hou was used based on the maximum load point (MLP) during the PM peak.
Hourly Load - calculated from PassengerActivity_ByHour_RT_XX.xls;. PM peak hour determined by analyzing MLP ridership between the hours of $4-5 \mathrm{PM}$ and 5-6 PM.
Capacity is calculated by number of seats per transit vehicles multiplied by the frequency of buses/trains per one PM peak hour
Utilization is calculated by dividing the hourly load by hourly capacity.
Analysis assumes TEP implementation by year 2030 and reallocation of the to-be-rerouted 19 Polk anticipated project ridership to other transit lines in the project study area The 58 24th Street line is a new route created by the TEP. It was not analyzed in line-by-line analysis due to the preliminary nature of the route, but was assumed

Potrero HOPE Transportation Study

2030 Cumulative Screenline Analysis (Weekday PM Peak Hour)

Muni Screenline Analysis

Screenline Location		EXISTING CONDITIONS			YEAR 2030		
		Ridership	Capacity	Utilization	Ridership	Capacity	Utilization
Northeast	Kearny/Stockton Corridor	1,129	2,010	56\%	1,231	2,634	47\%
	All Other Lines	757	1,589	48\%	1,412	2,065	68\%
	Subtotal	1,886	3,599	52\%	2,643	4,699	56\%
Northwest	Geary Corridor	1,684	2,230	76\%	1,986	2,700	74\%
	California	1,413	2,050	69\%	1,819	2,050	89\%
	Sutter/Clement	565	1,008	56\%	679	945	72\%
	Fulton/Hayes	861	1,260	68\%	975	1,638	60\%
	Balboa	615	1,247	49\%	552	1,326	42\%
	Chestnut/Union	1,483	2,328	64\%	1,403	2,953	48\%
	Subtotal	6,621	10,123	65\%	7,414	11,612	64\%
Southeast	Third Street	554	714	78\%	2,592	2,856	91\%
	Mission Street	1,254	2,350	53\%	1,370	2,256	61\%
	San Bruno/Bayshore	1,671	2,256	74\%	2,344	3,008	78\%
	All Other Lines	1,189	1,708	70\%	1,550	1,820	85\%
	Subtotal	4,668	7,028	66\%	7,856	9,940	79\%
Southwest	Subway Lines	5,883	6,783	87\%	6,723	7,973	84\%
	Haight/Noriega	1,247	2,140	58\%	1,225	1,890	65\%
	All Other Lines	304	700	43\%	303	840	36\%
	Subtotal	7,434	9,623	77\%	8,251	10,703	77\%
Total All SFMUNI Screenlines		20,609	30,373	68\%	26,164	36,954	71\%
Regional Screenline Analysis							
East Bay	BART	20,067	24,150	83\%	32,225	29,400	110\%
	AC Transit	2,517	4,193	60\%	7,477	6,600	113\%
	Ferries	702	1,519	46\%	2,118	2,719	78\%
	Subtotal	23,286	29,862	78\%	41,820	38,719	108\%
North Bay	GGT buses	1,397	2,205	63\%	2,508	2,205	114\%
	GGT ferries	906	1,700	53\%	1,627	1,700	96\%
	Subtotal	2,303	3,905	59\%	4,135	3,905	106\%
South Bay	BART	10,202	16,800	61\%	11,202	21,000	53\%
	Caltrain	1,986	3,250	61\%	3,981	6,400	62\%
	SamTrans	575	940	61\%	402	940	43\%
	Ferries				74	300	25\%
	Subtotal	12,763	20,990	61\%	15,659	28,640	55\%
Total All Regional Screenlines		38,352	54,757	70\%	61,614	71,264	86\%

[^10]
Notes

SF MUNI utilization standard is 85% (vehicle capacity includes standees which represent 30% to 80% of seats, depending upon the configuration of the vehicle) BART and all other regional transit providers have a utilization standard of 100% (vehicle capacity is based on the number of seated passengers per vehicle)

Potrero HOPE Transportation Study

2030 Cumulative and Cumulative plus Proposed Project Muni Screenline Analysis (Weekday PM Peak Hour)

		2030 Cumulative Conditions			Project Trips	2030 Cumulative plus Project Conditions		
		Ridership	Capacity	Utilization		Ridership	Capacity	Utilization
Southeast	Third Street	2,592	2,856	91\%	39	2,631	2,856	92\%
	Mission Street	1,370	2,256	61\%	0	1,370	2,256	61\%
	San Bruno/Bayshore	2,344	3,008	78\%	0	2,344	3,008	78\%
	All Other Lines	1,550	1,820	85\%	91	1,641	1,820	90\%
	Subtotal	7,856	9,940	79\%	130	7,986	9,940	80\%

Potrero HOPE Transportation Study
2030 Cumulative and Cumulative plus Project (Alternative 1) Muni Screenline Analysis (Weekday PM Peak Hour)

		2030 Cumulative Conditions			Project Trips	2030 Cumulative plus Project Conditions		
		Ridership	Capacity	Utilization		Ridership	Capacity	Utilization
Southeast	Third Street	2,592	2,856	91\%	24	2,616	2,856	92\%
	Mission Street	1,370	2,256	61\%	0	1,370	2,256	61\%
	San Bruno/Bayshore	2,344	3,008	78\%	0	2,344	3,008	78\%
	All Other Lines	1,550	1,820	85\%	56	1,606	1,820	88\%
	Subtotal	7,856	9,940	79\%	80	7,936	9,940	80\%

POTRERO HOPE TRANSPORTATION STUDY

2030 Cumulative and Cumulative plus Proposed Project Regional Screenline Analysis (Weekday PM Peak Hour)

Screenline Location		2030 Cumulative Ridership		$\begin{gathered} 2030 \\ \text { Capacity } \end{gathered}$	2030 Utilization	Project Trips	2030 Cumulative plus Project Ridership	2030 Cumulative plus Project Utilization
East Bay	BART	32,225	77\%	29,400	110\%	7	32,232	110\%
	AC Transit	7,477	18\%	6,600	113\%	2	7,479	113\%
	Ferries	2,118	5\%	2,719	78\%	0	2,118	78\%
	Subtotal	41,820	100\%	38,719	108\%	9	41,829	108\%
North Bay	GGT buses	2,508	61\%	2,205	114\%	1	2,509	114\%
	GGT ferries	1,627	39\%	1,700	96\%	1	1,628	96\%
	Subtotal	4,135	100\%	3,905	106\%	2	4,137	106\%
South Bay	BART	11,202	72\%	21,000	53\%	9	11,211	53\%
	Caltrain	3,981	25\%	6,400	62\%	5	3,986	62\%
	SamTrans	402	3\%	940	43\%	0	402	43\%
	Ferries	74	0\%	300	25\%	0	74	25\%
	Subtotal	15,659	100\%	28,640	55\%	14	15,673	55\%
Total All Regional Screenlines		61,614		71,264	86\%	25	61,639	86\%

Sources: SFMTA TEP, July 2008; SF Planning Department, 2009, 2012

Notes

SF MUNI utilization standard is 85% (vehicle capacity includes standees which represent 30% to 80% of seats, depending upon the configuration of the vehicle) BART and all other regional transit providers have a utilization standard of 100% (vehicle capacity is based on the number of seated passengers per vehicle)

POTRERO HOPE TRANSPORTATION STUDY

2030 Cumulative and Cumulative plus Project (Alternative 1) Regional Screenline Analysis (Weekday PM Peak Hour)

Screenline Location		2030 Cumulative Ridership		$\begin{gathered} 2030 \\ \text { Capacity } \end{gathered}$	2030 Utilization	Project Trips	2030 Cumulative plus Project Ridership	2030 Cumulative plus Project Utilization
East Bay	BART	32,225	77\%	29,400	110\%	5	32,230	110\%
	AC Transit	7,477	18\%	6,600	113\%	1	7,478	113\%
	Ferries	2,118	5\%	2,719	78\%	0	2,118	78\%
	Subtotal	41,820	100\%	38,719	108\%	6	41,826	108\%
North Bay	GGT buses	2,508	61\%	2,205	114\%	1	2,509	114\%
	GGT ferries	1,627	39\%	1,700	96\%	1	1,628	96\%
	Subtotal	4,135	100\%	3,905	106\%	2	4,137	106\%
South Bay	BART	11,202	72\%	21,000	53\%	6	11,208	53\%
	Caltrain	3,981	25\%	6,400	62\%	2	3,983	62\%
	SamTrans	402	3\%	940	43\%	0	402	43\%
	Ferries	74	0\%	300	25\%	0	74	25\%
	Subtotal	15,659	100\%	28,640	55\%	8	15,667	55\%
Total All Regional Screenlines		61,614		71,264	86\%	16	61,630	86\%

Sources: SFMTA TEP, July 2008; SF Planning Department, 2009, 2012

Notes

SF MUNI utilization standard is 85% (vehicle capacity includes standees which represent 30% to 80% of seats, depending upon the configuration of the vehicle) BART and all other regional transit providers have a utilization standard of 100% (vehicle capacity is based on the number of seated passengers per vehicle)

APPENDIX I
 TRAVEL DEMAND ANALYSIS

Potrero HOPE Transportation Study
Weekday Travel Demand Summary - Proposed Project

PM Peak Hour In/Out Split	Residentia/Senior		Retail		$\begin{gathered} \hline \text { Community } \\ \text { Center } \\ \text { All Trips } \end{gathered}$
Inbound	100\%	33\%	0\%	50\%	37\%
Outbound	0\%	67\%	100\%	50\%	63\%

PM Peak Hour Person Trips	Inbound						Outbound					
	Residential	Senior Housing	Retail	ommun	Trip Credits	Total	Residential	Senior Housing	Retail	Comunit	Trip Credits	Total
Total	1,698	20	97	19	-698	1,136	855	10	105	32	352	651
					Percent inbound:	64\%					Percent outbound:	36\%

PM Peak Hour Vehicle-Trips		Inbound						Outbound						Assignment	
		Community						Community						Inbound	Outbound
Superdistrict 1		425.0	5.0	1.5	0.2	-174.7	257.0	214.1	2.5	1.7	0.3	-88.0	130.6	257	131
Superdistrict 2		94.1	1.1	3.6	0.4	-38.7	60.5	47.4	0.6	4.0	0.6	-19.5	33.1	61	33
Superdistrict 3		94.1	1.1	17.6	2.8	-38.7	76.9	47.4	0.6	18.5	4.8	-19.5	51.8	77	52
Superdistrict 4		94.1	1.1	2.3	0.3	-38.7	59.1	47.4	0.6	2.6	0.5	-19.5	31.6	59	32
East Bay		69.9	0.8	1.2	0.0	-28.7	43.3	35.2	0.4	1.7	0.1	-14.5	23.0	43	23
North Bay		15.2	0.2	1.2	0.0	-6.3	10.4	7.7	0.1	1.5	0.0	-3.2	6.1	10	6
South Bay		97.7	1.1	3.8	0.2	-40.2	62.7	49.2	0.6	5.5	0.3	-20.2	35.4	63	35
Out of Region		6.3	0.1	1.7	0.0	-2.6	5.5	3.2	0.0	1.8	0.0	-1.3	3.7	6	4
	Total	897	11	33	4	-369	576	452	6	38	7	-186	316	575	316

PM Peak Hour	Inbound						Outbound						Assignment	
				Community						Comunit				
Transit Trips	Residential	Senior Housing	Retail	Center	Trip Credits	Total	Residential	Senior Housing	Retail	Center	Trip Credits	Total	Inbound	Outbound
Superdistrict 1	162.5	1.9	1.7	0.2	-66.8	99.5	81.8	1.0	1.9	0.3	-33.6	51.4	100	51
Superdistrict 2	36.0	0.4	1.3	0.2	-14.8	23.1	18.1	0.2	1.6	0.3	-7.5	12.7	23	13
Superdistrict 3	36.0	0.4	5.6	3.3	-14.8	30.6	18.1	0.2	6.0	5.7	-7.5	22.6	31	23
Superdistrict 4	36.0	0.4	0.5	0.2	-14.8	22.2	18.1	0.2	0.6	0.3	-7.5	11.8	22	12
East Bay	26.7	0.3	0.4	0.0	-11.0	16.5	13.5	0.2	0.7	0.1	-5.5	8.9	17	9
North Bay	5.8	0.1	0.2	0.0	-2.4	3.7	2.9	0.0	0.3	0.0	-1.2	2.1	4	2
South Bay	37.4	0.4	0.8	0.0	-15.4	23.3	18.8	0.2	1.0	0.0	-7.7	12.3	23	12
Out of Region	2.4	0.0	0.8	0.0	-1.0	2.3	1.2	0.0	0.9	0.0	-0.5	1.6	2	2
	343	5	12	4	-141	222	173	3	13	7	. 71	124	222	124

$\frac{\text { Notes }}{1}$
Source: ITE Trip Generation Manual, 8th Edition

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Resident (Work Trips)

Proposed Size:	1,600 units		
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [1]:	9.23 trips/unit	Person-trip Generation Rate [1]: 17.3\%	1.60 trips/unit
Total Person-trips:	14,760 person-trips	Total Person-trips:	2,553 person-trips
Work Trips [1]: 33%	4,871 person-trips	Work Trips [1]: 50%	1,277 person-trips

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline \hline 1,378 \\ 466 \\ 112 \\ 353 \end{gathered}$	1,219	$\begin{aligned} & \hline 361 \\ & 122 \\ & 29 \\ & 93 \end{aligned}$	320
		TOTAL	100.0\%		2,309	1,219	605	320
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 305 \\ 103 \\ 25 \\ 78 \\ \hline \end{gathered}$	270	$\begin{gathered} \hline 80 \\ 27 \\ 7 \\ 20 \\ \hline \end{gathered}$	71
		TOTAL	100.0\%		511	270	134	71
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 305 \\ 103 \\ 25 \\ 78 \end{gathered}$	270	$\begin{gathered} 80 \\ 27 \\ 7 \\ 20 \end{gathered}$	71
		TOTAL	100.0\%		511	270	134	71
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 305 \\ 103 \\ 25 \\ 78 \\ \hline \end{gathered}$	270	$\begin{gathered} \hline 80 \\ 27 \\ 7 \\ 20 \\ \hline \end{gathered}$	71
		TOTAL	100.0\%		511	270	134	71
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 227 \\ 77 \\ 18 \\ 58 \\ \hline \end{gathered}$	201	$\begin{gathered} 59 \\ 20 \\ 5 \\ 15 \end{gathered}$	53
		TOTAL	100.0\%		380	201	100	53
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 49 \\ 17 \\ 4 \\ 13 \end{gathered}$	44	$\begin{gathered} 13 \\ 4 \\ 1 \\ 3 \end{gathered}$	11
		TOTAL	100.0\%		83	44	22	11
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 317 \\ 107 \\ 26 \\ 81 \\ \hline \end{gathered}$	280	$\begin{gathered} \hline 83 \\ 28 \\ 7 \\ 21 \\ \hline \end{gathered}$	73
		TOTAL	100.0\%		531	280	139	73
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 20 \\ 7 \\ 2 \\ 5 \\ \hline \end{gathered}$	18	$\begin{aligned} & \hline 5 \\ & 2 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	5
		TOTAL	100.0\%		34	18	9	5
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} 2,906 \\ 983 \\ 237 \\ 745 \\ \hline \end{gathered}$	2,572	$\begin{gathered} 762 \\ 258 \\ 62 \\ 195 \\ \hline \end{gathered}$	674
		TOTAL	100.0\%		4,871	2,572	1,277	674

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Residential (Non-Work Trips)

Proposed Size:	1,600 units		
DAILY			
Person-trip Generation Rate [1]:	9.2 trips/unit	PM PEAK HOUR	Person-trip Generation Rate [1]: 17.3%
Total Person-trips:	14,760 person-trips	Total Person-trips:	1.60 trips/unit
Non-Work Trips [1]: 67%	9,889 person-trips		Non-Work Trips [1]:

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline \hline 2,797 \\ 946 \\ 228 \\ 717 \end{gathered}$	2,475	$\begin{gathered} \hline \hline 361 \\ 122 \\ 29 \\ 93 \\ \hline \end{gathered}$	320
		TOTAL	100.0\%		4,687	2,475	605	320
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 620 \\ 210 \\ 50 \\ 159 \end{gathered}$	548	$\begin{gathered} \hline 80 \\ 27 \\ 7 \\ 20 \end{gathered}$	71
		TOTAL	100.0\%		1,038	548	134	71
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 620 \\ 210 \\ 50 \\ 159 \\ \hline \end{gathered}$	548	$\begin{gathered} \hline 80 \\ 27 \\ 7 \\ 20 \\ \hline \end{gathered}$	71
		TOTAL	100.0\%		1,038	548	134	71
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 620 \\ 210 \\ 50 \\ 159 \end{gathered}$	548	$\begin{gathered} \hline 80 \\ 27 \\ 7 \\ 20 \end{gathered}$	71
		TOTAL	100.0\%		1,038	548	134	71
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 460 \\ 156 \\ 37 \\ 118 \end{gathered}$	407	$\begin{gathered} 59 \\ 20 \\ 5 \\ 15 \end{gathered}$	53
		TOTAL	100.0\%		771	407	100	53
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 100 \\ 34 \\ 8 \\ 26 \\ \hline \end{gathered}$	89	$\begin{gathered} 13 \\ 4 \\ 1 \\ 3 \end{gathered}$	11
		TOTAL	100.0\%		168	89	22	11
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 643 \\ 218 \\ 52 \\ 165 \\ \hline \end{gathered}$	569	$\begin{gathered} 83 \\ 28 \\ 7 \\ 21 \\ \hline \end{gathered}$	73
		TOTAL	100.0\%		1,078	569	139	73
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 41 \\ 14 \\ 3 \\ 11 \end{gathered}$	37	$\begin{aligned} & 5 \\ & 2 \\ & 0 \\ & 1 \end{aligned}$	5
		TOTAL	100.0\%		69	37	9	5
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 5,900 \\ 1,996 \\ 481 \\ 1,512 \end{gathered}$	5,222	$\begin{gathered} 762 \\ 258 \\ 62 \\ 195 \end{gathered}$	674
		TOTAL	100.0\%		9,889	5,222	1,277	674

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Senior (Work Trips)

Proposed Size:	100 units		
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [1]:	5.0 trips/unit	Person-trip Generation Rate [1]: 6.0\%	0.30 trips/unit
Total Person-trips:	500 person-trips	Total Person-trips:	30 person-trips
Work Trips [1]: 33%	165 person-trips	Work Trips [1]: 50%	15 person-trips

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline \hline 47 \\ 16 \\ 4 \\ 12 \\ \hline \end{gathered}$	41	$\begin{aligned} & \hline \hline 4 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	4
		TOTAL	100.0\%		78	41	7	4
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 10 \\ 3 \\ 1 \\ 3 \end{gathered}$	9	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		17	9	2	1
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 10 \\ 3 \\ 1 \\ 3 \end{gathered}$	9	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		17	9	2	1
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 10 \\ 3 \\ 1 \\ 3 \\ \hline \end{gathered}$	9	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		17	9	2	1
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline 8 \\ & 3 \\ & 1 \\ & 2 \end{aligned}$	7	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		13	7	1	1
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		3	1	0	0
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} 11 \\ 4 \\ 1 \\ 3 \\ \hline \end{gathered}$	9	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		18	9	2	1
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		1	1	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} 98 \\ 33 \\ 8 \\ 25 \\ \hline \end{gathered}$	87	$\begin{aligned} & \hline 9 \\ & 3 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	8
		TOTAL	100.0\%		165	87	15	8

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Senior (Non-Work Trips)

Proposed Size:	100 units		
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [1]:	5.0 trips/unit	Person-trip Generation Rate [1]: 6.0\%	0.30 trips/unit
Total Person-trips:	500 person-trips	Total Person-trips:	30 person-trips
Non-Work Trips [1]:67\%	335 person-trips	Non-Work Trips [1]: 50%	15 person-trips

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 95 \\ 32 \\ 8 \\ 24 \end{gathered}$	84	$\begin{aligned} & 14 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	4
		TOTAL	100.0\%		159	84	7	4
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 21 \\ 7 \\ 2 \\ 5 \\ \hline \end{gathered}$	19	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		35	19	2	1
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 21 \\ 7 \\ 2 \\ 5 \\ \hline \end{gathered}$	19	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		35	19	2	1
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 21 \\ 7 \\ 2 \\ 5 \end{gathered}$	19	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		35	19	2	1
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 16 \\ 5 \\ 1 \\ 4 \end{gathered}$	14	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		26	14	1	1
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline 3 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		6	3	0	0
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} 22 \\ 7 \\ 2 \\ 6 \\ \hline \end{gathered}$	19	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		37	19	2	1
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		2	1	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 200 \\ 68 \\ 16 \\ 51 \end{gathered}$	177	$\begin{aligned} & \hline 9 \\ & 3 \\ & 1 \\ & 2 \end{aligned}$	8
		TOTAL	100.0\%		335	177	15	8

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Retail (Work Trips)

Proposed Size:	15.0 ksf		
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [1]:	150.00 trips/ksf	Person-trip Generation Rate [4]: 9.0\%	13.50 trips/ksf
Total Person-trips:	2,250 person-trips	Total Person-trips:	203 person-trips
Work Trips [2]: 4\%	90 person-trips	Work Trips [2]: 4\%	8 person-trips

Origins	Distribution [3]	Mode	Percent [3]	AVO [3]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	8.3\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 46.9 \% \\ 32.7 \% \\ 17.7 \% \\ 2.7 \% \\ \hline \end{gathered}$	1.30	$\begin{aligned} & 10 \\ & \hline 4 \\ & 2 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	3	$\begin{aligned} & \hline 1 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		7	3	1	0
Superdistrict 2	10.6\%	Auto Transit Walk Other	$\begin{gathered} \hline 64.6 \% \\ 26.4 \% \\ 6.9 \% \\ 2.1 \% \\ \hline \end{gathered}$	1.26	$\begin{aligned} & \hline 6 \\ & 3 \\ & 1 \\ & 0 \end{aligned}$	5	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		10	5	1	0
Superdistrict 3	23.9\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.6 \% \\ 15.1 \% \\ 4.6 \% \\ \hline \end{gathered}$	1.25	$\begin{gathered} 13 \\ 4 \\ 3 \\ 1 \\ \hline \end{gathered}$	10	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		22	10	2	1
Superdistrict 4	7.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 75.7 \% \\ 21.5 \% \\ 0.0 \% \\ 2.8 \% \end{gathered}$	1.48	$\begin{aligned} & \hline 5 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	4	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		7	4	1	0
East Bay	14.3\%	Auto Transit Walk Other	$\begin{gathered} \hline 68.8 \% \\ 29.7 \% \\ 0.0 \% \\ 1.5 \% \end{gathered}$	1.61	$\begin{aligned} & 9 \\ & 4 \\ & 0 \\ & 0 \end{aligned}$	5	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		13	5	1	0
North Bay	5.6\%	Auto Transit Walk Other	$\begin{gathered} \hline 86.9 \% \\ 10.5 \% \\ 0.0 \% \\ 2.6 \% \end{gathered}$	1.44	$\begin{aligned} & \hline 4 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		5	3	0	0
South Bay	26.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 88.5 \% \\ 8.8 \% \\ 0.0 \% \\ 2.7 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} 21 \\ 2 \\ 0 \\ 1 \\ \hline \end{gathered}$	19	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	2
		TOTAL	100.0\%		24	19	2	2
Out of Region	2.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 61.8 \% \\ 35.3 \% \\ 0.0 \% \\ 2.9 \% \\ \hline \end{gathered}$	1.56	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		2	1	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 71.1 \% \\ 20.2 \% \\ 5.8 \% \\ 2.9 \% \end{gathered}$	1.23	$\begin{gathered} \hline 64 \\ 18 \\ 5 \\ 3 \end{gathered}$	50	$\begin{aligned} & \hline 6 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	4
		TOTAL	100.0\%		90	50	8	4

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Retail
[2] SF Guidelines, Appendix C (Table C-2) - Retail
[3] SF Guidelines, Appendix E (Table E-5) - Work Trips to SD-3 - All
[4] Calculated using PM peak trip generation rates. Daily trip rate calculated using assumed $\%$ of daily and PM peak trip generation rate.

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Retail (Non-Work Trips)

Proposed Size:	$\mathbf{1 5 . 0}$ ksf		
DAILY			
Person-trip Generation Rate [1]:	150.00 trips/ksf	PM PEAK HOUR	Person-trip Generation Rate [4]: 9.0%
Total Person-trips:	2,250 person-trips	Total Person-trips:	13.50 trips/ksf
Work Trips [2]:	96%	2,160 person-trips	

Origins	Distribution [3]	Mode	Percent [3]	AVO [3]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	6.0\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 45.0 \% \\ 29.0 \% \\ 22.0 \% \\ 4.0 \% \end{gathered}$	1.76	$\begin{gathered} \hline 58 \\ 38 \\ 29 \\ 5 \end{gathered}$	33	$\begin{aligned} & \hline \hline 5 \\ & 3 \\ & 3 \\ & 0 \end{aligned}$	3
		TOTAL	100.0\%		130	33	12	3
Superdistrict 2	9.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 61.8 \% \\ 15.3 \% \\ 19.8 \% \\ 3.1 \% \end{gathered}$	1.52	$\begin{gathered} 120 \\ 30 \\ 38 \\ 6 \\ \hline \end{gathered}$	79	$\begin{gathered} \hline 11 \\ 3 \\ 3 \\ 1 \\ \hline \end{gathered}$	7
		TOTAL	100.0\%		194	79	17	7
Superdistrict 3	61.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 60.4 \% \\ 9.5 \% \\ 28.7 \% \\ 1.4 \% \end{gathered}$	2.04	$\begin{gathered} \hline 796 \\ 125 \\ 378 \\ 18 \end{gathered}$	390	$\begin{gathered} 72 \\ 11 \\ 34 \\ 2 \end{gathered}$	35
		TOTAL	100.0\%		1,318	390	119	35
Superdistrict 4	5.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 84.7 \% \\ 9.7 \% \\ 2.8 \% \\ 2.8 \% \\ \hline \end{gathered}$	1.78	$\begin{gathered} \hline 91 \\ 10 \\ 3 \\ 3 \\ \hline \end{gathered}$	51	$\begin{aligned} & \hline 8 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	5
		TOTAL	100.0\%		108	51	10	5
East Bay	3.0\%	Auto Transit Walk Other	$\begin{gathered} 75.0 \% \\ 12.5 \% \\ 12.5 \% \\ 0.0 \% \end{gathered}$	1.77	$\begin{gathered} 49 \\ 8 \\ 8 \\ 0 \end{gathered}$	27	$\begin{aligned} & \hline 4 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	2
		TOTAL	100.0\%		65	27	6	2
North Bay	2.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 87.5 \% \\ 12.5 \% \\ 0.0 \% \\ 0.0 \% \\ \hline \end{gathered}$	1.44	$\begin{gathered} \hline 38 \\ 5 \\ 0 \\ 0 \\ \hline \end{gathered}$	26	$\begin{aligned} & \hline 3 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	2
		TOTAL	100.0\%		43	26	4	2
South Bay	9.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 86.4 \% \\ 9.1 \% \\ 3.2 \% \\ 1.3 \% \\ \hline \end{gathered}$	1.98	$\begin{gathered} \hline 168 \\ 18 \\ 6 \\ 3 \\ \hline \end{gathered}$	85	$\begin{gathered} \hline 15 \\ 2 \\ 1 \\ 0 \\ \hline \end{gathered}$	8
		TOTAL	100.0\%		194	85	17	8
Out of Region	5.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.2 \% \\ 16.9 \% \\ 19.7 \% \\ 4.2 \% \\ \hline \end{gathered}$	1.69	$\begin{gathered} \hline 64 \\ 18 \\ 21 \\ 5 \\ \hline \end{gathered}$	38	$\begin{aligned} & \hline 6 \\ & 2 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	3
		TOTAL	100.0\%		108	38	10	3
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 64.1 \% \\ 11.7 \% \\ 22.4 \% \\ 1.8 \% \\ \hline \end{gathered}$	1.90	$\begin{gathered} 1,384 \\ 252 \\ 484 \\ 40 \\ \hline \end{gathered}$	730	$\begin{gathered} 125 \\ 23 \\ 44 \\ 4 \\ \hline \end{gathered}$	66
		TOTAL	100.0\%		2,160	730	194	66

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Retail
[2] SF Guidelines, Appendix C (Table C-2) - Retail
[3] SF Guidelines, Appendix E (Table E-14) - Visitor Trips to SD-3 - Retail
[4] Calculated using PM peak trip generation rates. Daily trip rate calculated using assumed $\%$ of daily and PM peak trip generation rate.

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Community Center (Work Trips)

Proposed Size:	35.00 ksf		
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [4]:	22.88 trips/ksf	Person-trip Generation Rate [1]: -	1.45 trips/ksf
Total Person-trips:	801 person-trips	Total Person-trips:	51 person-trips
Work Trips [2]: 4\%	32 person-trips	Work Trips [2]: 4\%	2 person-trips

Origins	Distribution [3]	Mode	Percent [3]	AVO [3]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	8.3\%	Auto Transit Walk Other	$\begin{aligned} & \hline \hline 46.9 \% \\ & 32.7 \% \\ & 17.7 \% \\ & 2.7 \% \end{aligned}$	1.30	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		3	1	0	0
Superdistrict 2	10.6\%	Auto Transit Walk Other	$\begin{gathered} \hline 64.6 \% \\ 26.4 \% \\ 6.9 \% \\ 2.1 \% \end{gathered}$	1.26	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	2	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		3	2	0	0
Superdistrict 3	23.9\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.6 \% \\ 15.1 \% \\ 4.6 \% \end{gathered}$	1.25	$\begin{aligned} & \hline 5 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		8	4	0	0
Superdistrict 4	7.9\%	Auto Transit Walk Other	$\begin{gathered} 75.7 \% \\ 21.5 \% \\ 0.0 \% \\ 2.8 \% \end{gathered}$	1.48	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		3	1	0	0
East Bay	14.3\%	Auto Transit Walk Other	$\begin{gathered} \hline 68.8 \% \\ 29.7 \% \\ 0.0 \% \\ 1.5 \% \\ \hline \end{gathered}$	1.61	$\begin{aligned} & \hline 3 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	2	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		5	2	0	0
North Bay	5.6\%	Auto Transit Walk Other	$\begin{gathered} \hline 86.9 \% \\ 10.5 \% \\ 0.0 \% \\ 2.6 \% \\ \hline \end{gathered}$	1.44	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		2	1	0	0
South Bay	26.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 88.5 \% \\ 8.8 \% \\ 0.0 \% \\ 2.7 \% \end{gathered}$	1.13	$\begin{aligned} & \hline 8 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	7	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		9	7	1	0
Out of Region	2.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 61.8 \% \\ 35.3 \% \\ 0.0 \% \\ 2.9 \% \end{gathered}$	1.56	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		1	0	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 71.1 \% \\ 20.2 \% \\ 5.8 \% \\ 2.9 \% \\ \hline \end{gathered}$	1.23	$\begin{gathered} 23 \\ 6 \\ 2 \\ 1 \\ \hline \end{gathered}$	18	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		32	18	2	1

Notes:
[1] Developed from vehicle trip rate provided in the ITE Trip Generation Handbook, 8th edition for Community Center (Land Use \#495)
[2] SF Guidelines, Appendix C (Table C-2) - Retail
[3] SF Guidelines, Appendix E (Table E-5) - Work Trips to SD-3 - All
[4] Calculated using PM peak trip generation rates. Daily trip rate calculated using assumed $\%$ of daily and PM peak trip generation rate.

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Community Center (Non-Work) Trips

Proposed Size:	$\mathbf{3 5 . 0 0}$ ksf		
DAILY			
Person-trip Generation Rate [4]:	22.88 trips/ksf	PM PEAK HOUR	Person-trip Generation Rate [1]: -
Total Person-trips:	801 person-trips	Total Person-trips:	1.45 trips/ksf
Non-Work Trips [2]:96\%	769 person-trips	Non-Work Trips [2]:	51 person-trips

Origins	Distribution [3]	Mode	Percent [3]	AVO [3]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	5.0\%	Auto Transit Walk Other	$\begin{aligned} & \hline \hline 36.0 \% \\ & 19.2 \% \\ & 33.3 \% \\ & 11.5 \% \end{aligned}$	2.03	$\begin{gathered} \hline \hline 14 \\ 7 \\ 13 \\ 4 \end{gathered}$	7	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		38	7	2	0
Superdistrict 2	5.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 68.6 \% \\ 14.5 \% \\ 2.4 \% \\ 14.5 \% \end{gathered}$	1.97	$\begin{gathered} 26 \\ 6 \\ 1 \\ 6 \end{gathered}$	13	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		38	13	2	1
Superdistrict 3	85.0\%	Auto Transit Walk Other	$\begin{aligned} & \hline 43.7 \% \\ & 21.5 \% \\ & 25.4 \% \\ & 9.4 \% \end{aligned}$	2.43	$\begin{gathered} 286 \\ 140 \\ 166 \\ 61 \end{gathered}$	118	$\begin{gathered} 18 \\ 9 \\ 11 \\ 4 \end{gathered}$	7
		TOTAL	100.0\%		653	118	41	7
Superdistrict 4	5.0\%	Auto Transit Walk Other	$\begin{aligned} & \hline 67.4 \% \\ & 16.3 \% \\ & 7.0 \% \\ & 9.3 \% \\ & \hline \end{aligned}$	2.51	$\begin{gathered} \hline 26 \\ 6 \\ 3 \\ 4 \\ \hline \end{gathered}$	10	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		38	10	2	1
East Bay	0.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 68.4 \% \\ 29.8 \% \\ 1.8 \% \\ 0.0 \% \end{gathered}$	2.59	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		0	0	0	0
North Bay	0.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 100.0 \% \\ 0.0 \% \\ 0.0 \% \\ 0.0 \% \\ \hline \end{gathered}$	2.11	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		0	0	0	0
South Bay	0.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 94.6 \% \\ 3.6 \% \\ 1.8 \% \\ 0.0 \% \end{gathered}$	2.28	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		0	0	0	0
Out of Region	0.0\%	Auto Transit Walk Other	$\begin{gathered} 73.6 \% \\ 21.1 \% \\ 0.0 \% \\ 5.3 \% \\ \hline \end{gathered}$	1.68	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		0	0	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 45.7 \% \\ 20.8 \% \\ 23.7 \% \\ 9.8 \% \\ \hline \end{gathered}$	2.38	$\begin{gathered} \hline 352 \\ 160 \\ 182 \\ 75 \\ \hline \end{gathered}$	148	$\begin{gathered} 22 \\ 10 \\ 12 \\ 5 \\ \hline \end{gathered}$	9
		TOTAL	100.0\%		769	148	49	9

Notes:
[1] Developed from vehicle trip rate provided in the ITE Trip Generation Handbook, 8th edition for Community Center (Land Use \#495)
[2] SF Guidelines, Appendix C (Table C-2) - Retail
[3] SF Guidelines, Appendix E - modified to account for primarily internal trips and majority of external trips to center will be from SD-3
[4] Calculated using PM peak trip generation rates. Daily trip rate calculated using assumed $\%$ of daily and PM peak trip generation rate.

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Residential (Work Trips) to be Removed - Trip Credits

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					Person Trips	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-566 \\ -192 \\ -46 \\ -145 \end{gathered}$	-501	$\begin{aligned} & \hline-148 \\ & -50 \\ & -12 \\ & -38 \\ & \hline \end{aligned}$	-131
		TOTAL	100.0\%		-949	-501	-249	-131
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -125 \\ -42 \\ -10 \\ -32 \end{gathered}$	-111	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \\ \hline \end{gathered}$	-29
		TOTAL	100.0\%		-210	-111	-55	-29
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -125 \\ -42 \\ -10 \\ -32 \end{gathered}$	-111	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \\ \hline \end{gathered}$	-29
		TOTAL	100.0\%		-210	-111	-55	-29
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline-125 \\ & -42 \\ & -10 \\ & -32 \end{aligned}$	-111	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \end{gathered}$	-29
		TOTAL	100.0\%		-210	-111	-55	-29
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -93 \\ -32 \\ -8 \\ -24 \end{gathered}$	-82	$\begin{aligned} & \hline-24 \\ & -8 \\ & -2 \\ & -6 \\ & \hline \end{aligned}$	-22
		TOTAL	100.0\%		-156	-82	-41	-22
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-20 \\ -7 \\ -2 \\ -5 \\ \hline \end{gathered}$	-18	$\begin{gathered} \hline-5 \\ -2 \\ 0 \\ -1 \\ \hline \end{gathered}$	-5
		TOTAL	100.0\%		-34	-18	-9	-5
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{aligned} & \hline-130 \\ & -44 \\ & -11 \\ & -33 \\ & \hline \end{aligned}$	-115	$\begin{aligned} & \hline-34 \\ & -12 \\ & -3 \\ & -9 \\ & \hline \end{aligned}$	-30
		TOTAL	100.0\%		-218	-115	-57	-30
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline-8 \\ & -3 \\ & -1 \\ & -2 \end{aligned}$	-7	$\begin{gathered} \hline-2 \\ -1 \\ 0 \\ -1 \end{gathered}$	-2
		TOTAL	100.0\%		-14	-7	-4	-2
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} -1,195 \\ -404 \\ -97 \\ -306 \\ \hline \end{gathered}$	-1,057	$\begin{gathered} \hline-313 \\ -106 \\ -26 \\ -80 \\ \hline \end{gathered}$	-277
		TOTAL	100.0\%		-2,002	-1,057	-525	-277

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Proposed Project)
Land Use: Residential (Non-Work Trips) to be Removed - Trip Credits

Proposed Size:	-620 units		
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [1]:	9.8 trips/unit	Person-trip Generation Rate [1]: 17.3\%	1.69 trips/unit
Total Person-trips:	-6,068 person-trips	Total Person-trips:	-1,050 person-trips
Work Trips [1]: 67\%	-4,065 person-trips	Work Trips [1]: 50%	-525 person-trips

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					Person Trips	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-1,150 \\ -389 \\ -94 \\ -295 \\ \hline \end{gathered}$	-1,017	$\begin{aligned} & \hline-148 \\ & -50 \\ & -12 \\ & -38 \\ & \hline \end{aligned}$	-131
		TOTAL	100.0\%		-1,927	-1,017	-249	-131
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -255 \\ -86 \\ -21 \\ -65 \end{gathered}$	-225	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \end{gathered}$	-29
		TOTAL	100.0\%		-427	-225	-55	-29
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-255 \\ -86 \\ -21 \\ -65 \end{gathered}$	-225	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \\ \hline \end{gathered}$	-29
		TOTAL	100.0\%		-427	-225	-55	-29
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-255 \\ -86 \\ -21 \\ -65 \end{gathered}$	-225	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \end{gathered}$	-29
		TOTAL	100.0\%		-427	-225	-55	-29
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & -189 \\ & -64 \\ & -15 \\ & -48 \end{aligned}$	-167	$\begin{aligned} & \hline-24 \\ & -8 \\ & -2 \\ & -6 \\ & \hline \end{aligned}$	-22
		TOTAL	100.0\%		-317	-167	-41	-22
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-41 \\ -14 \\ -3 \\ -11 \\ \hline \end{gathered}$	-36	$\begin{gathered} \hline-5 \\ -2 \\ 0 \\ -1 \\ \hline \end{gathered}$	-5
		TOTAL	100.0\%		-69	-36	-9	-5
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} \hline-264 \\ -89 \\ -22 \\ -68 \\ \hline \end{gathered}$	-234	$\begin{aligned} & \hline-34 \\ & -12 \\ & -3 \\ & -9 \\ & \hline \end{aligned}$	-30
		TOTAL	100.0\%		-443	-234	-57	-30
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -17 \\ -6 \\ -1 \\ -4 \end{gathered}$	-15	$\begin{gathered} \hline-2 \\ -1 \\ 0 \\ -1 \end{gathered}$	-2
		TOTAL	100.0\%		-28	-15	-4	-2
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} \hline-2,426 \\ -821 \\ -198 \\ -621 \\ \hline \end{gathered}$	-2,147	$\begin{aligned} & \hline-313 \\ & -106 \\ & -26 \\ & -80 \\ & \hline-0 \end{aligned}$	-277
		TOTAL	100.0\%		-4,065	-2,147	-525	-277

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study
Weekday Travel Demand Summary - Alternative 1

PM Peak Hour In/Out Split	Residentia//Senior		Retail		$\begin{gathered} \text { Community } \\ \text { Center }^{1} \\ \text { All Trips } \end{gathered}$
Inbound	100\%	33\%	0\%	50\%	37\%
Outbound	0\%	67\%	100\%	50\%	63\%

PM Peak Hour												
Person Trips	Residential	Senior Housing	Retail	Communi	Trip Credits	Total	Residential	Senior Housing	Retail	Center	Trip Credits	Total
Total	1,281	16	97	13	-698	710	645		105	23	-352	430
					Percent inbound:	62\%					Percent outbound:	38\%

PM Peak Hour Vehicle-Trips		Inbound						Outbound						Assignment	
		Community						Community						Inbound	Outbound
Superdistrict 1		320.6	4.0	1.5	0.1	-174.7	151.5	161.5	2.0	1.7	0.2	-88.0	77.5	152	78
Superdistrict 2		71.0	0.9	3.6	0.3	-38.7	37.0	35.8	0.4	4.0	0.4	-19.5	21.2	37	21
Superdistrict 3		71.0	0.9	17.6	2.0	-38.7	52.8	35.8	0.4	18.5	3.5	-19.5	38.7	53	39
Superdistrict 4		71.0	0.9	2.3	0.2	-38.7	35.7	35.8	0.4	2.6	0.3	-19.5	19.7	36	20
East Bay		52.8	0.7	1.2	0.0	-28.7	25.9	26.6	0.3	1.7	0.1	-14.5	14.2	26	14
North Bay		11.5	0.1	1.2	0.0	-6.3	6.6	5.8	0.1	1.5	0.0	-3.2	4.2	7	4
South Bay		73.7	0.9	3.8	0.1	-40.2	38.4	37.1	0.5	5.5	0.2	-20.2	23.1	38	23
Out of Region		4.7	0.1	1.7	0.0	-2.6	3.9	2.4	0.0	1.8	0.0	-1.3	2.9	4	
	Total	677	9	33	3	-369	352	341	5	38	5	-186	202	351	202

PM Peak Hour	Inbound						Outbound						Assignment	
	Residential	Senior Housing	Retail	Center	Trip Credits	Total	Residential	Senior Housing	Retail	Commun	Trip Credits	Total	Inbound	Outbound
Superdistrict 1	122.6	1.5	1.7	0.1	-66.8	59.1	61.7	0.8	1.9	0.2	-33.6	31.0	59	31
Superdistrict 2	27.2	0.3	1.3	0.1	-14.8	14.1	13.7	0.2	1.6	0.2	-7.5	8.1	14	8
Superdistrict 3	27.2	0.3	5.6	2.4	-14.8	20.7	13.7	0.2	6.0	4.1	-7.5	16.5	21	17
Superdistrict 4	27.2	0.3	0.5	0.1	-14.8	13.3	13.7	0.2	0.6	0.2	-7.5	7.2	13	7
East Bay	20.2	0.3	0.4	0.0	-11.0	9.8	10.2	0.1	0.7	0.0	-5.5	5.5	10	6
North Bay	4.4	0.1	0.2	0.0	-2.4	2.3	2.2	0.0	0.3	0.0	-1.2	1.3	2	1
South Bay	28.2	0.4	0.8	0.0	-15.4	14.0	14.2	0.2	1.0	0.0	-7.7	7.6	14	8
Out of Region	1.8	0.0	0.8	0.0	-1.0	1.7	0.9	0.0	0.9	0.0	-0.5	1.3	2	1
Total	259	4	12	3	-141	136	131	2	13	5	. 71	79	135	79

$\frac{\text { Notes }}{1}$
Source: ITE Trip Generation Manual, 8th Edition

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Resident (Work Trips)

Proposed Size:	1,200 units		
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [1]:	9.28 trips/unit	Person-trip Generation Rate [1]: 17.3\%	1.61 trips/unit
Total Person-trips:	11,135 person-trips	Total Person-trips:	1,926 person-trips
Work Trips [1]: 33%	3,675 person-trips	Work Trips [1]: 50%	963 person-trips

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					Person Trips	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline \hline 1,039 \\ 352 \\ 85 \\ 266 \end{gathered}$	920	$\begin{gathered} \hline 272 \\ 92 \\ 22 \\ 70 \end{gathered}$	241
		TOTAL	100.0\%		1,742	920	457	241
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 230 \\ 78 \\ 19 \\ 59 \\ \hline \end{gathered}$	204	$\begin{gathered} \hline 60 \\ 20 \\ 5 \\ 15 \\ \hline \end{gathered}$	53
		TOTAL	100.0\%		386	204	101	53
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 230 \\ 78 \\ 19 \\ 59 \end{gathered}$	204	$\begin{gathered} 60 \\ 20 \\ 5 \\ 15 \end{gathered}$	53
		TOTAL	100.0\%		386	204	101	53
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 230 \\ 78 \\ 19 \\ 59 \end{gathered}$	204	$\begin{gathered} \hline 60 \\ 20 \\ 5 \\ 15 \\ \hline \end{gathered}$	53
		TOTAL	100.0\%		386	204	101	53
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 171 \\ 58 \\ 14 \\ 44 \end{gathered}$	151	$\begin{gathered} \hline 45 \\ 15 \\ 4 \\ 11 \end{gathered}$	40
		TOTAL	100.0\%		287	151	75	40
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 37 \\ 13 \\ 3 \\ 10 \\ \hline \end{gathered}$	33	$\begin{gathered} \hline 10 \\ 3 \\ 1 \\ 3 \\ \hline \end{gathered}$	9
		TOTAL	100.0\%		62	33	16	9
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 239 \\ 81 \\ 19 \\ 61 \\ \hline \end{gathered}$	211	$\begin{gathered} \hline 63 \\ 21 \\ 5 \\ 16 \\ \hline \end{gathered}$	55
		TOTAL	100.0\%		401	211	105	55
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 15 \\ 5 \\ 1 \\ 4 \\ \hline \end{gathered}$	14	$\begin{aligned} & \hline 4 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	4
		TOTAL	100.0\%		26	14	7	4
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} \hline 2,192 \\ 742 \\ 179 \\ 562 \\ \hline \end{gathered}$	1,940	$\begin{gathered} \hline 575 \\ 194 \\ 47 \\ 147 \\ \hline \end{gathered}$	509
		TOTAL	100.0\%		3,675	1,940	963	509

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Residential (Non-Work Trips)

Proposed Size:	1,200 units		
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [1]:	9.3 trips/unit	Person-trip Generation Rate [1]: 17.3\%	1.61 trips/unit
Total Person-trips:	11,135 person-trips	Total Person-trips:	1,926 person-trips
Non-Work Trips [1]:67\%	7,460 person-trips	Non-Work Trips [1]: 50\%	963 person-trips

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline \hline 2,110 \\ 714 \\ 172 \\ 541 \end{gathered}$	1,867	$\begin{gathered} \hline 272 \\ 92 \\ 22 \\ 70 \end{gathered}$	241
		TOTAL	100.0\%		3,536	1,867	457	241
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 467 \\ 158 \\ 38 \\ 120 \end{gathered}$	414	$\begin{gathered} 60 \\ 20 \\ 5 \\ 15 \end{gathered}$	53
		TOTAL	100.0\%		783	414	101	53
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 467 \\ 158 \\ 38 \\ 120 \\ \hline \end{gathered}$	414	$\begin{gathered} \hline 60 \\ 20 \\ 5 \\ 15 \\ \hline \end{gathered}$	53
		TOTAL	100.0\%		783	414	101	53
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 467 \\ 158 \\ 38 \\ 120 \end{gathered}$	414	$\begin{gathered} \hline 60 \\ 20 \\ 5 \\ 15 \end{gathered}$	53
		TOTAL	100.0\%		783	414	101	53
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 347 \\ 117 \\ 28 \\ 89 \end{gathered}$	307	$\begin{gathered} 45 \\ 15 \\ 4 \\ 11 \end{gathered}$	40
		TOTAL	100.0\%		582	307	75	40
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 76 \\ 26 \\ 6 \\ 19 \\ \hline \end{gathered}$	67	$\begin{gathered} \hline 10 \\ 3 \\ 1 \\ 3 \\ \hline \end{gathered}$	9
		TOTAL	100.0\%		127	67	16	9
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 485 \\ 164 \\ 40 \\ 124 \\ \hline \end{gathered}$	429	$\begin{gathered} \hline 63 \\ 21 \\ 5 \\ 16 \\ \hline \end{gathered}$	55
		TOTAL	100.0\%		813	429	105	55
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 31 \\ 11 \\ 3 \\ 8 \\ \hline \end{gathered}$	28	$\begin{aligned} & 4 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	4
		TOTAL	100.0\%		52	28	7	4
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 4,451 \\ 1,506 \\ 363 \\ 1,141 \end{gathered}$	3,939	$\begin{gathered} \hline 575 \\ 194 \\ 47 \\ 147 \end{gathered}$	509
		TOTAL	100.0\%		7,460	3,939	963	509

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Senior (Work Trips)

Proposed Size:	$\mathbf{8 0}$ units			
DAILY				
Person-trip Generation Rate [1]:	5.0 trips/unit	PM PEAK HOUR	Person-trip Generation Rate [1]: 6.0%	0.30 trips/unit
Total Person-trips:	400 person-trips	Total Person-trips:	24 person-trips	
Work Trips [1]:	33%	132 person-trips	Work Trips [1]:	50%

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} \hline \hline 37 \\ 13 \\ 3 \\ 10 \\ \hline \end{gathered}$	33	$\begin{aligned} & \hline \hline 3 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	3
		TOTAL	100.0\%		63	33	6	3
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline 8 \\ & 3 \\ & 1 \\ & 2 \end{aligned}$	7	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		14	7	1	1
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline 8 \\ & 3 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	7	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		14	7	1	1
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline 8 \\ & 3 \\ & 1 \\ & 2 \end{aligned}$	7	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		14	7	1	1
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline 6 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	5	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		10	5	1	0
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		2	1	0	0
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline 9 \\ & 3 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	8	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		14	8	1	1
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		1	0	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 79 \\ 27 \\ 6 \\ 20 \end{gathered}$	70	$\begin{aligned} & \hline 7 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	6
		TOTAL	100.0\%		132	70	12	6

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Senior (Non-Work Trips)

Proposed Size:	$\mathbf{8 0}$ units		
DAILY			
Person-trip Generation Rate [1]:	5.0 trips/unit	PM PEAK HOUR	Person-trip Generation Rate [1]: 6.0%
Total Person-trips:	400 person-trips	Total Person-trips:	0.30 trips/unit
Non-Work Trips [1]: 67%	268 person-trips		Non-Work Trips [1]:

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} \hline 76 \\ \hline 26 \\ 6 \\ 19 \\ \hline \end{gathered}$	67	$\begin{aligned} & \hline \hline 3 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	3
		TOTAL	100.0\%		127	67	6	3
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 17 \\ 6 \\ 1 \\ 4 \end{gathered}$	15	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		28	15	1	1
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 17 \\ 6 \\ 1 \\ 4 \\ \hline \end{gathered}$	15	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		28	15	1	1
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 17 \\ 6 \\ 1 \\ 4 \end{gathered}$	15	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		28	15	1	1
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 12 \\ 4 \\ 1 \\ 3 \end{gathered}$	11	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		21	11	1	0
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline 3 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	2	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		5	2	0	0
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline 17 \\ 6 \\ 1 \\ 4 \\ \hline \end{gathered}$	15	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1
		TOTAL	100.0\%		29	15	1	1
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		2	1	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} 160 \\ 54 \\ 13 \\ 41 \\ \hline \end{gathered}$	142	$\begin{aligned} & \hline 7 \\ & 2 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	6
		TOTAL	100.0\%		268	142	12	6

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Retail (Work Trips)

Proposed Size:	15.0 ksf		
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [1]:	150.00 trips/ksf	Person-trip Generation Rate [4]: 9.0\%	13.50 trips/ksf
Total Person-trips:	2,250 person-trips	Total Person-trips:	203 person-trips
Work Trips [2]: 4\%	90 person-trips	Work Trips [2]: 4\%	8 person-trips

Origins	Distribution [3]	Mode	Percent [3]	AVO [3]	Daily		PM Peak Hour	
					Person Trips	VehicleTrips	$\begin{gathered} \hline \text { Person } \\ \text { Trips } \end{gathered}$	VehicleTrips
Superdistrict 1	8.3\%	Auto Transit Walk Other	$\begin{aligned} & \hline \hline 46.9 \% \\ & 32.7 \% \\ & 17.7 \% \\ & 2.7 \% \end{aligned}$	1.30	$\begin{aligned} & \hline \hline 4 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	3	$\begin{aligned} & \hline \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		7	3	1	0
Superdistrict 2	10.6\%	Auto Transit Walk Other	$\begin{gathered} \hline 64.6 \% \\ 26.4 \% \\ 6.9 \% \\ 2.1 \% \\ \hline \end{gathered}$	1.26	$\begin{aligned} & \hline 6 \\ & 3 \\ & 1 \\ & 0 \end{aligned}$	5	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		10	5	1	0
Superdistrict 3	23.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.6 \% \\ 15.1 \% \\ 4.6 \% \end{gathered}$	1.25	$\begin{gathered} 13 \\ 4 \\ 3 \\ 1 \end{gathered}$	10	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		22	10	2	1
Superdistrict 4	7.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 75.7 \% \\ 21.5 \% \\ 0.0 \% \\ 2.8 \% \end{gathered}$	1.48	$\begin{aligned} & \hline 5 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		7	4	1	0
East Bay	14.3\%	Auto Transit Walk Other	$\begin{gathered} \hline 68.8 \% \\ 29.7 \% \\ 0.0 \% \\ 1.5 \% \end{gathered}$	1.61	$\begin{aligned} & 9 \\ & 4 \\ & 0 \\ & 0 \end{aligned}$	5	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		13	5	1	0
North Bay	5.6\%	Auto Transit Walk Other	$\begin{gathered} \hline 86.9 \% \\ 10.5 \% \\ 0.0 \% \\ 2.6 \% \\ \hline \end{gathered}$	1.44	$\begin{aligned} & \hline 4 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		5	3	0	0
South Bay	26.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 88.5 \% \\ 8.8 \% \\ 0.0 \% \\ 2.7 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} 21 \\ 2 \\ 0 \\ 1 \\ \hline \end{gathered}$	19	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	2
		TOTAL	100.0\%		24	19	2	2
Out of Region	2.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 61.8 \% \\ 35.3 \% \\ 0.0 \% \\ 2.9 \% \end{gathered}$	1.56	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		2	1	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 71.1 \% \\ 20.2 \% \\ 5.8 \% \\ 2.9 \% \end{gathered}$	1.23	$\begin{gathered} \hline 64 \\ 18 \\ 5 \\ 3 \end{gathered}$	50	$\begin{aligned} & \hline 6 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	4
		TOTAL	100.0\%		90	50	8	4

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Retail
[2] SF Guidelines, Appendix C (Table C-2) - Retail
[3] SF Guidelines, Appendix E (Table E-5) - Work Trips to SD-3 - All
[4] Calculated using PM peak trip generation rates. Daily trip rate calculated using assumed $\%$ of daily and PM peak trip generation rate.

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Retail (Non-Work Trips)

Proposed Size:	15.0 ksf		
DAILY			
Person-trip Generation Rate [1]:	150.00 trips/ksf	PM PEAK HOUR	Person-trip Generation Rate [4]: 9.0%
Total Person-trips:	2,250 person-trips	Total Person-trips:	13.50 trips/ksf
Work Trips [2]:	96%	2,160 person-trips	

Origins	Distribution [3]	Mode	Percent [3]	AVO [3]	Daily		PM Peak Hour	
					Person Trips	VehicleTrips	$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips
Superdistrict 1	6.0\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline \hline 25.0 \% \\ 29.0 \% \\ 22.0 \% \\ 4.0 \% \end{gathered}$	1.76	$\begin{gathered} \hline 58 \\ 38 \\ 29 \\ 5 \end{gathered}$	33	$\begin{aligned} & 1 \\ & \hline 5 \\ & 3 \\ & 3 \\ & 0 \end{aligned}$	3
		TOTAL	100.0\%		130	33	12	3
Superdistrict 2	9.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 61.8 \% \\ 15.3 \% \\ 19.8 \% \\ 3.1 \% \end{gathered}$	1.52	$\begin{gathered} \hline 120 \\ 30 \\ 38 \\ 6 \end{gathered}$	79	$\begin{gathered} \hline 11 \\ 3 \\ 3 \\ 1 \end{gathered}$	7
		TOTAL	100.0\%		194	79	17	7
Superdistrict 3	61.0\%	Auto Transit Walk Other	$\begin{gathered} 60.4 \% \\ 9.5 \% \\ 28.7 \% \\ 1.4 \% \end{gathered}$	2.04	$\begin{gathered} \hline 796 \\ 125 \\ 378 \\ 18 \\ \hline \end{gathered}$	390	$\begin{gathered} 72 \\ 11 \\ 34 \\ 2 \end{gathered}$	35
		TOTAL	100.0\%		1,318	390	119	35
Superdistrict 4	5.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 84.7 \% \\ 9.7 \% \\ 2.8 \% \\ 2.8 \% \end{gathered}$	1.78	$\begin{gathered} 91 \\ 10 \\ 3 \\ 3 \end{gathered}$	51	$\begin{aligned} & \hline 8 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	5
		TOTAL	100.0\%		108	51	10	5
East Bay	3.0\%	Auto Transit Walk Other	$\begin{gathered} 75.0 \% \\ 12.5 \% \\ 12.5 \% \\ 0.0 \% \end{gathered}$	1.77	$\begin{gathered} \hline 49 \\ 8 \\ 8 \\ 0 \end{gathered}$	27	$\begin{aligned} & \hline 4 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	2
		TOTAL	100.0\%		65	27	6	2
North Bay	2.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 87.5 \% \\ 12.5 \% \\ 0.0 \% \\ 0.0 \% \\ \hline \end{gathered}$	1.44	$\begin{gathered} 38 \\ 5 \\ 0 \\ 0 \\ \hline \end{gathered}$	26	$\begin{aligned} & \hline 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	2
		TOTAL	100.0\%		43	26	4	2
South Bay	9.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 86.4 \% \\ 9.1 \% \\ 3.2 \% \\ 1.3 \% \\ \hline \end{gathered}$	1.98	$\begin{gathered} \hline 168 \\ 18 \\ 6 \\ 3 \\ \hline \end{gathered}$	85	$\begin{gathered} \hline 15 \\ 2 \\ 1 \\ 0 \\ \hline \end{gathered}$	8
		TOTAL	100.0\%		194	85	17	8
Out of Region	5.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.2 \% \\ 16.9 \% \\ 19.7 \% \\ 4.2 \% \end{gathered}$	1.69	$\begin{gathered} \hline 64 \\ 18 \\ 21 \\ 5 \\ \hline \end{gathered}$	38	$\begin{aligned} & \hline 6 \\ & 2 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	3
		TOTAL	100.0\%		108	38	10	3
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 64.1 \% \\ 11.7 \% \\ 22.4 \% \\ 1.8 \% \end{gathered}$	1.90	$\begin{gathered} 1,384 \\ 252 \\ 484 \\ 40 \end{gathered}$	730	$\begin{gathered} 125 \\ 23 \\ 44 \\ 4 \end{gathered}$	66
		TOTAL	100.0\%		2,160	730	194	66

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Retail
[2] SF Guidelines, Appendix C (Table C-2) - Retail
[3] SF Guidelines, Appendix E (Table E-14) - Visitor Trips to SD-3 - Retail
[4] Calculated using PM peak trip generation rates. Daily trip rate calculated using assumed $\%$ of daily and PM peak trip generation rate.

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Community Center (Work Trips)

Proposed Size:	$\mathbf{2 5 . 0 0}$ ksf		
DAILY			
Person-trip Generation Rate [4]:	22.88 trips/ksf	PM PEAK HOUR	Person-trip Generation Rate [1]: -
Total Person-trips:	572 person-trips	Total Person-trips:	1.45 trips/ksf
Work Trips [2]:	4%	23 person-trips	

Origins	Distribution [3]	Mode	Percent [3]	AVO [3]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	8.3\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 46.9 \% \\ 32.7 \% \\ 17.7 \% \\ 2.7 \% \\ \hline \end{gathered}$	1.30	$\begin{aligned} & \hline 1 \\ & \hline 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & \hline 1 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		2	1	0	0
Superdistrict 2	10.6\%	Auto Transit Walk Other	$\begin{gathered} \hline 64.6 \% \\ 26.4 \% \\ 6.9 \% \\ 2.1 \% \\ \hline \end{gathered}$	1.26	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		2	1	0	0
Superdistrict 3	23.9\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.6 \% \\ 15.1 \% \\ 4.6 \% \\ \hline \end{gathered}$	1.25	$\begin{aligned} & \hline 3 \\ & 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		5	3	0	0
Superdistrict 4	7.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 75.7 \% \\ 21.5 \% \\ 0.0 \% \\ 2.8 \% \end{gathered}$	1.48	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		2	1	0	0
East Bay	14.3\%	Auto Transit Walk Other	$\begin{gathered} \hline 68.8 \% \\ 29.7 \% \\ 0.0 \% \\ 1.5 \% \end{gathered}$	1.61	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		3	1	0	0
North Bay	5.6\%	Auto Transit Walk Other	$\begin{gathered} \hline 86.9 \% \\ 10.5 \% \\ 0.0 \% \\ 2.6 \% \end{gathered}$	1.44	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		1	1	0	0
South Bay	26.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 88.5 \% \\ 8.8 \% \\ 0.0 \% \\ 2.7 \% \\ \hline \end{gathered}$	1.13	$\begin{aligned} & \hline 5 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	5	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		6	5	0	0
Out of Region	2.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 61.8 \% \\ 35.3 \% \\ 0.0 \% \\ 2.9 \% \end{gathered}$	1.56	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		1	0	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 71.0 \% \\ 20.2 \% \\ 5.8 \% \\ 2.9 \% \end{gathered}$	1.28	$\begin{gathered} 16 \\ 5 \\ 1 \\ 1 \\ \hline \end{gathered}$	13	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		23	13	1	1

Notes:
[1] Developed from vehicle trip rate provided in the ITE Trip Generation Handbook, 8th edition for Community Center (Land Use \#495)
[2] SF Guidelines, Appendix C (Table C-2) - Retail
[3] SF Guidelines, Appendix E (Table E-5) - Work Trips to SD-3 - All
[4] Calculated using PM peak trip generation rates. Daily trip rate calculated using assumed $\%$ of daily and PM peak trip generation rate.

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Community Center (Non-Work Trips)

Proposed Size:	$\mathbf{2 5 . 0 0}$ ksf		
DAILY			
Person-trip Generation Rate [4]:	22.88 trips/ksf	PM PEAK HOUR	Person-trip Generation Rate [1]: -
Total Person-trips:	572 person-trips	Total Person-trips:	1.45 trips/ksf
Non-Work Trips [2]: 96%	549 person-trips		Non-Work Trips [2]:

Origins	Distribution [3]	Mode	Percent [3]	AVO [3]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips	Person Trips	VehicleTrips
Superdistrict 1	5.0\%	Auto Transit Walk Other	$\begin{aligned} & \hline \hline 36.0 \% \\ & 19.2 \% \\ & 33.3 \% \\ & 11.5 \% \\ & \hline \end{aligned}$	2.03	$\begin{gathered} \hline 10 \\ 5 \\ 9 \\ 9 \\ 3 \\ \hline \end{gathered}$	5	$\begin{aligned} & \hline 1 \\ & \hline 1 \\ & 0 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		27	5	2	0
Superdistrict 2	5.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 68.6 \% \\ 14.5 \% \\ 2.4 \% \\ 14.5 \% \end{gathered}$	1.97	$\begin{gathered} 19 \\ 4 \\ 1 \\ 4 \end{gathered}$	10	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
		TOTAL	100.0\%		27	10	2	1
Superdistrict 3	85.0\%	Auto Transit Walk Other	$\begin{gathered} 43.7 \% \\ 21.5 \% \\ 25.4 \% \\ 9.4 \% \end{gathered}$	2.43	$\begin{gathered} 204 \\ 100 \\ 119 \\ 44 \\ \hline \end{gathered}$	84	$\begin{gathered} 13 \\ 6 \\ 8 \\ 3 \\ \hline \end{gathered}$	5
		TOTAL	100.0\%		467	84	30	5
Superdistrict 4	5.0\%	Auto Transit Walk Other	$\begin{aligned} & \hline 67.4 \% \\ & 16.3 \% \\ & 7.0 \% \\ & 9.3 \% \end{aligned}$	2.51	$\begin{gathered} 19 \\ 4 \\ 2 \\ 3 \end{gathered}$	7	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		27	7	2	0
East Bay	0.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 68.4 \% \\ 29.8 \% \\ 1.8 \% \\ 0.0 \% \end{gathered}$	2.59	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		0	0	0	0
North Bay	0.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 100.0 \% \\ 0.0 \% \\ 0.0 \% \\ 0.0 \% \end{gathered}$	2.11	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0
		TOTAL	100.0\%		0	0	0	0
South Bay	0.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 94.6 \% \\ 3.6 \% \\ 1.8 \% \\ 0.0 \% \\ \hline \end{gathered}$	2.28	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		0	0	0	0
Out of Region	0.0\%	Auto Transit Walk Other	$\begin{gathered} 73.6 \% \\ 21.1 \% \\ 0.0 \% \\ 5.3 \% \\ \hline \end{gathered}$	1.68	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0
		TOTAL	100.0\%		0	0	0	0
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 45.7 \% \\ 20.8 \% \\ 23.7 \% \\ 9.8 \% \end{gathered}$	2.38	$\begin{gathered} 251 \\ 114 \\ 130 \\ 54 \end{gathered}$	106	$\begin{gathered} 16 \\ 7 \\ 8 \\ 3 \\ \hline \end{gathered}$	7
		TOTAL	100.0\%		549	106	35	7

Notes:
[1] Developed from vehicle trip rate provided in the ITE Trip Generation Handbook, 8th edition for Community Center (Land Use \#495)
[2] SF Guidelines, Appendix C (Table C-2) - Retail
[3] SF Guidelines, Appendix E - modified to account for primarily internal trips and majority of external trips to center will be from SD-3
[4] Calculated using PM peak trip generation rates. Daily trip rate calculated using assumed $\%$ of daily and PM peak trip generation rate.

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Residential (Work Trips) to be Removed - Trip Credits

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Vehicle- } \\ \text { Trips } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-566 \\ -192 \\ -46 \\ -145 \end{gathered}$	-501	$\begin{gathered} \hline-148 \\ -50 \\ -12 \\ -38 \end{gathered}$	-131
		TOTAL	100.0\%		-949	-501	-249	-131
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -125 \\ -42 \\ -10 \\ -32 \end{gathered}$	-111	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \end{gathered}$	-29
		TOTAL	100.0\%		-210	-111	-55	-29
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & \hline-125 \\ & -42 \\ & -10 \\ & -32 \\ & \hline \end{aligned}$	-111	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \\ \hline \end{gathered}$	-29
		TOTAL	100.0\%		-210	-111	-55	-29
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-125 \\ -42 \\ -10 \\ -32 \\ \hline \end{gathered}$	-111	$\begin{aligned} & \hline-33 \\ & -11 \\ & -3 \\ & -8 \\ & \hline \end{aligned}$	-29
		TOTAL	100.0\%		-210	-111	-55	-29
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -93 \\ -32 \\ -8 \\ -24 \end{gathered}$	-82	$\begin{aligned} & -24 \\ & -8 \\ & -2 \\ & -6 \end{aligned}$	-22
		TOTAL	100.0\%		-156	-82	-41	-22
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-20 \\ -7 \\ -2 \\ -5 \\ \hline \end{gathered}$	-18	$\begin{gathered} \hline-5 \\ -2 \\ 0 \\ -1 \end{gathered}$	-5
		TOTAL	100.0\%		-34	-18	-9	-5
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -130 \\ -44 \\ -11 \\ -33 \end{gathered}$	-115	$\begin{aligned} & \hline-34 \\ & -12 \\ & -3 \\ & -9 \\ & \hline \end{aligned}$	-30
		TOTAL	100.0\%		-218	-115	-57	-30
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{aligned} & \hline-8 \\ & -3 \\ & -1 \\ & -2 \\ & \hline \end{aligned}$	-7	$\begin{gathered} \hline-2 \\ -1 \\ 0 \\ -1 \\ \hline \end{gathered}$	-2
		TOTAL	100.0\%		-14	-7	-4	-2
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-1,195 \\ -404 \\ -97 \\ -306 \end{gathered}$	-1,057	$\begin{aligned} & \hline-313 \\ & -106 \\ & -26 \\ & -80 \end{aligned}$	-277
		TOTAL	100.0\%		-2,002	-1,057	-525	-277

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

Potrero HOPE Transportation Study

Project Trip Generation - Weekday (Alternative 1)
Land Use: Residential (Non-Work Trips) to be Removed - Trip Credits

Proposed Size: -620 units			
DAILY		PM PEAK HOUR	
Person-trip Generation Rate [1]:	9.8 trips/unit	Person-trip Generation Rate [1]: 17.3\%	1.69 trips/unit
Total Person-trips:	-6,068 person-trips	Total Person-trips:	-1,050 person-trips
Work Trips [1]: 67%	-4,065 person-trips	Work Trips [1]: 50%	-525 person-trips

Origins	Distribution [3]	Mode	Percent [2]	AVO [2]	Daily		PM Peak Hour	
					$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Vehicle- } \\ \text { Trips } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Person } \\ \text { Trips } \\ \hline \end{gathered}$	VehicleTrips
Superdistrict 1	47.4\%	Auto Transit Walk Other	$\begin{gathered} \hline \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$-1,150$ -389 -94 -295	-1,017	$\begin{gathered} \hline-148 \\ -50 \\ -12 \\ -38 \end{gathered}$	-131
		TOTAL	100.0\%		-1,927	-1,017	-249	-131
Superdistrict 2	10.5\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-255 \\ -86 \\ -21 \\ -65 \end{gathered}$	-225	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \\ \hline \end{gathered}$	-29
		TOTAL	100.0\%		-427	-225	-55	-29
Superdistrict 3	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-255 \\ -86 \\ -21 \\ -65 \end{gathered}$	-225	$\begin{gathered} \hline-33 \\ -11 \\ -3 \\ -8 \\ \hline \end{gathered}$	-29
		TOTAL	100.0\%		-427	-225	-55	-29
Superdistrict 4	10.5\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{aligned} & -255 \\ & -86 \\ & -21 \\ & -65 \end{aligned}$	-225	$\begin{aligned} & \hline-33 \\ & -11 \\ & -3 \\ & -8 \\ & \hline \end{aligned}$	-29
		TOTAL	100.0\%		-427	-225	-55	-29
East Bay	7.8\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -189 \\ -64 \\ -15 \\ -48 \end{gathered}$	-167	$\begin{aligned} & -24 \\ & -8 \\ & -2 \\ & -6 \end{aligned}$	-22
		TOTAL	100.0\%		-317	-167	-41	-22
North Bay	1.7\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-41 \\ -14 \\ -3 \\ -11 \\ \hline \end{gathered}$	-36	$\begin{gathered} \hline-5 \\ -2 \\ 0 \\ -1 \end{gathered}$	-5
		TOTAL	100.0\%		-69	-36	-9	-5
South Bay	10.9\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} -264 \\ -89 \\ -22 \\ -68 \end{gathered}$	-234	$\begin{aligned} & \hline-34 \\ & -12 \\ & -3 \\ & -9 \end{aligned}$	-30
		TOTAL	100.0\%		-443	-234	-57	-30
Out of Region	0.7\%	Auto Transit Walk Other	$\begin{gathered} 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \\ \hline \end{gathered}$	1.13	$\begin{gathered} \hline-17 \\ -6 \\ -1 \\ -4 \\ \hline \end{gathered}$	-15	$\begin{gathered} \hline-2 \\ -1 \\ 0 \\ -1 \\ \hline \end{gathered}$	-2
		TOTAL	100.0\%		-28	-15	-4	-2
TOTAL	100.0\%	Auto Transit Walk Other	$\begin{gathered} \hline 59.7 \% \\ 20.2 \% \\ 4.9 \% \\ 15.3 \% \end{gathered}$	1.13	$\begin{gathered} \hline-2,426 \\ -821 \\ -198 \\ -621 \end{gathered}$	-2,147	$\begin{gathered} -313 \\ -106 \\ -26 \\ -80 \end{gathered}$	-277
		TOTAL	100.0\%		-4,065	-2,147	-525	-277

Notes:
[1] SF Guidelines, Appendix C (Table C-1) - Residential
[2] 2000 US Census journey-to-work data (Tract 227.03)
[3] 1990 US Census journey-to-work data (Tract 227)

APPENDIX J
 PARKING AND LOADING ANALYSIS

Parking Demand Summary - Proposed Project

ResidentialAffordable Residential		
	Affordable Residential	
Studio/1-bedroom units	148	
	822	
Sub-total	970	
Market-Rate Residential		
Studio/1-bedroom units	348	
2+ bedrooms	282	
Sub-total	630	
Senior Housing		
studio/1-bedroom units	98	
2 bedrooms	2	
Sub-total	100	
Total	1,700	
Retail		
Block K	5,500	sf
Block L	9,500	sf
Total	15,000	sf
Community Center	35,000	sf

Midday Parking Demand

Long Term

Residential - calculated by units Affordable Residential	80\%	of evening demand
Parking Rates		
Parking Demand	53	spaces (1 bed)
	605	spaces (2+ bed)

Subtotal	658	spaces
Market-Rate Residential		
Parking Rates	80\%	of evening demand
Parking Demand	306	spaces (1 bed)
	338	spaces (2+ bed)
Subtotal	645	spaces
Senior Housing Residential		
Subtotal Parking Rates	80\%	of evening demand
Subtotal	16	spaces

Total Residential Demand	1,319	spaces
Retail - calculated by employees		
Employee Density	350	sf per employee
AVO	1.23	
Auto mode split	71.1\%	
Block K Demand	16	employees
	9	spaces
Block L Demand	28	employees
	16	spaces
Total Retail Demand	44	employees
	25	total spaces
Community Center - calculated by daily work-related vehicle trips		
Daily Work Trips	18	vehicle trips
Parking Demand	9	spaces
Total Community Center Demand	9	spaces
Total Long Term	1,353	spaces

Short-Term

Residential	0	spaces	
Retail			
	Turn-over Rate	5.5	
	Retail Demand	67	spaces
Community Center			
	Turn-over Rate	5.5	
Community Center Demand	14	spaces	
Total Short Term	$\mathbf{8 1}$	spaces	
Total Midday Parking Demand $\mathbf{1 , 4 3 4}$ spaces			

Evening Parking Demand

Long Term

Residential - calculated by units Affordable Residential		
Parking Rates	0.45	spaces per unit (1 bed)
	0.92	spaces per unit (2+ bed)
Parking Demand	67	spaces (1 bed)
	756	spaces (2+ bed)
Subtotal	823	spaces
Market-Rate Residential		
Parking Rates	1.10	spaces per unit (1 bed)
	1.50	spaces per unit (2+ bed)
Parking Demand	383	spaces (1 bed)
	423	spaces (2+ bed)
Subtotal	806	spaces
Senior Housing Residential		
Parking Rates	0.20	spaces per unit
Subtotal	20	spaces
Total Residential Demand	1,649	spaces
Retail - calculated by employees		
Employee Density	350	sf per employee
AVO	1.23	
Auto mode split	71.1\%	
Block K Demand	16	employees
	9	spaces
Block L Demand	28	employees
	16	spaces
Total Retail Demand	44	employees
	25	total spaces
Community Center - calculated by daily work-related vehicle trips		
Daily Work Trips	18	vehicle trips
Parking Demand	9	spaces
Total Community Center Demand	9	spaces
Total Long Term	1,683	spaces

Short-Term

Residential	0	spaces	
Retail			
	Turn-over Rate	5.5	
	Retail Demand	67	spaces
Community Center			
	Turn-over Rate	5.5	
Community Center Demand		14	spaces
Total Short Term		$\mathbf{8 1}$	spaces
Total Evening Parking Demand		$\mathbf{1 , 7 6 4}$	spaces

SF Planning Code Requirement

Off-street Parking Spaces (per Section 151)		
Residential - Market Rate	1.0	spaces per unit (code requirement)
	630	spaces required
Residential - Affordable	0	spaces per unit (code requirement)
	0	spaces required
Residential - Senior Housing	0	spaces per unit (code requirement)
	0	spaces required
Total Residential	630	spaces required
Retail Block K Block L	1.0	spaces for each 500 square feet of occupied floor area up to $20,000 \mathrm{sf}$, where the occupied floor area exceeds 5,000 square feet @ 85% occupied (code requirement)
	0	spaces required
	16	spaces required
Total Retail	16	spaces required
Community Center		
Childcare/ Pre-School Facility	1.0	spaces for each 25 children to be accommodated at any one time (code requirement)
	11,000	sf size
	146	children capacity
	5	spaces required
Music Room/ Dance Studio/ Arts Room/ Gymnasium	1.0	spaces for each 2,000
	24,000	sf size
	12	spaces required
Total Community Center	17	spaces required
Total Project	663	spaces required

Handicap-Accessible Parking Spaces (per Section 155 (i))
Code Requirement

Car-share Parking Spaces (per Section 166 (d))
Code Requirement
2.0

9 \quad| spaces for 200 dwelling units, plus 1 for every 200 dwelling units over 200 |
| :--- |
| spaces required |

Bicycle Spaces (Sections 155.4 and 155.5)

Residential (Affordable and Market Rate)	$\begin{array}{r} 25.0 \\ 412 \end{array}$	Class 1 spaces for 50 units, plus one Class I space for every 4 units over 50 (Code requirement) spaces required
Residential (Senior Housing)	0	spaces (Code requirement)
	0	spaces required
Retail	3	spaces where the gsf of the floor area exceeds $25,000 \mathrm{sf}$, but is less than 50,000 sf (Code requirement)
Block K	0	spaces required
Block L	0	spaces required
Community Center	6	spaces where the gsf of the floor area exceeds $50,000 \mathrm{sf}$, but is less than 100,000 sf (Code requirement)
	0	spaces required
Total	412	spaces required

Showers/Lockers (Section 155.3)

Community Center
two showers and four lockers required where the gsf of the floor area exceeds $20,000 \mathrm{sf}$, but is less than $50,000 \mathrm{sf}$
(Code requirement)
2 showers required*
4 lockers required*

* not required for residential buildings, or retail buildings with less than $25,000 \mathrm{sq} \mathrm{ft}$.

Parking Supply

Off-street Affordable	485	spaces
Off-street Market Rate	535	spaces
Off-street Senior	20	spaces
Off-street Retail	10	spaces
Off-street Community Center	5	spaces
On-street	600	spaces
Total	$\mathbf{1 , 6 5 5}$	spaces

NOTES:

1. Source: SF Guidelines
2. Parking Demand Calculations:

Residential (studio/1 bed): \# of studio/1 bed affordable units x veh per 1 bed aff units requirement
Residential (2+ bed): \# of 2 bed affordable units x veh per 2 bed aff units requirement
Retail (long-term): \# of daily employees $x \%$ employees who drive / average vehicle occupancy
Retail (short-term): \# of daily visitor vehicle-trip / 2 / turnover rate

Potrero HOPE Transportation Study
Parking Demand Summary - Alternative 1
Proposed Project Description

Residential		
Affordable Residential		
Studio/1-bedroom units	122	
2+ bedrooms	674	
Sub-total	796	
Market-Rate Residential		
Studio/1-bedroom units	224	
2+ bedrooms	180	
Sub-total	404	
Senior Housing		
studio/1-bedroom units	78	
2 bedrooms	2	
Sub-total	80	
Total	1,280	
Retail		
Block K	5,500	sf
Block L	9,500	sf
Total	15,000	sf
Community Center	25,000	sf

Midday Parking Demand

Long Term

Residential - calculated by units Affordable Residential	80\%	of evening demand
Parking Rates		
Parking Demand Subtotal	44	spaces (1 bed)
	496	spaces (2+ bed)
	540	spaces
Market-Rate Residential	80\%	of evening demand
Parking Rates		
Parking Demand	197	spaces (1 bed)
	216	spaces (2+ bed)
Subtotal	413	spaces
Senior Housing Residential		
Subtotal Parking Rates	80\%	of evening demand
	13	spaces
Total Residential Demand	966	spaces
Retail - calculated by employees		
Employee Density	350	sf per employee
AVO Auto mode split	1.23	
	71.1\%	
Block K Demand	16	employees
	9	spaces
Block L Demand	28	employees
	16	spaces
Total Retail Demand	44	employees
	25	total spaces
Community Center - calculated by daily work-related vehicle trips		vehicle trips spaces
Daily Work Trips	13	
Parking Demand	6	
Total Community Center Demand	6	spaces
Total Long Term	998	spaces

Short-Term

Residential	0	spaces
Retail		
Turn-over Rate Retail Demand	$\begin{aligned} & 5.5 \\ & 67 \\ & \hline \end{aligned}$	spaces
Community Center		
Turn-over Rate Community Center Demand	$\begin{aligned} & 5.5 \\ & 10 \\ & \hline \end{aligned}$	spaces
Total Short Term Total Midday Parking Demand	$\begin{gathered} \hline 77 \\ 1,075 \\ \hline \end{gathered}$	spaces spaces

Evening Parking Demand

Long Term

Residential - calculated by units Affordable Residential		
Parking Rates	0.45	spaces per unit (1 bed)
	0.92	spaces per unit (2+ bed)
Parking Demand	55	spaces (1 bed)
	620	spaces (2+ bed)
Subtotal	675	spaces
Market-Rate Residential		
Parking Rates	1.10	spaces per unit (1 bed)
	1.50	spaces per unit (2+ bed)
Parking Demand	246	spaces (1 bed)
	270	spaces (2+ bed)
Subtotal	516	spaces
Senior Housing Residential		
Parking Rates	0.20	spaces per unit
Subtotal	16	spaces
Total Residential Demand	1,207	spaces
Retail - calculated by employees		
Employee Density	350	sf per employee
AVO	1.23	
Auto mode split	71.1\%	
Block K Demand	16	employees
	9	spaces
Block L Demand	28	employees
	16	spaces
Total Retail Demand	44	employees
	25	total spaces
Community Center - calculated by daily work-related vehicle trips		
Daily Work Trips	13	vehicle trips
Parking Demand	6	spaces
Total Community Center Demand	6	spaces
Total Long Term	1,239	spaces

Short-Term

Residential	0	spaces	
Retail			
	Turn-over Rate	5.5	
	Retail Demand	67	spaces
Community Center			
	Turn-over Rate	5.5	
Community Center Demand		10	spaces
Total Short Term		$\mathbf{7 7}$	spaces
Total Evening Parking Demand		$\mathbf{1 , 3 1 6}$	spaces

Parking Demand Summary - Alternative 1

SF Planning Code Requirement

Off-street Parking Spaces (per Section 151)		
Residential - Market Rate	$\begin{aligned} & 1.0 \\ & 404 \\ & \hline \end{aligned}$	spaces per unit (code requirement) spaces required
Residential - Affordable	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	spaces per unit (code requirement) spaces required
Residential - Senior Housing	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	spaces per unit (code requirement) spaces required
Total Residential	404	spaces required
Retail	1.0	spaces for each 500 square feet of occupied floor area up to $20,000 \mathrm{sf}$, where the occupied floor area exceeds 5,000 square feet @ 85% occupied (code requirement)
Block K Block L	$\begin{gathered} \hline 9 \\ 16 \\ \hline \end{gathered}$	spaces required spaces required
Total Retail	25	spaces required
Community Center		
Childcare/ Pre-School Facility	1.0	spaces for each 25 children to be accommodated at any one time (code requirement)
	11,000	sf size
	146	children capacity
	5	spaces required
Music Room/ Dance Studio/ Arts Room/ Gymnasium	1.0	spaces for each 2,000
	14,000	sf size
	7	spaces required
Total Community Center	12	spaces required
Total Project	441	spaces required

Handicap-Accessible Parking Spaces (per Section $\mathbf{1 5 5}$ (i))
Code Requirement

Car-share Parking Spaces (per Section 166 (d))			
Code Requirement	2.0	spaces for 200 dwelling units, plus 1 for every 200 dwelling units over 200 	spaces required

Bicycle Spaces (Sections 155.4 and 155.5)

Residential (Affordable and Market Rate)	$\begin{array}{r} 25.0 \\ 312 \end{array}$	Class 1 spaces for 50 units, plus one Class I space for every 4 units over 50 (Code requirement) spaces required
Residential (Senior Housing)	0	spaces (Code requirement)
	0	spaces required
Retail	3	spaces where the gsf of the floor area exceeds 25,000 sf, but is less than $50,000 \mathrm{sf}$ (Code requirement)
Block K	0	spaces required
Block L	0	spaces required
Community Center	6	spaces where the gsf of the floor area exceeds $50,000 \mathrm{sf}$, but is less than 100,000 sf (Code requirement)
	0	spaces required
Total	312	spaces required

Showers/Lockers (Section 155.3)

Community Center
two showers and four lockers required where the gsf of the floor area exceeds $20,000 \mathrm{sf}$, but is less than $50,000 \mathrm{sf}$
(Code requirement)
2 showers required*
4 lockers required*

* not required for residential buildings, or retail buildings with less than 25,000 sq ft.

Parking Supply

Off-street Affordable	398	spaces
Off-street Market Rate	345	spaces
Off-street Senior	15	spaces
Off-street Retail	10	spaces
Off-street Community Center	5	spaces
On-street	600	spaces
Total	$\mathbf{1 , 3 7 3}$	spaces

NOTES:

1. Source: SF Guidelines
2. Parking Demand Calculations:

Residential (studio/1 bed): \# of studio/1 bed affordable units x veh per 1 bed aff units requirement
Residential ($2+$ bed): \# of 2 bed affordable units x veh per 2 bed aff units requirement
Retail (long-term): \# of daily employees $x \%$ employees who drive / average vehicle occupancy
Retail (short-term): \# of daily visitor vehicle-trip / 2 / turnover rate

Potrero HOPE Transportation Study

Weekday Loading Demand and Code Requirements - Proposed Project

Notes

Source: SF Guidelines
General Loading Demand Equations
Daily Trips $=($ GSF / 1,000 $) ~ * R$
Average Hour $=($ GSF $/ 1,000) * R / 9 / 2.4$
Peak Hour $=($ GSF / 1,000 $) *(R * 1.25) / 9 / 2.4$

Potrero HOPE Transportation Study

Weekday Loading Demand and Code Requirements - Alternative 1

Notes

Source: SF Guidelines
General Loading Demand Equations
Daily Trips $=($ GSF / 1,000 $) ~ * R$
Average Hour $=(G S F / 1,000) * R / 9 / 2.4$
Peak Hour $=($ GSF / 1,000 $) *(R * 1.25) / 9 / 2.4$

SIGNAL WARRANT ANALYSIS

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

Speed limit or critical speed on major street traffic \(\left.>64 \mathrm{~km} / \mathrm{h}(40 \mathrm{mph}) ··· ··· . . \begin{array}{|}\square

In built up area of isolated community of<10,000 population....................\end{array}\right\}\)| RURAL (R) |
| :--- |
| URBAN (U) |

WARRANT 3 - Peak Hour
(Part A or Part B must be satisfied)
PART A

SATISFIED	YES \square NO \square
SATISFIED	YES \square NO \square

(All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive $15-$ minute periods)

| 1. The total delay experienced by traffic on one minor street approach (one direction only) |
| :--- | :--- | :--- |
| controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane |
| approach, or five vehicle-hours for a two-lane approach; AND | Yes \square No \square No

The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS)	Yes \square No \square	
OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS)	Yes \square	No \square

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

2030 Cumulative plus Proposed Project

The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS)	Yes \square No \square	
OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS)	Yes \square	No \square

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

2030 Cumulative plus Alternative 1
COUNT DATE

$\mathrm{CALC} \quad \mathrm{BPK}$	DATE01/13/12 CHK

Major St: PENNSYLVANIA AVENUE
Minor St: SB I-280 OFF-RAMP

Critical Approach Speed	25
Critical Approach Speed	25

$\left.\begin{array}{l}\text { Speed limit or critical speed on major street traffic }>64 \mathrm{~km} / \mathrm{h}(40 \mathrm{mph}) \ldots \square \\ \text { In built up area of isolated community of }<10,000 \text { population......................... }\end{array}\right\}$ RURAL (R)
URBAN (U)

WARRANT 3 - Peak Hour
(Part A or Part B must be satisfied)
PART A

SATISFIED	YES \square NO \square
SATISFIED	YES \square NO \square

(All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15 -minute periods)

The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS)	Yes \square No \square	
OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS)	Yes \square	No \square

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

2030 Cumulative plus Proposed Project

The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS)	Yes \square No \square	
OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS)	Yes \square	No \square

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS)	Yes \square No \square	
OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS)	Yes \square	No \square

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

2030 Cumulative plus Proposed Project

The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS)	Yes \square No \square	
OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS)	Yes \square	No \square

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

2030 Cumulative plus Alternative 1
COUNT DATE

| The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS) | Yes \square No \square |
| :--- | :--- | :--- |
| OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURALAREAS) | Yes \square No \square |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

Speed limit or critical speed on major street traffic \(\left.>64 \mathrm{~km} / \mathrm{h}(40 \mathrm{mph}) ··· \begin{array}{l}\square

In built up area of isolated community of<10,000 population...................\end{array}\right\}\)| RURAL (R) |
| :--- |
| URBAN (U) |

WARRANT 3 - Peak Hour
(Part A or Part B must be satisfied)
PART A

SATISFIED	YES \square NO \square
SATISFIED	YES \square NO \square

(All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive $15-$ minute periods)

| 1. The total delay experienced by traffic on one minor street approach (one direction only) |
| :--- | :--- | :--- |
| controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane |
| approach, or five vehicle-hours for a two-lane approach; AND | Yes \square No \square No

| The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS) | Yes \square |
| :--- | :--- | :--- |
| OR. The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS) | Yes \square |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

2030 Cumulative plus Proposed Project

| The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS) | Yes \square |
| :--- | :--- | :--- |
| $\underline{\text { OR }}$, The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS) | Yes \square |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

2030 Cumulative plus Alternative 1
COUNT DATE
$\mathrm{CALC} \quad$ DPK

$\mathrm{CHK} \quad$ DATE | 01/13/12 |
| :--- |

Major St: CESAR CHAVEZ STREET
Minor St: US 101 OFF-RAMP

| Critical Approach Speed | 25 |
| :--- | :--- | :--- |
| Critical Approach Speed | 25 |
| | mph |

$\left.\begin{array}{l}\text { Speed limit or critical speed on major street traffic }>64 \mathrm{~km} / \mathrm{h}(40 \mathrm{mph}) \ldots \square \\ \text { In built up area of isolated community of }<10,000 \text { population......................... }\end{array}\right\}$ RURAL (R)
URBAN (U)

WARRANT 3 - Peak Hour (Part A or Part B must be satisfied)
 PART A
 (All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15 -minute periods)

SATISFIED	YES \square NO \square
SATISFIED	YES \square NO \square

1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND	Yes \square No
2. The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND	Yes \square No
3. The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches.	Yes \square No

ART BAPPROACH LANES	One			SATISFIED	YES \checkmark	NO
		$\begin{aligned} & 2 \text { or } \\ & \text { More } \end{aligned}$	$\begin{gathered} \text { PM } \\ \text { PEAK HOUR } \end{gathered}$			
Both Approaches - Major Street		\checkmark	2,45			
Higher Approach - Minor Street	\checkmark		817			

| The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS) | Yes \square |
| :--- | :--- | :--- |
| $\underline{\text { OR }}$, The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS) | Yes \square |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

APPENDIX L

FUTURE VOLUME DEVELOPMENT

To:
Brett Bollinger, Environmental Planning, San Francisco Planning Department
C:
Date: May 02, 2011
From: Bhanu Kala, Wilbur Smith Associates
Subject: Potrero HOPE Transportation Study - 2030 Intersection Volumes

Wilbur Smith Associates (WSA) is preparing this technical memorandum as part of the Potrero HOPE Transportation Study. This memorandum discusses the methodology that was adopted to develop traffic volumes at the study intersections under 2030 Baseline Conditions.

Volume Development Methodology

To be consistent with the traffic study performed for a neighboring development (Sunnydale-Velasco Housing Development), intersection volumes under 2030 Baseline Conditions were developed using the same methodology that was adopted in that traffic study. Based on this methodology, it is assumed that the Candlestick Point-Hunters Point Shipyard development would already be in place by year 2030. Thus, the 2030 baseline volumes developed for this project correspond to the 2030 plus Project volumes from the Candlestick Point-Hunters Point Shipyard Phase II Development Plan Draft Environmental Impact Report (EIR), November 2009. For study intersections that are not evaluated as part of the Candlestick Point-Hunters Point Shipyard Phase II Development EIR, 2030 traffic volumes were estimated using traffic growths projected by the San Francisco Chain Activity Modeling Process (SFCHAMP) Model.

This transportation study has only one common study intersection with the Candlestick Point-Hunters Point Shipyard Phase II Development EIR - Cesar Chavez/Pennsylvania Avenue/NB I-280 Off-Ramp. At this intersection, projected PM peak hour traffic growth from existing (2010) to 2030 Baseline Conditions were identified by subtracting existing turning movement volumes collected as part of this transportation study from 2030 plus Project volumes forecasted in the Candlestick Point-Hunters Point Shipyard Phase II Development EIR. At the other study intersections, growths in the turning movement volumes were identified as follows:

- Using 2010 and 2035 SF-CHAMP Models, forecasted traffic growth between 2010 and 2035 Conditions was estimated for each approach of the study intersection.
- These traffic growths were then interpolated to obtain traffic growths along intersection approaches between 2010 and 2030 Conditions.
- Based on the estimated traffic growth for each approach between 2010 and 2030 Conditions, projected growth in traffic for each maneuver at the study intersections was identified using the Furness Process. The Furness Process used in this study is in accordance with NCHRP 255: Highway Traffic Data for Urbanized Area Project Planning and Design (Chapter 8) and involves balancing the intersection volumes using an iterative process to compare them to the existing traffic distribution. The iterative process seeks to balance the total inbound and outbound volumes from each approach as projected by the SF-CHAMP Model.
The estimated volume increases at all the study intersections developed based on the Candlestick PointHunters Point Shipyard Phase II Development EIR and SF-CHAMP Model were balanced out in the northsouth and east-west directions. The resulting increase in PM peak hour intersection volumes from 2010 to 2030 Conditions is shown in Figure 1.

2030 Baseline Volumes

The estimated traffic growths at the study intersections between 2010 and 2030 Conditions identified in Figure 1 have been added to the existing turning movement volumes to develop intersection volumes under 2030 Baseline Conditions. These traffic volumes are exhibited in Table 1.

Table 1 - Year 2030 Baseline Volumes (Weekday PM Peak Hour)

Intersection	NB Approach			SB Approach			EB Approach			WB Approach		
\# Name	L	T	R	L	T	R	L	T	R	L	T	R
1 Cesar Chavez Street/Connecticut Street Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes				$\begin{aligned} & 20 \\ & 15 \\ & 35 \end{aligned}$		$\begin{gathered} 86 \\ 212 \\ 298 \\ \hline \end{gathered}$	$\begin{gathered} 56 \\ 171 \\ 227 \\ \hline \end{gathered}$	$\begin{gathered} 594 \\ 535 \\ 1,129 \\ \hline \end{gathered}$			$\begin{gathered} 723 \\ 614 \\ 1,337 \\ \hline \end{gathered}$	$\begin{gathered} 78 \\ 86 \\ 164 \\ \hline \end{gathered}$
2 Cesar Chavez Street/Pennsylvania Avenue/NB I-280 Off-Ramp Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes	$\begin{aligned} & 186 \\ & 224 \\ & 410 \\ & \hline \end{aligned}$	$\begin{aligned} & 143 \\ & 117 \\ & 260 \\ & \hline \end{aligned}$	$\begin{aligned} & 282 \\ & 168 \\ & 450 \\ & \hline \end{aligned}$	$\begin{gathered} 84 \\ 6 \\ 90 \end{gathered}$		$\begin{aligned} & 412 \\ & -12 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 314 \\ & 246 \\ & 560 \\ & \hline \end{aligned}$	$\begin{aligned} & 391 \\ & 429 \\ & 820 \\ & \hline \end{aligned}$			$\begin{aligned} & 162 \\ & 578 \\ & 740 \\ & \hline \end{aligned}$	$\begin{aligned} & 365 \\ & 136 \\ & 501 \end{aligned}$
3 Pennsylvania Avenue/SB I-280 Off-Ramp Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes		$\begin{aligned} & 201 \\ & 100 \\ & 301 \end{aligned}$			$\begin{aligned} & 291 \\ & 258 \\ & 549 \end{aligned}$		$\begin{aligned} & 483 \\ & 245 \\ & 728 \end{aligned}$		$\begin{gathered} 49 \\ 6 \\ 55 \end{gathered}$			
4 25th Street/Indiana Street/NB I-280 On-Ramp Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes	$\begin{gathered} 265 \\ 20 \\ 285 \end{gathered}$	$\begin{gathered} 54 \\ 322 \\ 376 \end{gathered}$	$\begin{aligned} & 11 \\ & 31 \\ & 42 \end{aligned}$				$\begin{gathered} 93 \\ 74 \\ 167 \end{gathered}$	$\begin{gathered} 146 \\ 56 \\ 202 \end{gathered}$			$\begin{gathered} 179 \\ 0 \\ 179 \end{gathered}$	$\begin{gathered} 104 \\ 11 \\ 115 \end{gathered}$
5 25th Street/Connecticut Street Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes	$\begin{gathered} 3 \\ 17 \\ 20 \end{gathered}$	$\begin{gathered} 33 \\ 72 \\ 105 \end{gathered}$	$\begin{gathered} 88 \\ 24 \\ 112 \end{gathered}$				$\begin{gathered} 24 \\ 2 \\ 26 \end{gathered}$	$\begin{gathered} 66 \\ 1 \\ 67 \end{gathered}$	$\begin{aligned} & 22 \\ & 70 \\ & 92 \end{aligned}$	$\begin{gathered} 34 \\ 90 \\ 124 \end{gathered}$	$\begin{aligned} & 43 \\ & 11 \\ & 54 \end{aligned}$	$\begin{gathered} 22 \\ 2 \\ 24 \end{gathered}$
6 25th Street/Dakota Street/Texas Street Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes				$\begin{aligned} & 35 \\ & 39 \\ & 74 \end{aligned}$		$\begin{gathered} 52 \\ 9 \\ 61 \end{gathered}$	$\begin{gathered} 26 \\ 2 \\ 28 \end{gathered}$	$\begin{gathered} 124 \\ 22 \\ 146 \end{gathered}$			$\begin{gathered} 45 \\ 69 \\ 114 \end{gathered}$	$\begin{aligned} & 35 \\ & 12 \\ & 47 \end{aligned}$
7 23rd Street/Dakota Street Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes		$\begin{gathered} 15 \\ 0 \\ 15 \end{gathered}$			$\begin{gathered} 20 \\ 4 \\ 24 \end{gathered}$	$\begin{aligned} & 16 \\ & 20 \\ & 36 \end{aligned}$	$\begin{gathered} 17 \\ 0 \\ 17 \end{gathered}$		$\begin{gathered} 58 \\ 45 \\ 103 \end{gathered}$			
8 23rd Street/Wisconsin Street Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes		$\begin{gathered} 61 \\ 62 \\ 123 \\ \hline \end{gathered}$	$\begin{aligned} & 33 \\ & 33 \\ & 66 \end{aligned}$	$\begin{gathered} 17 \\ 0 \\ 17 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 67 \\ 107 \end{gathered}$					$\begin{aligned} & 24 \\ & 13 \\ & 37 \end{aligned}$		$\begin{gathered} 23 \\ 0 \\ 23 \end{gathered}$
9 20th Street/Arkansas Street Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes	$\begin{gathered} 3 \\ 7 \\ 10 \end{gathered}$	$\begin{aligned} & 16 \\ & 17 \\ & 33 \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & 9 \end{aligned}$	$\begin{gathered} 6 \\ 6 \\ 12 \end{gathered}$	$\begin{aligned} & 21 \\ & 15 \\ & 36 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 30 \end{aligned}$	$\begin{gathered} 6 \\ 5 \\ 11 \end{gathered}$	$\begin{gathered} 104 \\ 3 \\ 107 \end{gathered}$	$\begin{gathered} 6 \\ 8 \\ 14 \end{gathered}$	$\begin{gathered} 20 \\ 7 \\ 27 \end{gathered}$	$\begin{gathered} 140 \\ 74 \\ 214 \end{gathered}$	13 3 16
10 22nd Street/Missouri Street Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes	$\begin{gathered} 25 \\ 0 \\ 25 \end{gathered}$	$\begin{gathered} 30 \\ 77 \\ 107 \end{gathered}$			$\begin{aligned} & 25 \\ & 52 \\ & 77 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			
11 Potrero Avenue/23rd Street Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes		$\begin{aligned} & 570 \\ & 413 \\ & 983 \end{aligned}$	$\begin{gathered} 60 \\ 40 \\ 100 \end{gathered}$	$\begin{gathered} 85 \\ 20 \\ 105 \end{gathered}$	$\begin{gathered} 985 \\ 271 \\ 1,256 \end{gathered}$	$\begin{aligned} & 23 \\ & -4 \\ & 19 \end{aligned}$	$\begin{gathered} 27 \\ -3 \\ 0 \end{gathered}$	$\begin{aligned} & 41 \\ & -4 \\ & 37 \end{aligned}$	48 -5 0	86 10 96	$\begin{aligned} & 31 \\ & -2 \\ & 29 \end{aligned}$	161 18 179
12 Cesar Chavez Street/Vermont Street/US 101 Off-Ramp Existing (2010) volumes Projected increase in volumes from 2010 to 2030 Conditions 2030 baseline volumes			$\begin{aligned} & 296 \\ & 375 \\ & 671 \end{aligned}$	$\begin{gathered} 23 \\ 125 \\ 148 \\ \hline \end{gathered}$		$\begin{gathered} 148 \\ 0 \\ 148 \\ \hline \end{gathered}$	$\begin{gathered} 88 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 460 \\ & 100 \\ & 560 \\ & \hline \end{aligned}$	0		$\begin{gathered} 582 \\ 660 \\ 1,242 \end{gathered}$	389 40 429

Appendix 4.7C CDM Memo. Potrero HOPE

 Transportation Study - 2040 Cumulative Analysis. June 27, 2014. Final
Memorandum

To: Brett Bollinger, San Francisco Planning Department

From: Bhanu Kala

Date: June 27, 2014

Subject: Potrero HOPE Transportation Study - 2040 Cumulative Analysis

CDM Smith is submitting this technical memorandum as part of the supplemental analysis for the Potrero HOPE Transportation Study that was previously submitted to and approved by the San Francisco Planning Department. The purpose of this memorandum is to summarize the results of traffic analysis conducted under 2040 Cumulative Conditions. This analysis serves as a supplemental memorandum to the Potrero HOPE Transportation Study Final Report that was submitted in October 2012 (hereafter referred to as the Potrero HOPE Final Report).

Project Alternatives

Traffic analysis in the Potrero HOPE Final Report was performed for the following three project alternatives:

- Proposed Project - This alternative would involve demolition of the existing 620 affordable housing units and construction of up to 1,700 mixed-income housing units (up to 970 affordable, 630 market rate, and 100 senior units) along with two retail facilities (5,500 square feet and 9,500 square feet in size), a 35,000 square feet community center (including daycare and preschool facilities), several small parks and open spaces, and associated residential parking facilities.
" Alternative 1 - This alternative would involve a reduced-scale of development, i.e., demolition of the existing 620 affordable housing units and construction of to 1,280 mixedincome housing units (up to 796 affordable units, 404 market rate units, and 80 senior units), as compared to 1,700 total units under the Proposed Project, the same amount of retail facilities (5,500 square feet and 9,500 square feet in size), a smaller community center (25,000 square feet in size), several small parks and open spaces, and associated residential parking facilities.
- Alternative 2 - This alternative would involve rebuilding the land uses that are present at the project site under existing conditions.

For this supplemental analysis under 2040 Cumulative plus Project Conditions, traffic analysis was conducted for the project alternative that is anticipated to generate the highest amount of projectrelated traffic, i.e., Proposed Project.

Brett Bollinger
June 27, 2014
Page 2

1. Background Growth

1.1 2040 Cumulative Conditions

Intersection volumes under 2040 Cumulative Conditions were developed using traffic forecasts obtained from the San Francisco County Transportation Authority's Chain Activity Modeling Process (SF-CHAMP) Model. Since the SF-CHAMP Model was developed as a tool to forecast future traffic volumes on major regional traffic facilities and on major local streets, post-processing of the model output was conducted using the following methodology to identify intersection turning movement volumes under 2040 Cumulative Conditions:

- Using the most recent base (2012) and future (2040) SF-CHAMP Models, forecasted traffic growth between 2012 and 2040 Conditions was estimated for each approach of the study intersection.
- The above traffic growths were extrapolated to obtain traffic growths along intersection approaches between 2010 (the year when existing traffic counts were collected for the Potrero HOPE Transportation Study) and 2040 Conditions.
- The forecasted traffic growth for each approach was added to existing approach volumes to identify approach volumes under 2040 Cumulative Conditions.
- Using the 2040 approach volumes, turning movement volumes at the study intersections were identified using the Furness Process. The Furness Process used in this study is in accordance with NCHRP 255: Highway Traffic Data for Urbanized Area Project Planning and Design and involves balancing the intersection volumes using an iterative process to compare them to the existing traffic distribution. The iterative process seeks to balance the total inbound and outbound volumes from each approach as projected by the SF-CHAMP Model.

The resulting traffic volumes at the study intersections under 2040 Cumulative Conditions, along with their geometric configurations, are illustrated in Figure 1-1.

In general, traffic forecasts provided by the latest version of the SF-CHAMP Model (2040 Model) are lower than those provided by the earlier version of the SF-CHAMP Model (2035 Model). This is due to the fact that the 2040 Model was developed using the 2012 Association of Bay Area Governments (ABAG) projections, while the 2035 Model was developed using the 2009 ABAG projections. Due to the economic recession, the 2012 ABAG projections for the transportation analysis zones (TAZs) located in the vicinity of the project site are lower than the 2009 ABAG projections. A comparison of the population and employment forecasts obtained from the 2035 and 2040 Models for the TAZs located in and around the project site is provided in Appendix A.

As mentioned earlier, traffic volumes under 2040 Cumulative Conditions were developed using the 2040 SF-CHAMP Model. However, for the Potrero HOPE Transportation Study, traffic volumes for the future horizon year of the study (year 2030) were developed using the 2035 SF-CHAMP Model, the latest version of the model available at the time of project completion. Hence, intersection volumes reported under 2040 Cumulative Conditions in Figure 1-1 below are generally lower than those reported under 2030 Cumulative Conditions in the Potrero HOPE Final Report. ${ }^{1}$

[^11]

INTERSECTION VOLUMES AND GEOMETRIC CONFIGURATIONS - 2040 CUMULATIVE PM PEAK HOUR

1.2 2040 Cumulative plus Project Conditions

Changes to Study Intersections

As discussed in Section 1.4.2 - Vehicular Access of the Potrero HOPE Final Report², the modification of roadway layout as part of the Proposed Project would alter two study intersections as follows:

- $25^{\text {th }}$ Street/Dakota Street/Texas Street intersection would be reconfigured and renamed to 25 ${ }^{\text {th }}$ Street/Texas Street; and
- $23^{\text {rd }}$ Street/Dakota Street intersection would be renamed to $23^{\text {rd }}$ Street/Missouri Street.

Additionally, the roadway layout reconfiguration planned as part of the Proposed Project is anticipated to cause changes to the traffic circulation patterns in the study area as follows:

- Approximately 25 percent of traffic traveling along Pennsylvania Avenue is anticipated to shift to Texas Street; and
- Approximately 25 percent of traffic traveling along Dakota Street is anticipated to shift to Arkansas Street.

Traffic Volume Development

The weekday PM peak hour vehicle-trips generated by the Proposed Project (576 inbound and 316 outbound) ${ }^{3}$ were distributed within the study area using the trip distribution discussed in Section 3.3 - Trip Distribution/Assignment of the Potrero HOPE Final Report². These distributed project trips were added to intersection volumes developed under 2040 Cumulative Conditions. Additionally, relevant traffic circulation adjustments as mentioned above (shifting approximately 25 percent of traffic traveling along Pennsylvania Avenue to Texas Street and approximately 25 percent of traffic traveling along Dakota Street to Arkansas Street) were applied to reflect changes in the circulation pattern due to the roadway layout reconfiguration planned as part of the Proposed Project. The resulting traffic volumes and proposed geometric configurations at the study intersections under 2040 Cumulative plus Project Conditions are illustrated in Figure 1-2.

2. Foreseeable Transportation Network Changes

The following improvements to the transportation network located in the vicinity of the project site are expected in the nearby future and are considered for analysis under 2040 Cumulative Conditions. These improvements would be completed by City and County of San Francisco agencies such as the San Francisco Department of Public Works (SFDPW) and the San Francisco Municipal Transportation Agency (SFMTA).

[^12]

INTERSECTION VOLUMES AND GEOMETRIC CONFIGURATIONS - 2040 CUMULATIVE PLUS PROJECT PM PEAK HOUR

Brett Bollinger
June 27, 2014
Page 6

2.1 Transit Network Modifications

The Transit Effectiveness Project (TEP) was a review of the San Francisco Municipal Railway's (Muni's) public transportation system conducted by the SFMTA in collaboration with the City Controller's Office to improve reliability, reduce travel times, and provide for improved Muni service based on increasing frequencies and updating bus routes and rail lines to match with changing travel patterns throughout San Francisco, via proposed recommendations for Muni. The SFMTA and the San Francisco Planning Commission certified the TEP Final Environmental Impact Report (TEP EIR) in March 2014. The SFMTA anticipates that many of the service improvements would be implemented between the end of 2014 and 2015, and that the remainder of the service improvements would occur in $2016 .{ }^{4}$ Within the project study area, the following changes were recommended by the TEP:

- The one-car K Ingleside would continue to be through-routed with the T Third Street.
- The 10 Townsend would be renamed to become the 10 Sansome as service along Townsend Street would be rerouted to serve portions of Mission Bay. Increased service would operate east of Van Ness Avenue to provide additional capacity, replacing the to-be-discontinued 12 Folsom-Pacific service. Existing service during peak periods within the project study area would be reduced from 20-minute headways to 6 -minute headways during the peak PM period.
- The 19 Polk is proposed to be rerouted to operate only between Van Ness Avenue/North Point and the San Francisco General Hospital, with modified bus routing in the Civic Center area. Segments south of $24^{\text {th }}$ Street currently served by the 19 Polk would be replaced by a revised 48 Quintara-24 ${ }^{\text {th }}$ Street. The route would terminate at the current 10 Townsend terminal at $24^{\text {th }}$ Street and Potrero Avenue. There would be no change in frequency. As of March 2014, when the TEP EIR was certified, the proposed service changes to the 19 Polk route are on hold.
- The 22 Fillmore would be rerouted to continue along $16^{\text {th }}$ Street to Third Street, creating new connections to Mission Bay from the Mission District. More frequent peak service would be provided to reduce crowding (service every 5.5 minutes during the weekday PM peak period). Capital improvements along $16^{\text {th }}$ Street between Church and Third Streets include potential lane modifications, turn restrictions, transit stop changes, bus bulbouts, and overhead wire construction, as part of the Travel Time Reduction Proposals (TTRP) that would introduce more frequent and reliable service to core parts of the Muni network (called the Rapid Network). There are two variant alternatives for the rerouting of the 22 Fillmore from its existing routing prior to overhead wire construction along portions of this route currently not served by the existing bus service:
- Service Variant 1 for the 22 Fillmore would have additional transit service provided by a new Motor Coach Standard (MCS) service (Route 55) originating from the $16^{\text {th }}$ Street BART station area and terminating at the proposed terminal loop in Mission Bay. 22 Fillmore Trolley Coach Standard (TCS) service would terminate at a loop at $16^{\text {th }}$, Kansas,

[^13]$17^{\text {th }}$, and Vermont Streets, with the segment on $1^{\text {th }}$ Street, Connecticut Street, and $18^{\text {th }}$ Street being replaced by a revised 33 Stanyan.

- Service Variant 2 would retain the new MCS service (Route 55). However, instead of revising the 33 Stanyan to provide service along the existing 22 Fillmore routing beyond Kansas Street, every other 22 Fillmore trolley coach would continue to provide service to the existing Third and $20^{\text {th }}$ Street terminus, while the remainder would terminate service at the loop at $16^{\text {th }}$, Kansas, $17^{\text {th }}$, and Vermont Streets.
- Service for the 48 Quintara-24 ${ }^{\text {th }}$ Street would run all day from $48^{\text {th }}$ Avenue to the Hunters Point Naval Shipyard, replacing service in the area that is currently served by the 19 Polk; it would be complemented by a new $5824^{\text {th }}$ Street service connecting Diamond Street with the $22^{\text {nd }}$ Street Caltrain station, replacing service east of $25^{\text {th }}$ and Connecticut Streets. Segments along Douglass Street and Hoffman Street would be served by a revised 35 Eureka. Existing segments in Potrero Hill would be supplemented by the new $5824^{\text {th }}$ Street line, while service along Arkansas Street, $20^{\text {th }}$ Street, and Texas Street would be eliminated and instead served by the new $5824^{\text {th }}$ Street route. As of March 2014, when the TEP EIR was certified, the proposed service changes to the 48 Quintara- $24^{\text {th }}$ Street route and the introduction of the new $5824^{\text {th }}$ Street route are on hold.

For purposes of transit analysis, it was assumed that all TEP recommendations would be implemented prior to year 2040. For service change proposals temporarily on hold at the time of this analysis, it was assumed that any changes to those proposals would not substantially alter the recommendations published in the TEP EIR. Additionally, the service changes planned as part of the TEP recommendations would not alter routes of any of the Muni lines operating in the vicinity of the project site; they would modify only the end points (origins and/or destinations) of those Muni lines. As such, transit analysis for 2040 Cumulative and Cumulative plus Project Conditions would continue to follow the methodology developed to evaluate 2030 Cumulative Conditions.

2.2 Bicycle Network Modifications

Similar to analysis under 2030 Cumulative Conditions, the following improvements to the neighboring bicycle network that are anticipated as part of the San Francisco Bicycle Plan were assumed for analysis under 2040 Cumulative Conditions, as well:

- Project 5-1 - This project involves conversion of existing wide curb lane bicycle route along 23rd Street between Kansas Street and Potrero Avenue to sharrows and/or full bicycle lanes in both directions;
- Project 5-5 - This project involves conversion of existing shared-lane bicycle route along Cesar Chavez Street between I-280 and US 101 freeways to sharrows and/or full bicycle lanes in both directions;
- Project 5-18 - This project involves conversion of existing wide curb lane bicycle route along Kansas Street between $23^{\text {rd }}$ and $26^{\text {th }}$ Streets to sharrows and/or full bicycle lanes in both directions; and
- Minor improvements to the bicycle route along Indiana Street.

Brett Bollinger
June 27, 2014
Page 8

3. Intersection Analysis

A comparison of the study intersection operations (level of service/LOS and delay values) during the weekday PM peak hour under 2040 Cumulative Conditions and 2040 Cumulative plus Project Conditions is provided in Table 3-1.

3.1 2040 Cumulative Conditions

Under 2040 Cumulative Conditions, during the weekday PM peak hour, six of the 13 study intersections (Potrero Avenue/23rd Street, 25 ${ }^{\text {th }}$ Street/Connecticut Street, 23rd Street/Dakota Street, 23 ${ }^{\text {rd }}$ Street/Wisconsin Street, $20^{\text {th }}$ Street/Arkansas Street, and 22 ${ }^{\text {nd }}$ Street/Missouri Street) would continue to operate at the same acceptable LOS (LOS C or better) as under Existing Conditions. LOS conditions at the remaining seven study intersections would deteriorate from their existing operations. However, of these seven intersections, four would continue to operate with an acceptable LOS (LOS D or better). The remaining three intersections would operate at an unacceptable LOS (LOS E or F) and include the following:

- Intersection \#2 - Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp (worsening from LOS D under Existing Conditions to LOS E under 2040 Cumulative Conditions);
- Intersection \#3 - Pennsylvania Avenue/Southbound I-280 Off-Ramp (worsening from LOS C under Existing Conditions to LOS F under 2040 Cumulative Conditions); and
- Intersection \#12 - Cesar Chavez Street/Vermont Street (worsening from LOS C under Existing Conditions to LOS F under 2040 Cumulative Conditions).

Detailed LOS calculation sheets for 2040 Cumulative Conditions are included in Appendix B and signal warrant analysis sheets for unsignalized intersections are included in Appendix C.

3.2 2040 Cumulative plus Project Conditions

Study intersection operations during the weekday PM peak hour under 2040 Cumulative plus Project Conditions are provided in Table 3-1. Under 2040 Cumulative plus Project Conditions, nine of the 13 study intersections would continue to operate at an acceptable LOS (LOS D or better) during the weekday PM peak hour as compared to 2040 Cumulative Conditions. The remaining four intersections (Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp, Pennsylvania Avenue/Southbound I-280 Off-Ramp, Cesar Chavez Street/Vermont Street, and Cesar Chavez Street/US 101 Off-Ramp) would operate at an unacceptable LOS (E or F).

Intersection \#2 - Cesar Chavez Street/Pennsylvania Avenue/Northbound I-280 Off-Ramp

The signalized intersection of Cesar Chavez Street and Pennsylvania Avenue/Northbound I-280 OffRamp would continue to operate at LOS E, with an average vehicle delay of about 59 seconds under both 2040 Cumulative and 2040 Cumulative plus Project Conditions. However, the Proposed Project would not increase traffic along any of the critical movements that would operate at LOS F. Hence, the Proposed Project is not expected to worsen the intersection operations under 2040 Cumulative plus Project Conditions.

Brett Bollinger
June 27, 2014
Page 9
Table 3-1: PM Peak Hour Intersection Operations - 2040 Cumulative vs. Cumulative plus Project Conditions

\#	Intersection	Existing			2040 Cumulative			2040 Cumulative plus Project		
		Delay	V/C Ratio	LOS	Delay	v/C Ratio	LOS	Delay	v/c Ratio	LOS
Signalized										
1	Cesar Chavez Street/Connecticut Street	11.4	-	B	24.3	-	c	42.6	-	D
2	Cesar Chavez Street/Pennsylvania Avenue/NB I-280 Off-Ramp	38.4	-	D	59.1	0.77	E	58.7	0.77	E
11	Potrero Avenue/ $23{ }^{\text {rd }}$ Street	22.2	-	C	29.4	-	C	33.5	-	C
Unsignalized				-						
3	Pennsylvania Avenue/SB I-280 Off-Ramp	15.2 (SB)	-	C	>50 (SB)	1.19	F^{3}	41.9 (WB)	0.90	E^{4}
4	$25^{\text {th }}$ Street/Indiana Street/NB I-280 On-Ramp	11.4 (EB)	-	B	19.1 (EB)	-	C	31.4 (EB)	-	D
5	$25^{\text {th }}$ Street/Connecticut Street	8.0 (EB)	-	A	9.9 (WB)	-	A	25.1 (NB)	-	D
6	$25^{\text {th }}$ Street/Texas Street ${ }^{1}$	9.6 (SEB)	-	A	10.4 (SB)	-	B	30.4 (SB)	-	D
7	$23^{\text {rd }}$ Street/Dakota Street ${ }^{2}$	9.2 (NB)	-	A	9.7 (NB)	-	A	11.8 (NB)	-	B
8	$23^{\text {rd }}$ Street/Wisconsin Street	7.5 (SB)	-	A	8.2 (WB)	-	A	8.5 (SB)	-	A
9	$20^{\text {th }}$ Street/Arkansas Street	8.5 (WB)	-	A	9.4 (WB)	-	A	9.7 (WB)	-	A
10	$22^{\text {nd }}$ Street/Missouri Street	8.5 (EB)	-	A	9.0 (EB)	-	A	8.9 (EB)	-	A
12	Cesar Chavez Street/Vermont Street	25.8 (SB)	-	C	>50 (SB)	0.69	F^{3}	>50 (SB)	0.84	F^{4}
13	Cesar Chavez Street/US 101 Off-Ramp	13.3 (NB)	-	B	17.6 (NB)	-	C	49.0 (NB)	0.97	E^{4}

Notes:
${ }^{1}$ This intersection is $25^{\text {th }}$ /Dakota/Texas under 2040 Cumulative Conditions and $25^{\text {th }} /$ Texas under 2040 Cumulative plus Project Conditions.
${ }^{2}$ This intersection is $23^{\text {rd }} /$ Dakota under 2040 Cumulative Conditions and $233^{\text {rd }} /$ Missouri under 2040 Cumulative plus Project Conditions
${ }^{3}$ This intersection satisfies Caltrans signal warrants under 2040 Cumulative Conditions.
${ }^{4}$ This intersection satisfies Caltrans signal warrants under 2040 Cumulative plus Project Conditions.
V/C Ratio - Volume-to-capacity ratio; it is reported for intersections operating at LOS E and F only.
EB - Eastbound, NB - Northbound, SB - Southbound, WB - Westbound
Delay is presented in seconds per vehicle; for unsignalized intersections, delay, v/c ratio, and LOS are presented for the worst approach, annotated in parenthesis ().
Bold indicates intersection operates at an unacceptable LOS.

Intersection \#3 - Pennsylvania Avenue/Southbound I-280 Off-Ramp
Under 2040 Cumulative Conditions, the southbound approach would be the worst approach of the Pennsylvania Avenue/Southbound I-280 Off-Ramp intersection, operating at LOS F (approximate average vehicle delay of 124 seconds). However, under 2040 Cumulative plus project Conditions, the westbound approach would be the worst approach of the intersection; it is anticipated to operate at LOS E with an average vehicle delay of 42 seconds, approximately. As mentioned in Section 1.2 - 2040 Cumulative plus Project Conditions, the modification of roadway layout planned as part of the Proposed Project is anticipated to shift approximately 25 percent of traffic travelling along Pennsylvania Avenue to Texas Street. This shift in traffic would reduce traffic along northbound and southbound Pennsylvania Avenue, thereby improving traffic operations at this intersection under 2040 Cumulative plus Project Conditions. As such, the worst operating approach at this intersection would also shift from the southbound approach under 2040 Cumulative Conditions to the westbound approach under 2040 Cumulative plus Project Conditions. Also, this intersection would satisfy the Caltrans signal warrants under both 2040 Cumulative and 2040 Cumulative plus Project Conditions (signal warrant analysis sheets are included in Appendix C). Ergo, contribution of the Proposed Project to traffic along the worst approach was examined. The Proposed Project would increase traffic along the westbound left-turning movement by about 160 vehicle trips (23 percent). Hence, the Proposed Project would alter the worst operating approach of the Pennsylvania Avenue/Southbound I-280 Off-Ramp intersection and increase traffic for the westbound left-turning critical movement at the intersection by more than five percent under 2040 Cumulative plus Project Conditions.

Intersection \#12 - Cesar Chavez Street/Vermont Street

The worst approach (southbound approach) of the Cesar Chavez Street/Vermont Street intersection would continue to operate at LOS F under both 2040 Cumulative and 2040 Cumulative plus Project Conditions. In addition, this intersection would continue to satisfy the Caltrans signal warrants under 2040 Cumulative and 2040 Cumulative plus Project Conditions (signal warrant analysis sheets are included in Appendix C). Therefore, contribution of the Proposed Project to traffic along the worst approach was examined. The Proposed Project would increase traffic along the southbound approach of this intersection by about 34 vehicles (13 percent) and increase the average vehicle delay from 130 seconds to 230 seconds, approximately. As such, the Proposed Project would worsen traffic operations along the worst approach of the Cesar Chavez Street/Vermont Street intersection by increasing traffic by more than five percent under 2040 Cumulative plus Project Conditions.

Intersection \#13 - Cesar Chavez Street/US 101 Off-Ramp

The worst approach (northbound approach) of the Cesar Chavez Street/US 101 Off-Ramp intersection would operate at LOS C (average vehicle delay of about 18 seconds) under 2040 Cumulative Conditions, but would worsen to LOS E (average vehicle delay of about 49 seconds) under 2040 Cumulative plus Project Conditions. The Proposed Project would increase traffic along the northbound approach of this intersection by about 222 vehicles (44 percent). In addition, this intersection would satisfy the Caltrans signal warrants under 2040 Cumulative plus Project Conditions (signal warrant analysis sheets are included in Appendix C). As such, the Proposed Project would worsen traffic operations along the worst approach of the Cesar Chavez Street/ US

101 Off-Ramp intersection by increasing traffic along the northbound approach by more than five percent under 2040 Cumulative plus Project Conditions.

Detailed LOS calculation sheets are provided in Appendix B, while traffic signal warrant analysis sheets are included in Appendix C.

4. Transit Analysis

Transit analysis under 2040 Cumulative Conditions was performed based on the assumptions that all of the TEP recommendations proposed by the SFMTA and discussed in Section 2.1 - Transit Network Modifications would be implemented by 2040. The following changes planned as part of the TEP recommendations would affect the Muni routes serving the study area and are expected to be in place by year 2040:

- The 10 Townsend line would be renamed to become the 10 Sansome;
- The 19 Polk line would be rerouted to operate between Van Ness Avenue/North Point and San Francisco General Hospital, and would not serve the project site directly;
- The 48 Quintara-24 ${ }^{\text {th }}$ Street line would have all-day service and connect to and terminate at Hunters Point, replacing 19 Polk service to the area, as that route will be rerouted. As a result of this rerouting, segments east of Evans Avenue in the Potrero Hill area would be served by the new $5824^{\text {th }}$ Street line, instead of the 48 Quintara- $24^{\text {th }}$ Street line; and
- A new $5824^{\text {th }}$ Street line connecting Diamond Street and the $24^{\text {th }}$ Street Mission Bay Area Rapid Station (BART) station with the 22nd Street Caltrain station would serve the project site, as well as the Potrero Hill area, and supplement or replace portions of the 48 Quintara$24^{\text {th }}$ Street service.

Therefore, transit analysis under 2040 Cumulative and 2040 Cumulative plus Project Conditions was performed taking into consideration the above planned modifications to Muni lines and operations.

4.1 2040 Cumulative Conditions Muni Line-by-Line Analysis

Similar to Existing plus Project and 2030 Cumulative plus Project Conditions, since the 10 Townsend, 19 Polk, and 48 Quintara-24th Street Muni routes provide direct service to the project site, line-by-line analysis was conducted for these three routes under 2040 Cumulative plus Project Conditions.

To determine future ridership, Muni's 2040 ridership projections were obtained from the SFMTA. This projection data consisted of updated screenline summaries for specific Muni route corridors and regional transit operators. Using the screenline data obtained from the SFMTA, each Muni route that would service the project site was assigned to the appropriate screenline (Southeast screenline). Ridership estimates for each study Muni line (10 Townsend/Sansome, 19 Polk, and 48 Quintara-24th Street) were determined by calculating the projected increase in Muni screenline ridership from existing to 2040 conditions, determining the annual growth rate (for light rail and buses separately) in screenline ridership based on the projected overall growth, and applying the annual growth rate to individual study transit lines. Additionally, since the 19 Polk line would not provide direct service to the project site under 2040 Cumulative Conditions, it was assumed that
the anticipated ridership demand that would have taken the 19 Polk in the Potrero Hill area would instead be served by other Muni routes operating in that area, with approximately 40 percent of riders distributed to the 10 Townsend, 20 percent each to the 22 Fillmore and the new $5824^{\text {th }}$ Street, and 10 percent each to the 48 Quintara- $24^{\text {th }}$ Street and T Third Street lines.

Future year transit capacity for each study route was determined using the proposed service headways developed by the SFMTA as part of the TEP and documented in the March 2014 TEP EIR. ${ }^{5}$ Using the proposed headway of each transit route during the PM peak period and the seated capacity of the vehicle types serving each route, the capacities of Muni routes under 2040 Cumulative Conditions were developed. As part of the TEP, headways were developed for transit service in the peak direction only. Future headways for service in the non-peak direction were estimated assuming that the rate of change of headways in the peak and non-peak directions would remain the same.

A comparison of Muni's line-by-line operations under 2040 Cumulative and 2040 Cumulative plus Project Conditions is provided in Table 4-1. Detailed calculations related to Muni's line-by-line analysis are included in Appendix D.

Under 2040 Cumulative Conditions, capacity utilization of the 19 Polk would worsen compared to Existing Conditions in both the directions (from 68 to 107 percent in the inbound direction and from 49 to 77 percent in the outbound direction) due to the anticipated increase in ridership. The capacity utilization in the inbound direction is expected to exceed Muni's 85 percent utilization standard. Similarly, the capacity utilization of the 48 Quintara- $24^{\text {th }}$ Street would worsen from Existing to 2040 Conditions in both directions (from 46 to 109 percent in the inbound direction and from 48 to 112 percent in the outbound direction) due to the expected increase in ridership and decrease in capacity. The capacity utilization is expected to exceed Muni's 85 percent utilization standard in both the inbound and outbound directions. Compared to Existing Conditions, the capacity utilization of the 10 Townsend/Sansome would improve to be lower than Muni's 85 percent utilization standard under 2040 Cumulative Conditions in both the directions. The capacity utilization would improve from 98 to 52 percent in the inbound direction and from 90 to 53 percent in the outbound direction, primarily due to the planned increase in the capacity of the route.

[^14]Brett Bollinger
June 27, 2014
Page 13
Table Error! No text of specified style in document.-1: Muni Line-by-Line Analysis - $\mathbf{2 0 4 0}$ Cumulative vs. Cumulative plus Project Weekday PM Peak Hour

Route	Travel Direction	Existing		2040 Cumulative		Project Trips	2040 Cumulative plus Project	
		Ridership	Capacity Utilization	Ridership	Capacity Utilization		Ridership	Capacity Utilization
10 Townsend/Sansome ${ }^{1}$	Inbound	186	98\%	291	46\%	36	327	52\%
	Outbound	171	90\%	267	42\%	68	335	53\%
19 Polk	Inbound	172	68\%	269	107\%	0^{2}	269	107\%
	Outbound	124	49\%	194	77\%	0^{2}	194	77\%
48 Quintara-24 ${ }^{\text {th }}$ Street	Inbound	175	46\%	274	109\%	30	304	121\%
	Outbound	180	48\%	281	112\%	21	302	120\%

Source: SFMTA - 2014; CDM Smith - June 2014

Notes:
${ }^{1}$ The 10 Townsend is proposed to be renamed to 10 Sansome following the TEP implementation.
${ }^{2}$ No project-related transit trips were assumed to access 19 Polk due to the proposed rerouting of this line as part of the TEP recommendations. Bold indicates load exceeding Muni's 85 percent capacity utilization standard.

4.2 2040 Cumulative plus Project Conditions Muni Line-by-Line Analysis

The Proposed Project would generate 344 weekday PM peak hour transit trips (221 inbound and 123 outbound). Of these 344 PM peak hour transit trips, 176 inbound and 99 outbound trips would be served by Muni lines, while 46 inbound and 25 outbound trips would be served by regional transit providers. About 119 of the 176 inbound trips to the project site and 66 of the 99 outbound transit trips from the project site would be served by the 10 Townsend, 19 Polk, and 48 Quintara$24^{\text {th }}$ Street lines (because of transit line orientation, an inbound trip to the project site for the 10 Townsend and 19 Polk routes would constitute an outbound trip as defined by Muni's operational direction). A detailed discussion on the estimation of Muni-based project trips is provided in Section 4.2.2 - Transit Impacts of the Potrero HOPE Final Report ${ }^{6}$.

Using the same methodology adopted for Existing plus Project Conditions (discussed in Section 4.2.2 - Transit Impacts of the Potrero HOPE Final Report ${ }^{6}$), project-related Muni-bound transit trips were distributed to the three study Muni lines (10 Townsend/Sansome, 19 Polk, and 48 Quintara$24^{\text {th }}$ Street). Due to the proposed TEP changes, the 19 Polk would not provide direct service to the project site under 2040 Cumulative Conditions; therefore no project-related transit trips were assigned to this line.

10 Townsend/Sansome

Under 2040 Cumulative plus Project Conditions, the Proposed Project would deteriorate transit operations of the 10 Townsend/Sansome line - capacity utilization would increase by 6 percent (from 46 to 52 percent) in the inbound direction and 11 percent (from 42 percent to 53 percent) in the outbound direction. During the weekday PM peak hour, the Proposed Project is expected to increase the ridership of the outbound 10 Townsend/Sansome by about 68 riders (about 7 riders per bus during the peak hour) and the inbound 10 Townsend/Sansome by about 36 riders (about 4 riders per bus during the peak hour). However, the 10 Townsend/Sansome line would continue to operate with a capacity utilization that would be below the Muni's 85 percent threshold under both 2040 Cumulative and 2040 Cumulative plus Project Conditions.

19 Polk

As mentioned earlier, due to the proposed TEP changes, the 19 Polk would not provide direct service to the project site under 2040 Cumulative Conditions. As such, no project-related transit trips would access the 19 Polk line. Hence, as under 2040 Cumulative Conditions, Muni's 19 Polk would continue to operate with a capacity utilization of 107 percent and 77 percent in the inbound and outbound directions.

48 Quintara-24 ${ }^{\text {th }}$ Street

Similar to the 10 Townsend/Sansome, the Proposed Project is anticipated to worsen the operations of the 48 Quintara-24th Street under 2040 Cumulative plus Project Conditions. The Proposed Project would increase the capacity utilization of the 48 Quintara-24th Street by 12 percent (from 109 to 121 percent) in the inbound direction and 8 percent (from 112 to 120 percent) in the outbound direction. The 48 Quintara-24 ${ }^{\text {th }}$ Street line would continue to operate above Muni's 85
${ }^{6}$ This section is from the Potrero HOPE Transportation Study Final Report, October 2012.
percent utilization standard in the inbound and outbound directions under 2040 Cumulative plus Project Conditions. During the weekday PM peak hour, the Proposed Project is expected to increase the ridership of the outbound 48 Quintara- $24^{\text {th }}$ Street by about 21 riders (about 5 riders per bus during the peak hour), and the inbound 48 Quintara- $24^{\text {th }}$ Street by about 30 riders (about 7 riders per bus during the peak hour).

4.3 2040 Cumulative Conditions Muni Screenline Analysis

Similar to Existing and 2030 Cumulative Conditions, weekday PM peak hour capacity utilization for the Muni's Southeast screenline was determined under 2040 Cumulative Conditions. Screenline analysis under 2040 Cumulative Conditions takes into account the planned changes to Muni service, including projected capacity and anticipated service changes. Muni ridership and capacity under 2040 Cumulative Conditions were obtained from the transit projections documented by the SFMTA in 2014. The ridership and capacity projections under 2040 Cumulative Conditions, along with a comparison of screenline operations under Existing Conditions, and the forecasted capacity utilization of the Muni's Southeast screenline, are presented in Table 4-2.

Under 2040 Cumulative conditions, the overall capacity utilization of the Muni's Southeast screenline is expected to remain the same as under Existing Conditions (66 percent) and would continue to operate with a capacity utilization that is below Muni's 85 percent standard. Compared to Existing Conditions, under 2040 Cumulative Conditions, the capacity utilization of the Mission Street and San Bruno/Bayshore corridors would increase and exceed Muni's 85 percent threshold the capacity utilization for the Mission Street corridor would increase from 53 to 89 percent (36 percent increase) and that for the San Bruno/Bayshore corridor would increase from 74 to 85 percent (11 percent increase). The other two corridors, the Third Street corridor and the All Other Lines corridor (consisting of the J Church, 12 Folsom, and 19 Polk lines), would operate with capacity utilization values below the 85 percent threshold.

4.4 2040 Cumulative plus Project Conditions Muni Screenline Analysis

As mentioned earlier, 176 inbound and 99 outbound transit trips (for a total of 275 transit trips) for the Proposed Project would use Muni to access the project site. Similar to Muni screenline analysis under Existing and 2030 Cumulative Conditions, only the Southeast screenline was considered for analysis under 2040 Cumulative Conditions. This screenline includes ridership traveling in the peak direction during the PM peak hour, i.e., away from downtown San Francisco. Since the 99 Muni-based outbound trips for the Proposed Project would be traveling in the non-peak screenline direction, these trips were not included in the screenline analysis. Of the 176 Muni-based inbound trips in the peak direction for the Proposed Project, approximately 130 trips would cross the Southeast screenline using the 10 Townsend, 19 Polk, and T Third Street Muni lines. As such, these were included in the screenline analysis. The remaining Muni-based trips in the peak direction (46 trips) would use the 22 Fillmore and 48 Quintara- $24^{\text {th }}$ Street lines to access the project site; these two Muni routes do not cross any of the four screenlines identified for Muni. A detailed discussion on the estimation of Muni-based project trips is provided in Section in Section 4.2.2 - Transit Impacts of the Potrero HOPE Final ReportT.

A summary of the screenline analysis for Muni's Southeast screenline under 2040 Cumulative plus Project Conditions during the weekday PM peak hour is provided in Table 4-2.

[^15]Brett Bollinger
June 27, 2014
Page 16
Table 4-2: 2040 Cumulative vs. Cumulative plus Project Muni Screenline Analysis - Weekday PM Peak Hour

Screenline / Corridor	Existing			2040 Cumulative			2040 Cumulative plus Project		
	Ridership	Peak Hour Capacity	Capacity Utilization	Ridership	Peak Hour Capacity	Capacity Utilization	Project Trips	Ridership	Capacity Utilization
Southeast Screenline									
Third Street	554	714	78\%	2,300	5,712	40\%	39	2,339	41\%
Mission Street	1,254	2,350	53\%	2,673	3,008	89\%	0	2,673	89\%
San Bruno/Bayshore	1,671	2,256	74\%	1,817	2,134	85\%	0	1,817	85\%
All Other Lines	1,189	1,708	70\%	1,582	1,927	82\%	91	1,673	87\%
Total	4,668	7,028	66\%	8,372	12,781	66\%	130	8,502	67\%

Source: SFMTA - 2014; CDM Smith - June 2014.
Notes:
Screenline analysis conducted only in the peak outbound direction from San Francisco toward the project site. Bold indicates load exceeding Muni's 85 percent capacity utilization standard.

Under 2040 Cumulative plus Project Conditions, the Southeast screenline would operate with an overall capacity utilization of 67 percent (less than Muni's 85 percent threshold), an increase of approximately one percent from 2040 Cumulative Conditions. The Mission Street and San Bruno/Bayshore corridors would continue to operate with the same capacity utilizations as under 2040 Cumulative Conditions (89 and 85 percent, respectively), since no project trips are expected to be added to these corridors. The Third Street corridor would operate with an overall capacity utilization of 41 percent, a one percent increase compared to 2040 Cumulative Conditions, but below Muni's 85 percent utilization threshold. The Proposed Project would worsen transit operations of the All Other Lines corridor (consisting of the J Church, 12 Folsom, and 19 Polk lines) by increasing the capacity utilization by about 5 percent (from 82 to 87 percent) and causing the corridor to exceed the 85 percent Muni utilization threshold.

4.5 2040 Cumulative Conditions Regional Transit Screenline Analysis

Regional transit capacity utilization was also evaluated under 2040 Cumulative Conditions. Similar to Muni screenline projections, ridership and capacity projections of regional transit operators serving San Francisco under 2040 Cumulative Conditions were obtained from the SFMTA. Table 43 exhibits ridership, capacity, and expected utilization for 2040 Cumulative Conditions, alongside Existing Conditions, as a comparison.

Under 2040 Cumulative Conditions, transit operations of most regional transit operators serving the project study area would worsen from Existing Conditions, with the exception of AlamedaContra Costa Transit District (AC Transit) service to the East Bay, and Bay Area Rapid Transit (BART) and Sam Mateo County Transit District (SamTrans) service to the South Bay, where the expected provision of additional transit service would offset the anticipated increase in transit ridership. The overall capacity utilization of all the regional transit operators would increase from 70 percent to 75 percent. However, the capacity utilizations of the regional transit providers are not expected to exceed their 100 percent capacity utilization standard under 2040 Cumulative Conditions. Additionally, all of the regional transit screenlines, including the East Bay, North Bay, and South Bay screenlines are anticipated to operate with capacity utilizations of less than 100 percent under 2040 Cumulative Conditions.

4.6 2040 Cumulative plus Project Conditions Regional Transit Screenline Analysis

Regional transit screenlines were also evaluated under 2040 Cumulative plus Project Conditions using the same methodology that was used to evaluate them under Existing Conditions and described in Section 2.4.5 - Existing Regional Transit Screenline Analysis of the Potrero HOPE Final Report ${ }^{8}$. A summary of the regional transit screenline analysis under 2040 Cumulative plus Project conditions during the weekday PM peak hour is provided in Table 4-3.

[^16]Brett Bollinger
June 27, 2014
Page 18
Table 4-3: 2040 Cumulative vs. Cumulative plus Project Regional Transit Screenline Analysis - Weekday PM Peak Hour

Region	Regional Transit Operator	Existing			2040 Cumulative			2040 Cumulative plus Project		
		Ridership	Peak Hour Capacity	Capacity Utilization	Ridership	Peak Hour Capacity	Capacity Utilization	Project Trips	Ridership	Capacity Utilization
East Bay	BART	20,067	24,150	83\%	30,383	33,170	92\%	7	30,390	92\%
	AC Transit	2,517	4,193	60\%	7,000	12,000	58\%	2	7,002	58\%
	Ferries	702	1,519	46\%	5,319	5,940	90\%	0	5,319	90\%
	Subtotal	23,286	29,862	78\%	42,702	51,110	84\%	9	42,711	84\%
North Bay	GGT Buses	1,397	2,205	63\%	2,070	2,817	73\%	1	2,071	74\%
	GGT Ferries	906	1,700	53\%	1,619	1,959	83\%	1	1,620	83\%
	Subtotal	2,303	3,905	59\%	3,689	4,776	77\%	2	3,691	77\%
South Bay	BART	10,202	16,800	61\%	13,971	24,182	58\%	9	13,980	58\%
	Caltrain	1,986	3,250	61\%	2,529	3,600	70\%	5	2,534	70\%
	SamTrans	575	940	61\%	150	320	47\%	0	150	47\%
	Ferries	-	-	-	59	200	30\%	0	59	30\%
	Subtotal	12,763	20,990	61\%	16,709	28,302	59\%	14	16,723	59\%
Total		38,352	54,757	70\%	63,100	84,188	75\%	25	63,125	75\%

Source: SFMTA - 2014; CDM Smith - June 2014.
Notes:
Screenline analysis conducted only in the peak outbound direction from San Francisco toward the project site.
Bold indicates load exceeding regional transit provider's 100 percent capacity utilization standard.

As discussed in Section 4.2.2 - Transit Impacts of the Potrero HOPE Final Report${ }^{6}$, during the PM peak hour, 71 transit trips (46 inbound and 25 outbound) related to the Proposed Project would use regional transit providers. Since the peak direction of travel during the PM peak hour for regional screenlines would be from San Francisco County to the East Bay, North Bay, and South Bay, only the outbound regional transit trips (25 trips for the Proposed Project) were included in the screenline analysis. The inbound regional transit trips (46 trips for the Proposed Project) would occur in the non-peak direction of travel; as such, they would not be expected to cause significant impact to regional transit operations.

Under 2040 Cumulative plus Project Conditions, the capacity utilizations of all regional transit operators would remain almost the same under both 2040 Cumulative and 2040 Cumulative plus Project Conditions, except for Golden Gate Transit buses, whose utilization would increase slightly from 73 to 74 percent. All of the regional transit providers and screenlines would continue to operate with a capacity utilization of less than the 100 percent utilization standard. Additionally, the Proposed Project would add less than one percent of the trips to these transit providers. Therefore, the Proposed Project would not make a substantial contribution to the ridership of regional transit operators under 2040 Cumulative plus Project Conditions.

5. Conclusions

A comparison of the traffic and transit analyses results reported under 2040 Cumulative Conditions (in this technical memorandum) and 2030 Cumulative Conditions (in the Potrero HOPE Transportation Study Final Report, October 2012) suggests the following:

- Traffic analysis conducted under 2030 Cumulative Conditions provides results that are more conservative than those obtained under 2040 Cumulative Conditions due to the fact that 2030 traffic volume forecasts are generally higher than 2040 volume forecasts. As explained earlier, this is because of the difference in the version of the SF-CHAMP Model that was used to develop traffic volumes under each of the future scenarios - 2040 traffic volumes were developed using the latest version of the SF-CHAMP Model (2040 Model), while 2030 traffic volumes were developed using the most recent version of the SF-CHAMP Model available at the time of the Potrero HOPE Final Report development (2035 Model). The 2040 Model takes into account the effects of the economic recession on the planned development, thereby resulting in less-than-anticipated growth projected by the earlier version of the model (2035 Model).
- The Proposed Project is anticipated to cause similar intersection impacts under 2030 and 2040 Cumulative Conditions as follows:
- It would result in significant impacts to four intersections (Pennsylvania Avenue/Southbound I-280 Off-Ramp, 25th Street/Indiana Street/Northbound I-280 On-Ramp, Cesar Chavez Street/Vermont Street, and Cesar Chavez Street/US 101 Off-Ramp) under 2030 Cumulative Conditions and to three intersections (Pennsylvania Avenue/Southbound I-280 Off-Ramp, Cesar Chavez Street/Vermont Street, and Cesar Chavez Street/US 101 Off-Ramp) under 2040 Cumulative Conditions.
- The Proposed Project would result in similar transit impacts under 2030 and 2040 Cumulative Conditions as follows:

Brett Bollinger
June 27, 2014
Page 20

- It is expected to cause significant impacts to two Muni lines (10 Townsend and 48 Quintara$24^{\text {th }}$ Street) under 2030 Cumulative Conditions and to one Muni line (48 Quintara-24th Street) under 2040 Cumulative Conditions;
- It is expected to cause significant impacts to one corridor of the Muni's Southeast Screenline (the All Other Lines corridor) under both 2030 and 2040 Cumulative Conditions; and
- It is not expected to cause significant impacts to any of the regional transit operators under both 2030 and 2040 Cumulative Conditions.

APPENDIX

Appendix A

Comparison of Socio-Economic Data - 2035 versus 2040 SF-CHAMP Models

The transportation analysis zones (TAZs) in the San Francisco County Transportation Authority's Chain Activity Modeling Process (SF-CHAMP) Model that are located in the vicinity of the project site are exhibited in Figure A-1. For these TAZs, a comparison of the population and employment forecasts obtained from the 2040 and 2035 SF-CHAMP Models is provided in Table A-1.

Table A-1: Comparison of Population and Employment Forecasts - 2035 vs. 2040 SF-CHAMP Models

	Population Data			Employment Data		
TAZ	$\mathbf{2 0 3 5}$ Model	$\mathbf{2 0 4 0}$ Model	Difference	2035 Model	$\mathbf{2 0 4 0}$ Model	Difference
535	116	461	345	362	347	-15
519	922	3,471	2,549	1,299	745	-554
152	3,973	4,283	310	158	174	16
539	27	32	5	58	60	2
486	298	39	-259	4,081	3,027	$-1,054$
487	41	31	-10	603	390	-213
491	435	992	557	2,057	1,300	-757
483	946	380	-566	1,933	1,107	-826
166	1,228	1,258	30	118	117	-1
520	1,231	1,390	159	255	310	55
536	472	526	54	1,038	687	-351
558	594	1,757	1,163	1,421	988	-433
197	967	1,076	109	599	707	108
607	926	902	-24	445	163	-282
606	905	960	55	99	97	-2
540	387	404	17	92	52	-40
543	797	945	148	437	601	164
544	121	417	296	1,410	1,298	-112
214	901	1,192	291	837	800	-37
557	0	0	0	8,428	6,465	$-1,963$
651	212	1,446	1,234	1,003	893	-110
572	111	407	296	2,055	1,281	-774
571	38	659	621	2,311	2,357	46
Total	$\mathbf{1 5 , 6 4 8}$	$\mathbf{2 3 , 0 2 8}$	$\mathbf{7 , 3 8 0}$	$\mathbf{3 1 , 0 9 9}$	$\mathbf{2 3 , 9 6 6}$	$-7,133$

Figure A-1: SF-CHAMP Model TAZs near the Project Site

Appendix B Intersection LOS Analysis Outputs

Potrero HOPE Development EIR Wilbur Smith Associates

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

Volume Module:												
Base Vol:	0	0	0	28	0	298	136	690	0	0	946	86
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	28	0	298	136	690	0	0	946	86
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0		0	0	0	0
Initial Fut:	0	0	0	28	0	298	136	690	0	0	946	86
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	0	0	30	0	320	146	742	0	0	1017	92
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	30	0	320	146	742	0	0	1017	92
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	0	30	0	320	146	742	0	0	1017	92

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	1.00	1.00	0.68	1.00	0.68	0.67	0.93	1.00	1.00	0.84	0.84
Lanes:	0.00	0.00	0.00	0.09	0.00	0.91	0.33	1.67	0.00	0.00	2.75	0.25
Final Sat.:	0	0	0	111	0	1182	418	2938	0	0	4384	399
Capacity Analysis Module:												
Vol/Sat:	0.00	0.00	0.00	0.27	0.00	0.27	0.35	0.25	0.00	0.00	0.23	0.23
Crit Moves:						****	****					
Green/Cycle:	0.00	0.00	0.00	0.25	0.00	0.25	0.64	0.64	0.00	0.00	0.48	0.48
Volume/Cap:	0.00	0.00	0.00	1.07	0.00	1.07	0.52	0.39	0.00	0.00	0.48	0.48
Delay/Veh:	0.0	0.0	0.0	97.6	0.0	97.6	14.4	7.0	0.0	0.0	13.9	13.9
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	0.0	0.0	97.6	0.0	97.6	14.4	7.0	0.0	0.0	13.9	13.9
LOS by Move:	A	A	A	F	A	F	B	A	A	A	B	B
HCM2kAvgQ:	0	0	0	16	0	16	6	5	0	0	7	7

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario

Level Of Service Computation			

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#2 Cesar Chavez/Pennsylvania/NB I-280 Off-Ramp

------------।

Volume Module:												
Base Vol:	246	160	410	109	0	489	316	510	0	0	264	504
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	246	160	410	109	0	489	316	510	0	0	264	504
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	246	160	410	109	0	489	316	510	0	0	264	504
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.00
PHF Volume:	256	167	427	114	0	509	329	531	0	0	275	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	256	167	427	114	0	509	329	531	0	0	275	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	256	167	427	114	0	509	329	531	0	0	275	0

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.94	0.99	0.83	0.94	1.00	0.66	0.94	0.94	1.00	1.00	0.94	1.00
Lanes:	1.00	1.00	1.00	1.00	0.00	1.00	1.00	2.00	0.00	0.00	2.00	1.00
Final Sat.:	1787	1881	1579	1787	0	1263	1787	3574	0	0	3574	1900

Capacity Analysis Module: 0.06000 .180 .15 ol/Sat: 0.140 .090 Crit Moves: **** **** **** **** 0.08 $\begin{array}{lllllllllll}\text { Green/cycle: } & \left.\begin{array}{lllllll}0.24 & 0.24 & 0.24 & 0.13 & 0.00 & 0.36 & 0.23 \\ 0.46 & 0.00 & 0.00 & 0.23 & 0.00\end{array}\right)\end{array}$ | Delay/Veh: | 35.7 | 30.4 | 111.9 | 0.48 | 0.00 | 1.12 | 0.81 | 0.33 | 0.00 | 0.00 | 0.34 | 0.00 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2.0 | 0.0 | 106.8 | 48.7 | 16.2 | 0.0 | 0.0 | 30.2 | 0.0 | | | | | User DelAdj: $1.00 \begin{array}{lllllllllll} & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 1.00\end{array}$ $\begin{array}{lllllllllllll}\text { AdjDel/Veh: } \\ 35.7 & 30.4 & 111.9 & 42.8 & 0.0 & 106.8 & 48.7 & 16.2 & 0.0 & 0.0 & 30.2 & 0.0\end{array}$ LOS by Move: D C \quad D \quad D \quad A \quad F \quad D HCM2kAvgQ: 21 $\begin{array}{lll}31 & 0 & 25\end{array}$ 2511

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

 Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario \qquad

	Potrero HOPE Development EIR
Wilbur Smith Associates	

Wilbur Smith Associates

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)															
Intersection \#4 25th/Indiana Streets/NB I-280															
Cycle (sec) :															
		100				Critical Vol./Cap. (X) :				65					
Loss Time (sec) :			0 (Y+R	=4.0	sec)	Average Delay (sec/veh):				7.					
Optimal Cycle:						Level Of Service:				C					
Street Name:			Indiana Street				25 th Street								
			North Bound			South Bound									
Approach:						East Bound							West Bound		
Movement:		- T	- R	L	- T				- R	L	- T	- R	L	- T	
Control:	Stop Sign			Stop Sign			Stop Sign				top Si				
Rights:		Inclu			Inclu		Include			Include					
Min. Green:	0	0	0	0	0	0	0		0	0	0	0			
Lanes:		10	10	0	00	00	0	10	0	0	0				
Volume Module:															
Base Vol:	33	537	17	0		0	151	202	0		177	142			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Initial Bse:	33	537	17	0	0	0	151	202	0	0	177	142			
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0			
PasserByVol:	0	0	0	0	0	0		0	0	0	0	0			
Initial Fut:	33	537	17	0		0	151	202	0		177	142			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93			
PHF Volume:	35	577	18	0	0	0	162	217	0	0	190	153			
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0			
Reduced Vol:	35	577	18	0	0	0	162	217	0	0	190	153			
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
FinalVolume:	35	577	18	0	0	0	162	217	0	0	190	153			

Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.11	1.83	0.06	0.00	0.00	0.00	0.43	0.57	0.00	0.00	0.55	0.45
Final Sat.:	62	1013	32	0	0	0	250	334	0	0	336	270

Capacity Analysis Module:
Vol/Sat: 0.570 .57
Crit Moves: **** $\quad 0.57$ xxxx xxxx xxxx 0.650 .65 xxxx xxxx $0.57 \quad 0.57$

Delay/Veh: | 17.1 | 16.9 | 16.6 | 0.0 | 0.0 | 0.0 | 19.1 | 19.1 | 0.0 | 0.0 | 15.7 | 15.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Delay Adj: $\begin{array}{lllllllllllll} & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$

 ApproachDel:
Delay Adj:
$\begin{array}{llccc}\text { Delay Adj: } & 1.00 & \text { xxxxxx } & 1.00 & 1.00 \\ \text { ApprAdjDel: } & 16.9 & \text { xxxxx } & 1.00 & \end{array}$
$\begin{array}{lrrrr}\text { AppradjDel: } & 16.9 & \text { xxxxxx } & 19.1 & 15.7 \\ \text { LOS by Appr: } & \text { C } & \star & \text { C } & \text { C }\end{array}$
$\begin{array}{lllllllllllll}\text { AllWayAvgQ: } & 1.2 & 1.2 & 1.2 & 0.0 & 0.0 & 0.0 & 1.6 & 1.6 & 1.6 & 1.2 & 1.2 & 1.2\end{array}$ Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

$\begin{array}{llllllllllllllllllllllll}\text { AllWayAvgQ: } & 0.5 & 0.5 & 0.5 & 0.0 & 0.0 & 0.0 & 0.4 & 0.4 & 0.4 & 0.4 & 0.4 & 0.4\end{array}$ Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario

Potrero HOPE Development EIR Wilbur Smith Associates															
Level Of Service Computation Report signalized Method (Future Volume Alternative)															
杖															
Intersection \#6 25th/Dakota															
Average Delay (sec/veh): 2.7 Worst Case Level Of Service: B[10.4]															
Street Name: Approach:	Dakota Street						25th Street								
Movement:		- T	R		- T	- R		T	R	L	- T	- R			
Control: Rights: Lanes:	Stop Sign Include			Stop SignInclude			Uncontrolled			Uncontrolled					
					Inclu										
		00	0					0 1!	0		10	0	0	0	10
Volume Module:															
Base Vol:	0	0	0	34	0	60	40	192	0	0	116	37			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Initial Bse:	0	0	0	34	0	60	40	192	0	0	116	37			
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0			
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0			
Initial Fut:	0	0	0	34	0	60	40	192	0	0	116	37			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97			
PHF Volume:	0	0	0	35	0	62	41	198	0	0	120	38			
Reduct Vol:	0	0	0		0	0	0		0	0		0			
FinalVolume:	0	0	0	35	0	62	41	198	0	0	120	38			

Critical Gap Module:
Critical Gp: xxxxx xxxx xxxxx $\quad 6.4 \quad 6.5 \quad 6.2 \quad 4.1$ xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim: xxxxx xxxx xxxxx $\quad 3.5$ 4.0 3.3 2.2 xxxx xxxxx xxxxx xxxx xxxxx位 Capacity Module:
Cnflict Vol: xxxx xxxx xxxxx $419419 \quad 139 \quad 158$ xxxx xxxxx \quad xxxx xxxx xxxxx $\begin{array}{lllllllll}\text { Cnflict } \\ \text { Potent } & \text { Cap. : xxxx xxxx xxxxx } & 419 & 419 & 139 & 158 & \text { xxxx xxxxx } & \text { xxxx xxxx xxxxx }\end{array}$ Move Cap.: xxxx xxxx xxxxx $\begin{aligned} & \text { 581 } \\ & \text { M }\end{aligned}$
 Volume/Cap: xxxx xxxx xxxx $0.060 .00,0710.03$ xxxx xxxx xxxx xxxx xxxx

Level Of Service Module:
2Way95thQ: xxxx xxxx xxxxx xxxx xxxx xxxxx Control Del:xxxxx xxxx xxxxx xxxxx xxyx xyxx OS by Move: * * $\quad 7.6$ xxxx xxxxx xxxxx xxxx xxxxx LT - LTR - RT TT _ TTR _ RT A * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT
 Shrd ConDel: xxxxx xxxx xxxxx xxxxx 10.4 xxxxx $\quad 7.6$ xxxx xxxxx xxxxx xxxx xxxxx Shrd ConDel: xxxxx xxxx xxxxx xxxxx 10.4 xxxxx

ApproachLOS:
$\underset{\star}{\text { xxexxy }}$
10.4
B

A $\underset{*}{*} \underset{*}{*}$ *
xxxxyx
xxxexx

Note: Queue reported is the number of cars per lane.

Potrero HoPE Development EIR

Wilbur Smith Associates
Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#7 23rd/Dakota

Average Delay ($\mathrm{sec} / \mathrm{veh}$) : 3.7 Worst Case Level Of Service: A [9.7$]$												
Street Name: Approach: Movement:	Dakota						23rd					
	North Bound			South Bound			East Bound			West Bound		
		- T	- R	L	- T	- R	L	- T	- R	L	- T	R
Control:	Stop Sign			Stop SignInclude			UncontrolledInclude			Uncontrolled Include		
Rights:		Inclu										
Lanes:	0	0 1!	0	0	00	00		0	1		10	00
Volume Module:												
Base Vol:	62	0	17	0	0	0	0	42	63	22	46	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	62	0	17	0	0	0	0	42	63	22	46	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	62	0	17		0	0	0	42	63	22	46	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Phf Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
PHF Volume:	65	0	18	0	0	0	0	44	66	23	48	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	65	0	18	0	0	0	0	44	66	23	48	0

Critical Gap Module:
Critical Gp: 6.4 6.5 6.2 xxxxx xxxx xxxxx xxxxx xxxx xxxx $\quad 4.1$ xxxx xxxxx FollowUpTim: 3.5 4.0 3.3 xxxxx xxxx xxxx xxxxx xxxx xxxx 2.2 xxxx xxxx Capacity Module:
Cnflict Vol: $170170 \quad 77$ xxxx xxxx xxxx $\quad 10 x x$ xxxx xxxxx 109 xxxx xxxx

 Level Of Service Module:

 Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 ApproachLOS: A * * * \quad *

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario

	Potrero HOPE Development EIR
Wilbur Smith Associates	

Wilbur Smith Associates

me Module:												
Base Vol:	0	87	57	21	90	0	0	0	0	80	0	36
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	87	57	21	90	0	0	0	0	80	0	36
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	0	87	57	21	90	0	0	0	0	80	0	36
ser Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
PHF Volume:	0	95	62	23	98	0	0	0	0	87	0	39
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	0	95	62	23	98	0	0	0	0	87	0	39
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	95	62	23	98	0	0	0	0	87	-	

Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	0.60	0.40	0.19	0.81	0.00	0.00	0.00	0.00	0.68	0.01	0.31
Final Sat.:	0	520	340	151	649	0	0	0	0	536	0	241
Capacity Analysis Module:												
Vol/Sat:	xxxx	0.18	0.18	0.15	0.15	xxxx	xxxx	xxxx	xxxx	0.16	0.00	0.16
Crit Moves:			****		****					****		
Delay/veh:	0.0	7.9	7.9	8.1	8.1	0.0	0.0	0.0	0.0	8.2	8.2	8.2
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	7.9	7.9	8.1	8.1	0.0	0.0	0.0	0.0	8.2	8.2	8.2
LOS by Move:	*	A	A	A	A	*		*	*	A	A	A
ApproachDel:		7.9			8.1			xxxxx			8.2	
Delay Adj:		1.00			1.00			xxxxx			1.00	
ApprAdjDel:		7.9			8.1			xxxxx			8.2	
LOS by Appr:		A			A			*			A	
AllWayAvgQ:	0.2	0.2	0.2	0.2	0.2	0.2	0.0	0.0	0.0	0.2	0.2	0.2

Note: Queue reported is the number of cars per lane.

Page 11-1

Potrero HOPE Development EIR

Wilbur Smith Associates

evel Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#9 20th/Arkansas

Volume Modu												
Base Vol:	4	16	10	9	45	27	6	120	10	31	186	13
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	4	16	10	9	45	27	6	120	10	31	186	13
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	4	16	10	9	45	27	6	120	10	31	186	13
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PhF Adj:	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
PHF Volume:	5	19	12	10	52	31	7	140	12	36	216	15
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	5	19	12	10	52	31	7	140	12	36	216	15
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	5	19	12	10	52	31	7	140	12	36	216	15
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.13	0.54	0.33	0.11	0.56	0.33	0.04	0.89	0.07	0.13	0.81	0.06
Final Sat.:	92	369	231	79	396	238	35	692	58	108	651	45
Capacity Analysis Module:												
Vol/Sat:	0.05	0.05	0.05	0.13	0.13	0.13	0.20	0.20	0.20	0.33	0.33	0.33
Crit Moves:		****			****		****					*
Delay/Veh:	8.0	8.0	8.0	8.3	8.3	8.3	8.5	8.5	8.5	9.4	9.4	9.4
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	8.0	8.0	8.0	8.3	8.3	8.3	8.5	8.5	8.5	9.4	9.4	9.4
LOS by Move:	A	A	A	A	A	A	A	A	A	A	A	A
ApproachDel:		8.0			8.3			8.5			9.4	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		8.0			8.3			8.5			9.4	
LOS by Appr:		A			A			A			A	
AllWayAvge:	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.2	0.5	0.5	0.5

AllWayAvgQ: $\begin{array}{lllllllllllllll}0.0 & 0.0 & 0.0 & 0.1 & 0.1 & 0.1 & 0.2 & 0.2 & 0.2 & 0.5 & 0.5 & 0.5\end{array}$ Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario \qquad

Critical Gap Module:
Critical Gp: xxxxx xxxx xxxxx xxxxx xxxx xxxx xxxxx xxxx 6.2 xxxxx xxxx xxxxx FollowUpTim: xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 3.3 xxxxx xxxx xxxxx信
Capacity Module:
Cnflict Vol: xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx 159 xxxx xxxx xxxxx

 Volume/Cap: xxxx xxxx xxxx exxx xxxx xxxx xxxx xxxx 0.00 fxxx xxxx xxxx

Level Of Service Module:

 Los by Move: * * * * * * * * A * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 Shrd ConDel:xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx

ApproachDel:

xxexxy

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Potrero HOPE Development EIR

Wilbur Smith Associates

Traffix 7.9 .0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Default Scenario Tue Jun 17, 2014 09:56:16

--	
	Potrero HOPE Development EIR
Wilbur Smith Associates	

Wilbur Smith Associates

2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection \#12 Cesar Chavez/Vermont												
Average Delay (sec/veh)				16.5		Worst	Case	Level	Of Se	ice: F[129.6]		
							sar Chavez Street					
Street Name: Approach: Movement:	Vermont North Bound			Str								
				South Bound			East Bound			West Bound		
		- T	R		- T	R		T	R		- T	
Control:	Stop Sign			Stop Sign			Uncontrolled			Uncontrolled		
Rights:	Include			Include			Include			Include		
Lanes:		00	0		0 1!	0		02	0		01	1
Volume Module:												
Base Vol:	0	0	0	26	0	239	65	424	0	0	1272	107
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	26	0	239	65	424	0		1272	107
Added Vol:	0	0	0	0	0	0	0	0	0		0	0
PasserByVol:	0	0	0	0	0	0	0	0	0		0	0
Initial Fut:	0	0	0	26	0	239	65	424	0		1272	107
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	0	28	0	254	69	451	0		1353	114
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
inalVolume:	0	0	0	28	0	254	69	451	0		1353	114

Critical Gap Module:
 FollowUpTim: xxxxx xxxx xxxxx $\quad 3.5$ 4.0 $3.3 \quad 2.2$ xxxx xxxxx exxxx exxx xxxxx Capacity Module
 Cnflict Vol: xxxx xxxx xxxxx 1774 1999 $\quad 7341467$ xxxx xxxxx \quad xxx xxxx xxxxx $\begin{array}{lllllll}\text { Potent Cap.: xxxx xxxx xxxxx } & 76 & 61 & 367 & 466 & \text { xxxx xxxxx } \\ \text { Move Cap.: } & \text { xxxx xxxx xxxxx }\end{array}$ Volume/Cap: xxxx xxxx xxxx $0.41 \quad 0.00 \quad 0.69 \quad 0.15$ xxxx xxxx xxxx xxxx xxxx

Level Of Service Module:

 LOS by Move: * * * * * * B * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 Note: Queue reported is the number of cars per lane.

Tue Jun 17, 2014 09:56:16
age 15-1

Potrero HOPE Development EIR

Wilbur Smith Associates

Level Of Service Computation Repor

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#13 Cesar Chavez/US 101 Off-Ramp

Average Delay (sec/veh): 3.9 Worst Case Level Of Service: C[17.6]															
Street Name: Approach: Movement:	US 101 North Bound			ff-RampSouth Bound			Cesar Chavez Stre								
				East Bound	West Bound										
		T	- R				South Bound				- T	- R	L	- T	
Contr	Yield Sign			Yield SignInclude			UncontrolledInclude			Uncontrolled Include					
Rights:															
Lanes:		00	1		00	00	0	2	00	0	- 2	00			
Volume Module:															
Base Vol:	0	0	500	0	0	0		385	0		1379	0			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Initial Bse:	0	0	500	0	0	0		385	0		1379	0			
Added Vol:	0	0	0		0	0		0	0			0			
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0			
Initial Fut:	0	0	500	0	0	0	0	385	0		1379	0			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94			
PHF Volume:	0	0	532	0	0	0		410	0		1467	0			
Reduct Vol:	0	0	0	0	0	0		0	0			0			
FinalVolume:	0	0	532	0	0	0	0	410	0		1467	0			

Critical Gap Module:
Critical Gp:xxxxx xxxx FollowUpTim: xxxxx xxxx
 Capacity Module:
Cnflict Vol: $x \times x \times x \times x$ Potent Cap: Xxxx xxxx Move Cap. : xxxx xxxx Volume/Cap: \quad xxxx xxx 205 xxxx xxxx xxxxx xxxx xxxx exxxx exxx xxxx xxxxx
 0.66 xaxx xxxx xxxx xxxy xxxx xxxx xxxx xxxx xxxx

Level Of Service Module:

 Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT
 SharedQue

ApproachDel:
17.6
xxxxxx
xxyxx
xxxxxx

ApproachLOS:
C \qquad
Note: Queue reported is the number of cars per lane.

Default Scenario Tue Jun 17, 2014 09:56:16

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#1001 25th/Texas Street
0.1

Street Name: Approach:	North Bound			StreetSouth Bound			East Bound			West Bound		
Movement:		- T	- R		- T	- R		- T	- R	L	- T	- R
Control: Rights:	Stop Sign			Stop SignInclude			UncontrolledInclude			Uncontrolled		
anes:	0	00	00	0	0 1!	0	0	10	-		01	00
Volume Module:												
Base Vol:	0	0	0	1	0	1	1	225	0	0	153	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	1	0	1	1	225	0	0	153	0
Added Vol:	0	- 0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	- 0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	1	0	1	1	225	0	0	153	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
PHF Volume:	0	0	0	1	0	1	1	232	0	0	158	0
duct Vol:	0	- 0	0	0	0	0	0		0	0		0
nalVolume:	0	0	0	1	0	1	1	232	0	0	158	0

Critical Gap Module:
 FollowUpTim:xxxxx xxxx xxxxx $\begin{array}{llllll} & .5 & 4.0 & 3.3 & 2.2 \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ (1) \qquad Capacity Module:

 Move Cap: xxxx xxxx xxxx 6165478931434 xxxx xxxx xxx xxxx xxxxy
 evel

 Movement: LT - LTR - RT Shared Cap.: xxxx xxxx xxxx xxxx 729 xxxxx fxxx xxxx xxxxx fxxx xxxx xxxxx Shared Cap.: xxxx xxxx xxxxx xxxx
SharedQueue: xxxxx xxx xxxx xxxxx
0.0
xxxxx
 Shrd ConDel: xxxxx xxxx xxxxx xxxxx 10.0 xxxxx 7.5 xxxx xxxxx xxxxx xxxx xxxxx ApproachDel: xxxxx * 10.0 A \quad A \quad xxxxx ApproachLOS: $\quad *$ A \quad A \quad *xxxx Note: Queue reported is the number of cars per lane.

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:51
Page 3-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#1 Cesar Chavez/Connecticut

Volume Modul Base Vol:	0	0	0	28	0	298	136	690	0	0		86
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	28	0	298	136	690	0	0	946	86
Added Vol:	0	0	0	2	0	77	253	1	0	0	0	34
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	30	0	375	389	691	0	0	946	120
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Phf Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	0	0	32	0	403	418	743	0	0	1017	129
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	32	0	403	418	743	0	0	1017	129
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	0	0	32	0	403	418	743	0	0	1017	129

Traffix 7.9 .0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:51

$$
\begin{gathered}
\text { Potrero HOPE Development EIR } \\
\text { Wilbur Smith Associates }
\end{gathered}
$$

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)
Intersection \#2 Cesar Chavez/Pennsylvania/NB I-280 Off-Ramp

lume Module:												
Base Vol:	246	160	410	109	0	489	316	510	0	0	264	50
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	246	160	410	109	0	489	316	510	0	0	264	504
Added Vol:	31	44	0	5	0	0	1	2	0	0	3	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	277	204	410	114	0	489	317	512	0	0	267	50
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.0
PHF Volume:	289	213	427	119	0	509	330	533	0	0	278	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	289	213	427	119	0	509	330	533	0	0	278	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.0
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.0
FinalVolume:	289	213	427	119	0	509	330	533	0	,	278	

Saturation	Flow Module:											
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.94	0.99	0.83	0.94	1.00	0.66	0.94	0.94	1.00	1.00	0.94	1.00
Lanes:	1.00	1.00	1.00	1.00	0.00	1.00	1.00	2.00	0.00	0.00	2.00	1.00
Final Sat.:	1787	1881	1579	1787	0	1263	1787	3574	0	0	3574	1900

Capacity Analysis Module:

Vol/Sat: $\begin{array}{llllllllllllll}0.16 & 0.11 & 0.27 & 0.07 & 0.00 & 0.40 & 0.18 & 0.15 & 0.00 & 0.00 & 0.08 & 0.00\end{array}$ Crit Moves: **** **** ***************
Green/Cycle: $\begin{array}{llllllllllll}0.24 & 0.24 & 0.24 & 0.13 & 0.00 & 0.36 & 0.23 & 0.46 & 0.00 & 0.00 & 0.23 & 0.00\end{array}$ Delay/Veh: $\begin{array}{lllllllllllll}0.66 & 0.46 & 1.11 & 0.50 & 0.00 & 1.12 & 0.81 & 0.33 & 0.00 & 0.00 & 0.34 & 0.00\end{array}$ User DelAdj: $1.001 .00 \quad 1.00 \quad 1.00 \begin{array}{llllllllll} & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$ AdjDel/Veh: $\begin{array}{llllllllllllll}38.3 & 32.3 & 111.9 & 43.5 & 0.0 & 106.8 & 48.9 & 16.2 & 0.0 & 0.0 & 30.2 & 0.0\end{array}$ LoS by Move: D C F D A F HCM2kAvgQ: 4025 \qquad
Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:51
Page 5-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
Intersection \#3 Pennsylvania/SB I-280 Off-Ramp

Volume Module Base Vol:	0	155	0	0	461	0	0	0	0	688	0	49
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	155	0	0	461	0	0	0	0	688	0	49
Added Vol:	0	1	0	0	1	0	0	0	0	160	0	3
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	156	0	0	462	0	0	0	0	848	0	52
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.00
PHF Volume:	0	168	0	0	497	0	0	0	0	912	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	168	0	0	497	0	0	0	0	912	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
FinalVolume:	0	168	0	0	497	0	0	0	0	912	0	0
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	2.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	2.00	0.00	1.00
Final Sat.:	0	943	0	0	555	0	0	0	0	1032	0	617
Capacity Analysis Module:												
Vol/Sat:	xxxx	0.18	xxxx	xxxx	0.89	xxxx	xxxx	xxxx	xxxx	0.88	xxxx	0.00
Crit Moves:		****			**					***		
Delay/Veh:	0.0	11.8	0.0	0.0	41.8	0.0	0.0	0.0	0.0	41.9	0.0	0.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	11.8	0.0	0.0	41.8	0.0	0.0	0.0	0.0	41.9	0.0	0.0
LOS by Move:	*	B	*	*	E	*	*	*	*	E		*
ApproachDel:		11.8			41.8			xxxx			41.9	
Delay Adj:		1.00			1.00			xxxx			1.00	
ApprAdjDel:		11.8			41.8			xxxx			41.9	
LOS by Appr:		B			E			*			E	
AllWayAvgQ:	0.0	0.2	0.0	5.0	5.0	5.0	0.0	0.0	0.0	4.6	0.0	0.0

Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:52

AllWayAvgQ: $1.41 .3 \quad 1.3 \quad 0.0 \quad 0.0 \quad 0.0 \quad 3.6 \quad 3.6 \quad 3.6 \quad 1.4 \quad 1.4 \quad 1.4$ Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:52
Page 7-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)

Intersection \#5 25 th/Connecticut

Volume Module:
Base Vol:

Base Vol:	8	61	154	0	0	0	32	76	84	100	70	22
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	8	61	154	0	0	-	32	76	84	100	70	22
Added Vol:	44	25	140	3	19	1	3	59	9	46	76	4
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	52	86	294	3	19	1	35	135	93	146	146	26
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PhF Adj:	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
PHF Volume:	62	102	350	4	23	1	42	161	111	174	174	31
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	62	102	350	4	23	1	42	161	111	174	174	31
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	62	102	350	4	23	1	42	161	111	174	174	31

Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.12	0.20	0.68	0.13	0.83	0.04	0.13	0.52	0.35	0.46	0.46	0.08
Final Sat.:	77	128	437	56	356	19	77	296	204	264	264	47
Capacity Analysis Module:												
Vol/Sat:	0.80	0.80	0.80	0.06	0.06	0.06	0.54	0.54	0.54	0.66	0.66	0.66
Crit Moves:	****			***				****			****	
Delay/Veh:	25.1	25.1	25.1	10.3	10.3	10.3	15.0	15.0	15.0	18.8	18.8	18.8
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	25.1	25.1	25.1	10.3	10.3	10.3	15.0	15.0	15.0	18.8	18.8	18.8
LOS by Move:	D	D	D	B	B	B	B	B	B	C	C	C
ApproachDel:		25.1			10.3			15.0			18.8	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		25.1			10.3			15.0			18.8	
LOS by Appr:		D			B			B			C	

 Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:52
Page 8-1

Potrero HOPE Development EIR Wilbur Smith Associates															
Level Of Service Computation Report signalized Method (Future Volume Alternative)															
Intersection \#6 25th/Texas Street															
Average Delay (sec/veh): 6.9 Worst Case Level Of Service: D[30.4]															
Street Name: Approach: Movement:															
	Texas North Bound			SreetSouth Bound			East Bound			reet					
				West Bound											
	L	- T	- R				L	- T	R	L	T	R	L	- T	R
Control: Rights: Lanes:	Stop SignInclude			Stop Sign			Uncontrolled			Uncontrolled					
					Incl			Inclu			Inclu				
		0	0	0	0 1!	0	0	10	0	0	- 0				
Volume Module:															
Base Vol:	0	0	0	144	0	12	2	219	0	0	145	50			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Initial Bse:	0	0	0	144	0	12	2	219	0	0	145	50			
Added Vol:	0	0	0	58	0	8	37	122	0	0	153	69			
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0			
Initial Fut:	0	0	0	202	0	20	39	341	0	0	298	119			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Phf Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97			
PHF Volume:	0	0	0	208	0	21	40	352	0	0	307	123			
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0				
FinalVolume:	0	0	0	208	0	21	40	352	0	0	307	123			

Critical Gap Module:
 $\begin{array}{llllllll}\text { Critical Gp: xxxxx xxxx xxxxx } & 6.4 & 6.5 & 6.2 & 4.1 & \text { xxxx xxxxx xxxx } & \text { xxxx xxxxx } \\ \text { FollowUpTim:xxxxx xxxx xxxx } & 3.5 & 4.0 & 3.3 & 2.2 \text { xxxx xxxxx xxxxx xxxx xxxxx }\end{array}$ ollow
Capacity Module
Cnflict Vol: xxxx xxxx xxxxy $801801-369430$ xxx xxxx xxx xxy xxxx
 Move Cap: xxxx xxxx xxxxx 347 309 6811140 xxxx xxxx xxx xxxx xxxxx
 olume/cap. xxxx xxxx xxxx 0.600 .00 0.03 0.04 xxxx xxxx xxxx xxxx xxx
Level Of Service Module:
2Way95thQ: xxxx xxxx xxxxx xxxx xxxx xxxxx 0.1 xxxx xxxxx xxx xxxx xxxxx
 OS by Move: * * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

 ApproachDel: xxxxxx 30.4 xxxxx xxxxxx ApproachLOS: $\quad * \quad$ D $\quad *$ xxxxxx Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:52
Page 9-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#7 23rd/Missouri

Street Name:	$\begin{array}{ll} \text { Missouri S } \\ \text { North Bound } \end{array}$						23rd St					
Approach:					South Bound		East Bound			West Bound		
Movement:	L - T - R			L				-	R	L	- T	R
Control:	Stop Sign			Stop Sign			UncontrolledInclude			Uncontrolled		
Rights:	Include			Include						Include		
Lanes:	0	10	0	00	00	1		0 1!	0	0	1!	0
Volume Module:												
Base Vol:	47	17	0	0	22	46	42	0	47	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	47	17	0	0	22	46	42	0	47	0	0	0
Added Vol:	8	48	0	0	38	8	17	0	12	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	55	65	0	0	60	54	59	0	59	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
PHF Volume:	57	68	0	0	63	56	61	0	61	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	57	68	0	0	63	56	61	0	61	0	0	0

Critical Gap Module:
Critical Gp: 7.1 6.5 xxxxx xxxxx $\quad 6.5 \quad 6.2 \quad 4.1$ xxxx xxxxx xxxx xxxx xxxxx

Capacity Module:

Cnflict Vol:	213	154	xx	xxx	184	0	0	xxxx	xxxxx	xxxx	xxxx	xxxxx
Potent Cap.:	748	742	xxxxx	xxxx	713	900	900	xxxx	xxxxx	xxxx	xxxx	xxxxx
Move Cap.:	616	689	xxxxx	xxxx	663	900	900	xxxx	xxxxx	xxxx	xxxx	xxxxx
Volume/Cap:	0.09	0.10	xxx	xxxx	0.09	0.06	0.07	x	xxx	xxxx	xxxx	xxx

Level Of Service Module:

 Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT ${ }^{\star} \mathrm{LT}^{\star}$ - LTR - RT Shared Cap.: 654 xxxx xxxxx xxxx xxxx 758 xxxx xxxx xxxxx xxxx xxxx xxxxx
 Shrd ConDel: 11.8 xxxx xxxxx xxxxx xxxx 10.6 xxxxx xxxx xxxxx xxxxx xxxx xxxxx

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:52
Page 10-1

AllWayAvgQ: $\begin{array}{lllllllllllllllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.0 & 0.0 & 0.0 & 0.2 & 0.2 & 0.2\end{array}$ Note: Queue reported is the number of cars per lane.

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:52
Page 11-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)
$* *$
Intersection \#9 20 th/Arkansas

Base Vol:	4	16	10	9	45	27	6	120	10	31	186	13
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	4	16	10	9	45	27	6	120	10	31	186	13
Added Vol:	2	4	1	4	9	0	0	2	4	3	1	3
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	6	20	11	13	54	27	6	122	14	34	187	16
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PhF Adj:	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
PHF Volume:	7	23	13	15	63	31	7	142	16	40	217	19
Reduct Vol:	0	0	0	0	0	0	0	,	0	0	0	0
Reduced Vol:		23	13	15	63	31		142	16	40	217	19
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	7	23	13	15	63	31	7	142	16	40	217	19
Saturation Flow Module:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.16	0.54	0.30	0.14	0.57	0.29	0.04	0.86	0.10	0.14	0.79	0.07
Final Sat.:	110	366	201	97	402	201	32	660	76	113	623	53
Capacity Analysis Module:												
Vol/Sat:	0.06	0.06	0.06	0.16	0.16	0.16	0.21	0.21	0.21	0.35	0.35	0.35
Crit Moves:		,		***				***		****		
Delay/Veh:	8.2	8.2	8.2	8.6	8.6	8.6	8.7	8.7	8.7	9.7	9.7	9.7
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	8.2	8.2	8.2	8.6	8.6	8.6	8.7	8.7	8.7	9.7	9.7	9.7
LOS by Move:	A	A	A	A	A	A	A	A	A	A	A	A
ApproachDel:		8.2			8.6			8.7			9.7	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		8.2			8.6			8.7			9.7	
LOS by Appr:		A			A			A			A	
AllWayAvgQ:	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.5	0.5	0.5

AllWayAvgQ: $0.1 \begin{array}{llllllllllllll} & 0.1 & 0.1 & 0.2 & 0.2 & 0.2 & 0.3 & 0.3 & 0.3 & 0.5 & 0.5 & 0.5\end{array}$
Note: Queue reported is the number of cars per lane.
Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:52
Page 12-1

Potrero HOPE Development EIR Wilbur Smith Associates															
Level Of Service Computation Report 00 HCM Unsignalized Method (Future Volume Al															
Intersection \#10 Missouri/22nd															
Average Delay (sec/veh): 0.0 Worst Case Level Of Service: A[8.9]															
Control: Rights: Lanes:	Uncontrolled Include			Uncontrolled Include			Stop Sign			Stop Sign					
					Inclu			Inclu							
		01	0					0	10	0	0	1	0	0	- 0
Volume Module:															
Base Vol:	0	81	0	0	101	1	0	0	1	0	0	0			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Initial Bse:	0	81	0	0	101	1	0	0	1	0	0	0			
Added Vol:	0	16	0	0	32	0	0	0	0	0	0	0			
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0			
Initial Fut:	0	97	0	0	133	1	0	0	1	0	0	0			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
PHF Volume:	0	97	0	0	133	1	0	0	1	0	0	0			
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0			
FinalVolume:	0	97	0	0	133	1	0	0	1	0	0	0			

Critical Gap Module:
Critical Gp: xxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx 6.2 xxxxx xxxx xxxxx

Cnflict Vol: xxxx xxxx xxxxx xxxx xxxx xxxxx xxxx xxxx 134 xxxx xxxx xxxxx

 Volume/Cap: xxxx xxxx xxxx texx xxxx xxxx xxxx xxxx 0.00 xxxx xxxx xxxx

Level Of Service Module

 LOS by Move: * * * * * * * A * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT \quad LT - LTR - RT

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:52
Page 13-1
Potrero HOPE Development EI
Wilbur Smith Associates
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)
Intersection \#11 Potrero/23rd

Base Vol:	0	854	114	123	1294	63	37	73	77	103	78	168
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	854	114	123	1294	63	37	73	77	103	78	168
Added Vol:	0	0	7	46	0	0	0	13	0	4	7	25
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	854	121	169	1294	63	37	86	77	107	85	193
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	0	918	130	182	1391	68	40	92	83	115	91	208
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	918	130	182	1391	68	40	92	83	115	91	208
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	918	130	182	1391	68	40	92	83	115	91	208

Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	0.93	0.75	0.93	0.91	0.91	0.94	0.94	0.94	0.84	0.84	0.84
Lanes:	0.00	2.00	1.00	1.00	1.91	0.09	0.19	0.43	0.38	0.56	0.44	1.00
Final Sat.:	0	3538	1422	1769	3283	160	330	768	687	885	703	1588
Capacity Analysis Module:												
Vol/Sat:	0.00	0.26	0.09	0.10	0.42	0.42	0.12	0.12	0.12	0.13	0.13	0.13
Crit Moves:					*		*				****	
Green/Cycle:	0.00	0.43	0.43	0.11	0.54	0.54	0.11	0.11	0.11	0.18	0.18	0.18
Volume/Cap:	0.00	0.60	0.21	0.92	0.78	0.78	1.08	1.08	1.08	0.73	0.73	0.74
Delay/Veh:	0.0	21.3	16.7	86.7	19.5	19.5	128.2	128	128.2	43.1	43.1	43.3
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	21.3	16.7	86.7	19.5	19.5	128.2	128	128.2	43.1	43.1	43.3
LOS by Move:	A	C	B	F	B	B	F	F	F	D	D	D
HCM2 kAvgQ:	0	11	2	8	18	18	12	12	12	7	7	7

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

2040 Cumulative + Proj PM Tue Jun 17, 2014 09:46:52
Page 14-1

Potrero HOPE Development EIR Wilbur Smith Associates												
Level Of Service Computation Report hsignalized Method (Future Volume Alternative)												
Intersection \#12 Cesar Chavez/Vermont												
Average Delay (sec/veh): 30.5 Worst Case Level Of Service: F[229.9]												
Control: Rights: Lanes:	Stop Sign Include			Stop Sign Include			Uncontrolled Include			Uncontrolled Include		
		00	0		0 1!	0	1	2	0	0	1	0
Volume Module:												
Base Vol:	0	0	0	26	0	239	65	424	0	0	1272	107
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	26	0	239	65	424	0	0	1272	107
Added Vol:	0	0	0	0	0	34	14	32	0	0	77	0
PasserByVol:	0		0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	26	0	273	79	456	0	0	1349	107
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	0	28	0	290	84	485	0	0	1435	114
Reduct Vol:	0	0	0	0	0	0	0	0	0	0		0
FinalVolume:	0	0	0	28	0	290	84	485	0	0	1435	114

Critical Gap Module:
 FollowUpTim:xxxxx xxxx xxxxx $\quad 3.5$ 4.0 3.3 2.2 xxxx xxxxx xxxxx xxxx xxxxx - \qquad
Capacity Module:
Cnflict Vol: xxxx xxxx xxxx $19032145 \quad 774 \quad 1549$ xxx xxxx xxx xxxy xxxx Potent Cap.: xxxx xxxx xxxxx $62 \quad 49 \quad 345 \quad 434$ xxxx xxxxx xxxx xxxx xxxx

Level Of Service Module

 Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT
 SharedQueue: xxxxx xxxx xxxxx xxxxx 17.5 xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx

 ApproachDel: xxxxxx 229.9 xxxxxx xxxxx

Note: Queue reported is the number of cars per lane.

$$
\begin{gathered}
\text { Potrero HOPE Development EIR } \\
\text { Wilbur Smith Associates }
\end{gathered}
$$

2000 HCM Unsignalized Method (Future Volume Alternative)
Intersection \#13 Cesar Chavez/US 101 Off-Ramp
Average Delay (sec/veh):
Worst Case Level Of Service: E[49.0]

Street Name: Approach:	US 101 North Bound			-Ramp South Bound			Cesar Chavez Street					
Movement:	L	- T	R	L	- T	- R	L	- T	-		- T	- R
Control: Rights:	Yield Sign			Yield Sign			Uncontrolled Include			Uncontrolled Include		
Lanes:	0	00	01	0	00	0	0	02	0		02	00
Volume Module:												
Base Vol:	0	0	500	0	0	0	0	385	0	0	1379	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	500	0	0	0	0	385	0		1379	0
Added Vol:	0	0	222	0	0	0	0	32	0		77	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	722	0	0	0	0	417	0		1456	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
PHF Volume:	0	0	768	0	0	0	0	444	0		1549	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0		0
FinalVolume:	0	0	768	0	0	0	0	444	0		1549	0

Critical Gap Module:
Critical Gp: xxxxx xxxx 6.9 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxx FollowUpTim: xxxxx xxxx 3.3 xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx

Capacity Module:

Level Of Service Module:

 Movement: LT - LTR - RT ${ }^{\text {LT }}$ LTTR - RT LT - LTR - RT LT - LTR - RT

 Shrd ConDel: xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx

ApproachLOS: E
$\underset{\star}{x x y x}$

Note: Queue reported is the number of cars per lane

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to WILBUR SMITH, SF, CA

Appendix C
Signal Warrant Analysis Worksheets

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

$\left.\begin{array}{l}\text { Speed limit or critical speed on major street traffic }>64 \mathrm{~km} / \mathrm{h}(40 \mathrm{mph}) \ldots \ldots . . \square \\ \text { In built up area of isolated community of }<10,000 \text { population...................... }\end{array}\right\}$ RURAL (R)
URBAN (U)

WARRANT 3 - Peak Hour
 (Part A or Part B must be satisfied)
 PART A
 (All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15 -minute periods)

SATISFIED YES \square NO

SATISFIED YES \square NO \square

1. The total delay experienced by traffic on one minor street approach (one direction only)
controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane
approach, or five vehicle-hours for a two-lane approach; AND Yes \square No

APPROACH LANES	2 or One More		PM PEAK HOUR
Both Approaches - Major Street		$\sqrt{\prime}$	821
Higher Approach - Minor Street		\sqrt{n}	737

| The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS) | Yes \square No \square |
| :--- | :--- | :--- |
| OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURALAREAS) | Yes \square No \square |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

				COUN		
4	SF			CALC	BPK	DATE 06/15/14
DIST	CO	RTE	PM	CHK		DATE
Major St: CESAR CHAVEZ STREET				Critical Approach Speed Critical Approach Speed		25
Minor St: VERMONT STREET						25

Speed limit or critical speed on major street traffic $\left.>64 \mathrm{~km} / \mathrm{h}(40 \mathrm{mph}) \ldots \begin{array}{|}0 \\ \text { In built up area of isolated community of }<10,000 \text { population............................ }\end{array}\right\}$ RURAL (R)
URBAN (U)

WARRANT 3 - Peak Hour
 (Part A or Part B must be satisfied)
 PART A
 (All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15 -minute periods)

SATISFIED YES \square NO

SATISFIED YES \square NO \square

1. The total delay experienced by traffic on one minor street approach (one direction only)
controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane
approach, or five vehicle-hours for a two-lane approach; AND Yes \square No

APPROACH LANES	2 or One More	PM PEAK HOUR	
Both Approaches - Major Street		\checkmark	1868
Higher Approach - Minor Street		\checkmark	265

| The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS) | Yes \square No \square |
| :--- | :--- | :--- |
| OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURALAREAS) | Yes \square No \square |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

COUNT DATE

| $\mathrm{CALC} \quad \mathrm{BPK}$ |
| :--- | :--- |
| CHK |

$\frac{4}{\text { DIST }} \frac{\mathrm{SF}}{\mathrm{CO}} \frac{}{\text { RTE }} \frac{}{\text { PM }}$

Critical Approach Speed	25
,	25
RURAL (R) URBAN (U)	

WARRANT 3 - Peak Hour
(Part A or Part B must be satisfied)
PART A

SATISFIED YES \square NO

SATISFIED YES \square NO \square
(All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15 -minute periods)

| 1. The total delay experienced by traffic on one minor street approach (one direction only) |
| :--- | :--- |
| controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane |
| approach, or five vehicle-hours for a two-lane approach; AND | Yes \square No

APPROACH LANES	2 or One More	PM PEAK HOUR	
Both Approaches - Major Street		$\sqrt{\prime}$	618
Higher Approach - Minor Street		$\sqrt{\prime}$	900

| The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS) | Yes \square No \square |
| :--- | :--- | :--- |
| OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURALAREAS) | Yes \square No \square |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

COUNT DATE

| $\mathrm{CALC} \quad \mathrm{BPK}$ |
| :--- | :--- |
| CHK |

$\frac{4}{\text { DIST }} \frac{\mathrm{SF}}{\mathrm{CO}} \frac{}{\text { RTE }} \frac{}{\text { PM }}$
Major St: CESAR CHAVEZ STREET
Minor St: VERMONT STREET

Critical Approach Speed	25
Critical Approach Speed	mph

$\left.\begin{array}{l}\text { Speed limit or critical speed on major street traffic }>64 \mathrm{~km} / \mathrm{h}(40 \mathrm{mph}) \ldots \ldots . . \square \\ \text { In built up area of isolated community of }=10,000 \text { population............................. }\end{array}\right\}$ RURAL (R)

WARRANT 3 - Peak Hour
(Part A or Part B must be satisfied)
PART A
SATISFIED YES \square NO
\square
(All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15 -minute periods)

| 1. The total delay experienced by traffic on one minor street approach (one direction only) |
| :--- | :--- |
| controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane |
| approach, or five vehicle-hours for a two-lane approach; AND | Yes \square No

APPROACH LANES	One	$\begin{aligned} & 2 \text { or } \\ & \text { More } \end{aligned}$	
Both Approaches - Major Street		\checkmark	199
Higher Approach - Minor Street		\checkmark	299

| The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS) | Yes \square No \square |
| :--- | :--- | :--- |
| OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURALAREAS) | Yes \square No \square |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

PEAK HOUR TRAFFIC SIGNAL WARRANTS WORKSHEET

COUNT DATE

| $\mathrm{CALC} \quad \mathrm{BPK}$ |
| :--- | :--- |
| CHK |

$\frac{4}{\text { DIST }} \frac{\mathrm{SF}}{\mathrm{CO}} \frac{}{\text { RTE }} \frac{}{\text { PM }}$
Major St: CESAR CHAVEZ STREET
Minor St: US 101 OFF-RAMP

| Critical Approach Speed | 25 |
| :--- | :--- | :--- |
| Critical Approach Speed | mph |

Speed limit or critical speed on major street traffic $\left.>64 \mathrm{~km} / \mathrm{h}(40 \mathrm{mph}) \ldots \begin{array}{|}\square \\ \text { In built up area of isolated community of }<10,000 \text { population.............................. }\end{array}\right\}$ RURAL (R)
URBAN (U)

WARRANT 3 - Peak Hour
(Part A or Part B must be satisfied)
PART A
SATISFIED YES \square NO
\square
(All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15 -minute periods)

| 1. The total delay experienced by traffic on one minor street approach (one direction only) |
| :--- | :--- |
| controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane |
| approach, or five vehicle-hours for a two-lane approach; AND | Yes \square No

APPROACH LANES	2 or One More		PM PEAK HOUR
Both Approaches - Major Street		\checkmark	1873
Higher Approach - Minor Street		\checkmark	722

| The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS) | Yes \square No \square |
| :--- | :--- | :--- |
| OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURALAREAS) | Yes \square No \square |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-3. Warrant 3, Peak Hour

Appendix D
Transit Analysis Calculations

POTRERO HOPE TRANSPORTATION STUDY

2040 Cumulative and Cumulative plus Proposed Project Muni Line-by-Line Analysis (Weekday PM Peak Hour)

Route	Vehicle Capacity	Direction	Existing				Project	2040 Cumulative				2040 Cumulative (incl. Project)			
			Ridership	Peak Hr \# of vehicles	Capacity	Utilization	2040 Project Trips	Ridership	Peak Hr \# of vehicles	Capacity	Utilization	Ridership	Peak Hr \# of vehicles	Capacity	Utilization
10 Townsend	63	Inbound	186	3	189	98\%	36	291	10	630	46\%	327	10	630	52\%
10 Townsend	63	Outbound	171	3	189	90\%	68	267	10	630	42\%	335	10	630	53\%
19 Polk	63	Inbound	172	4	252	68\%	0	269	4	252	107\%	269	4	252	107\%
19 Polk	63	Outbound	124	4	252	49\%	0	194	4	252	77\%	194	4	252	77\%
48 Quintara - 24th St	63	Inbound	175	6	378	46\%	30	274	4	252	109\%	304	4	252	121\%
48 Quintara - 24th St	63	Outbound	180	6	378	48\%	21	281	4	252	112\%	302	4	252	120\%

Vehicle Type	Capacity
ARTIC BUS $\left(60^{\prime}\right)$	94
COMBO BUS $\left(40^{\prime}\right)$	79
LRV (per train car)	119
NEIGHB. BUS $\left(30^{\prime}\right)$	45
STANDARD BUS $\left(40^{\prime}\right)$	63
STREETCAR	70

19 Polk Reallocation	Percentages
10 Townsend/Sansome	40%
22 Fillmore	20%
48 Quintara-24th Street	10%
K/T Ingleside/Third St	10%
*58 24th Street	20%
Total	100%

Notes: Source: SFMTA 2011 APC data, 2014 TEP FEIR
Hourly Load and Capacity - calculated from Chapter 4.2, Table 13, pg. 4.2-129 of the TEP EIR.
Capacity is calculated by number of seats per transit vehicles multiplied by the frequency of buses/trains per one PM peak hour
Utilization is calculated by dividing the hourly load by hourly capacity.
Analysis assumes TEP implementation by year 2040 and reallocation of the to-be-rerouted 19 Polk anticipated project ridership to other transit lines in the project study area
The 58 24th Street line is a new route created by the TEP. It was not analyzed in line-by-line analysis due to the preliminary nature of the route, but was assumed
to acquire some of the reallocated ridership from the rerouted 19 Polk.

Potrero HOPE Transportation Study

2040 Cumulative Screenline Analysis (Weekday PM Peak Hour - Outbound)

Muni Screenline Analysis

Screenline Location		EXISTING CONDITIONS			YEAR 2040		
		Ridership	Capacity	Utilization	Ridership	Capacity	Utilization
Northeast	Kearny/Stockton Corridor	1,129	2,010	56\%	6,295	8,329	76\%
	All Other Lines	757	1,589	48\%	1,229	2,065	60\%
	Subtotal	1,886	3,599	52\%	7,524	10,394	72\%
Northwest	Geary Corridor	1,684	2,230	76\%	2,996	3,621	83\%
	California	1,413	2,050	69\%	1,766	2,021	87\%
	Sutter/Clement	565	1,008	56\%	749	756	99\%
	Fulton/Hayes	861	1,260	68\%	1,762	1,878	94\%
	Balboa	615	1,247	49\%	776	974	80\%
	Chestnut/Union*	1,483	2,328	64\%	-	-	-
	Subtotal	6,621	10,123	65\%	8,049	9,250	87\%
Southeast	Third Street	554	714	78\%	2,300	5,712	40\%
	Mission Street	1,254	2,350	53\%	2,673	3,008	89\%
	San Bruno/Bayshore	1,671	2,256	74\%	1,817	2,134	85\%
	All Other Lines	1,189	1,708	70\%	1,582	1,927	82\%
	Subtotal	4,668	7,028	66\%	8,372	12,781	66\%
Southwest	Subway Lines	5,883	6,783	87\%	5,692	6,804	84\%
	Haight/Noriega	1,247	2,140	58\%	1,265	1,596	79\%
	All Other Lines	304	700	43\%	380	840	45\%
	Subtotal	7,434	9,623	77\%	7,337	9,240	79\%
Total All SFMUNI Screenlines		20,609	30,373	68\%	31,282	41,665	75\%

Regional Screenline Analysis							
East Bay	BART	20,067	24,150	83%	30,383	33,170	92%
	AC Transit	2,517	4,193	60%	7,000	12,000	58%
	Ferries	702	1,519	46%	5,319	5,940	90%
	Subtotal	23,286	29,862	78%	42,702	51,110	84%
North Bay	GGT buses	1,397	2,205	63%	2,070	2,817	73%
	GGT ferries	906	1,700	53%	1,619	1,959	83%
Subtotal	2,303	3,905	59%	3,689	4,776	77%	
South Bay	BART	10,202	16,800	61%	13,971	24,182	58%
	Caltrain	1,986	3,250	61%	2,529	3,600	70%
	SamTrans	575	940	61%	150	320	47%
	Ferries				59	200	30%
Subtotal	12,763	20,990	61%	16,709	$\mathbf{2 8 , 3 0 2}$	59%	
Total All Regional Screenlines	$\mathbf{3 8 , 3 5 2}$	$\mathbf{5 4 , 7 5 7}$	$\mathbf{7 0 \%}$	$\mathbf{6 3 , 1 0 0}$	$\mathbf{8 4 , 1 8 8}$	$\mathbf{7 5 \%}$	

Sources: SFMTA, TEP EIR, July 2013; SF Planning Department, 2014

Notes
*Muni Chestnut/Union corridor anticipated screenline ridership and capacity were not calculated for Year 2040.
SF MUNI utilization standard is 85% (vehicle capacity includes standees which represent 30% to 80% of seats, depending upon the configuration of the vehicle) BART and all other regional transit providers have a utilization standard of 100% (vehicle capacity is based on the number of seated passengers per vehicle)

Potrero HOPE Transportation Study

2040 Cumulative and Cumulative plus Proposed Project Muni Screenline Analysis (Weekday PM Peak Hour)

		2040 Cumulative Conditions			Project Trips	2040 Cumulative plus Project Conditions		
		Ridership	Capacity	Utilization		Ridership	Capacity	Utilization
Southeast	Third Street	2,300	5,712	40\%	39	2,339	5,712	41\%
	Mission Street	2,673	3,008	89\%	0	2,673	3,008	89\%
	San Bruno/Bayshore	1,817	2,134	85\%	0	1,817	2,134	85\%
	All Other Lines	1,582	1,927	82\%	91	1,673	1,927	87\%
	Subtotal	8,372	12,781	66\%	130	8,502	12,781	67\%

Potrero HOPE Transportation Study

2040 Cumulative and Cumulative plus Proposed Project Regional Screenline Analysis (Weekday PM Peak Hour)

Screenline Location		2040 Cumulative Ridership		2040 Capacity	2040 Utilization	Project Trips	2040 Cumulative plus Project Ridership	2040 Cumulative plus Project Utilization
East Bay	BART	30,383	71\%	33,170	92\%	7	30,390	92\%
	AC Transit	7,000	16\%	12,000	58\%	2	7,002	58\%
	Ferries	5,319	12\%	5,940	90\%	0	5,319	90\%
	Subtotal	42,702	100\%	51,110	84\%	9	42,711	84\%
North Bay	GGT buses	2,070	56\%	2,817	73\%	1	2,071	74\%
	GGT ferries	1,619	44\%	1,959	83\%	1	1,620	83\%
	Subtotal	3,689	100\%	4,776	77\%	2	3,691	77\%
South Bay	BART	13,971	84\%	24,182	58\%	9	13,980	58\%
	Caltrain	2,529	15\%	3,600	70\%	5	2,534	70\%
	SamTrans	150	0.9\%	320	47\%	0	150	47\%
	Ferries	59	0.4\%	200	30\%	0	59	30\%
	Subtotal	16,709	100\%	28,302	59\%	14	16,723	59\%
Total All Regional Screenlines		63,100		84,188	75\%	25	63,125	75\%

Notes: Source: SFMTA 2011 APC data, 2014 TEP FEIR

Notes

SF MUNI utilization standard is 85% (vehicle capacity includes standees which represent 30% to 80% of seats, depending upon the configuration of the vehicle) BART and all other regional transit providers have a utilization standard of 100% (vehicle capacity is based on the number of seated passengers per vehicle)

[^0]: ${ }^{1}$ For purposes of this report, this roadway is named as $2412^{\text {th }}$ Street, but it would likely be named by the community or SFMTA.

 104402

[^1]: ${ }^{2}$ SFMTA, Draft TEP Implementation Strategy, April 5, 2011, page 3-5.<Delete space - would let me do it>
 ${ }^{3}$ SFMTA TEP Staff Recommendations, http://www.sfmta.com/cms/mtep/TEPRecommendationsbyRoute.htm, January 2009.

[^2]: ${ }^{4}$ Bicycle facilities are defined by the State of California in the California Streets and Highway Code Section, 8902.4.
 ${ }^{5} 2008$ San Francisco Collision Report, SFMTA Planning Division, December 18, 2009.

[^3]: ${ }^{6}$ San Francisco Bicycle Plan, SFMTA Planning Division, June 26, 2009.

[^4]: ${ }^{7}$ According to the project Sponsor, about five (5) percent of the existing housing units (about 30 units) might be vacant, which would result in additional trips of about 53 person trips and 28 vehicle trips during the PM peak hour. Of these additional trips, a maximum of 14 vehicle trips are anticipated to be distributed to major study intersections (Cesar Chavez Street/Connecticut Street, $25^{\text {th }}$ Street/Connecticut Street, $25^{\text {th }}$ Street/Dakota Street/Texas Street, and Cesar Chavez Street/US 101 Off-Ramp) and a maximum of 5 trips to other study intersections. These additional trips not included in the LOS analysis are not expected to impact LOS values of the study intersections.

[^5]: Source: SF Guidelines, 1990 U.S. Census Data, CDM Smith - March 2011
 Note:
 ${ }^{1}$ Distribution pattern was not obtained from SF Guidelines.

[^6]: ${ }^{8}$ SFMTA TEP Staff Recommendations, http://www.sfmta.com/cms/mtep/TEPRecommendationsbyRoute.htm, January 2009.
 104402

[^7]: ${ }^{9}$ Confirmation from SFMTA was obtained by the Planning Department (Brett Bollinger) on October 11, 2012.

[^8]: ${ }^{10}$ Construction in San Francisco is permitted seven days a week between the hours of 7 AM and 8 PM.
 11 The most recent version is available at http://www.sfmta.com/cms/vcons/documents/BlueBook7thEd-OnlineVers20080701.pdf.

[^9]: Source: SF Planning Department - 2009, 2012; CDM Smith -2012.

[^10]: Sources: SFMTA TEP, July 2008; SF Planning Department, 2009, 2012

[^11]: ${ }^{1}$ These volumes are provided in Figure 4-7 of the Potrero HOPE Transportation Study Final Report, October 2012.

[^12]: ${ }^{2}$ This section is from the Potrero HOPE Transportation Study Final Report, October 2012.
 ${ }^{3}$ For more information about the Proposed Project's trip generation, see Section 3.2 - Mode Split from the Potrero HOPE Transportation Study Final Report, October 2012.

[^13]: ${ }^{4}$ SF Planning Department, 2014. Transit Effectiveness Project Final Environmental Impact Report is available online at http://tepeir.sfplanning.org. The Transit Effectiveness Project webpage can be accessed online at http://www.sfmta.com/projects-planning/projects/tep-transit-effectiveness-project.

[^14]: ${ }^{5}$ Table 8: Description of Proposed Service Improvements, p. 2-64, Transit Effectiveness Project Final Environmental Impact Report, SF Planning Department, March 2014.

[^15]: ${ }^{7}$ This section is from the Potrero HOPE Transportation Study Final Report, October 2012.

[^16]: ${ }^{8}$ This section is from the Potrero HOPE Transportation Study Final Report, October 2012.

