LANGAN TREADWELL ROLLO

Technical Excellence Practical Experience Client Responsiveness

22 June 2015

Jeanine Strickland Parks for People - Bay Area Program The Trust for Public Land 101 Montgomery Street, Suite 900 San Francisco, California 94104

Subject: Preliminary Study Geotechnical and Environmental Issues New Park Concept Plan 900 Innes India Basin San Francisco, California Langan Project No.: 731651501

Dear Ms. Strickland:

This letter presents the results of our preliminary study regarding geotechnical and environmental issues associated with the development of the 900 Innes Avenue Park in San Francisco, California as shown on Figure 1. The 900 Innes Avenue Park is part of the India Basin Waterfront Parks Vision Plan, which includes about 60 acres of public and privately owned vacant land to be developed into new publicly accessible parkland and open space. We performed a preliminary geotechnical investigation for the adjacent India Basin Development project that includes India Basin Open Space (southernmost section of the India Basin Waterfront Parks Vision Plan), and presented our findings and conclusions in a report dated 4 September 2014.

PROJECT DESCRIPTION

The project site is north of the India Basin Open Space park area, east of Innes Street, and south of the proposed India Basin Shoreline Park as shown on Figure 2. The 2.4-acre site includes 1.8 acres of land. The proposed 900 Inness Avenue Park includes extending a segment of the Bay Trail along the edge of the shoreline, a continuous bike/pedestrian lane, and recreational areas including beach areas and dog parks. In addition, a driveway is proposed for boat transfer / drop off, and for emergency vehicles. Additional improvements may include the construction of a one-story, light, boat building; alternatively, the existing historic shipwright's cottage, adjacent to Innes Avenue may be retrofitted. New utilities will be installed for lighting and irrigation. Site grading may require placing 3 to 5 feet of fill.

Wetlands may be created along the shoreline. Sedimentation and coastal process along the coastline are being evaluated by Moffat and Nichols.

SITE AND SUBSURFACE CONDITIONS

Site grades within the 900 Innes Avenue Park area vary from Elevation 10 feet near the edge of the shoreline to Elevation 30 feet adjacent to Innes Avenue. The site is partially paved, with two docks, two boat launches and an access road. The site includes an abandoned one-story family unit, two storage buildings, and a partially collapsed covered pier. The historic Shipwright's cottage is adjacent to Innes Avenue.

Published maps, aerial photos, and the results of available subsurface information indicate the majority of the site is east of the edge of the historic San Francisco Bay shoreline. The approximate location of the historic shoreline is shown in the attached Site Plan, Figure 2. The shoreline was filled between 1938 and 1968.

The portion of the site east of the old shoreline is likely underlain by 10 to 15 feet of sandy fill; 10 to 20 feet of soft, compressible clay referred to as Bay Mud and loose sand; medium dense sand; Old Bay Clay; and bedrock. The thicknesses of fill, Bay Mud, sand and Old Bay Clay, likely increase towards the Bay. The portion of the site west of the old shoreline is likely covered by 10 to 15 feet of fill, underlain by loose to dense sand to depths of at least 30 feet below existing site grades. Groundwater at the site is within the upper ten feet of the fill and can likely rise to the ground surface, near the shoreline.

The site, historically used as ship building and repair, and referred to as Donco Industries, was most recently investigated in 2013 for contamination, in coordination with EPA and the San Francisco Department of Health. The Phase I/II Investigation Targeted Brownfield Assessment Final Report by Weston Solutions, dated September 2013, indicates a release of petroleum hydrocarbons, PCBs, PAHs, and metals occurred at the site. Weston Solutions concludes the contamination is likely related to historical site activities (ship repair services), and current site activities (construction equipment and heavy machinery storage). They further indicate site development for recreational use may require the construction of a barrier, and/or excavation and disposal of contaminated soils, and and/or containment of contaminated soil. Each cleanup alternative will require subsequent confirmation and delineation sampling of the impacted areas.

REGIONAL SEISMICITY AND FAULTING

Regional faulting and seismic hazards at the project site are discussed in this section.

Regional Faulting

The major active faults in the area are the San Andreas, San Gregorio, Hayward, and Calaveras Faults. These and other faults of the region are shown on Figure 3. For each of the active faults within 50 kilometers of the site, the distance from the site and estimated mean

characteristic Moment magnitude¹ [2007 Working Group on California Earthquake Probabilities (WGCEP) (2007) and Cao et al. (2003)] are summarized in Table 1.

Fault Segment	Approx. Distance from fault (km)	Direction from Site	Mean Characteristic Moment Magnitude
N. San Andreas – Peninsula	11.3	West	7.23
N. San Andreas (1906 event)	11	West	8.05
Total Hayward	18	Northeast	7.00
Total Hayward-Rodgers Creek	18	Northeast	7.33
N. San Andreas – North Coast	18	West	7.51
San Gregorio Connected	19	West	7.50
Total Calaveras	34	East	7.03
Mount Diablo Thrust	34	East	6.70
Monet Vista – Shannon	35	Southeast	6.50
Green Valley Connected	39	East	6.80
Rodgers Creek	40	North	7.07
Point Reyes	47	West	6.90
West Napa	50	North	6.70

TABLE 1Regional Faults and Seismicity

Figure 3 also shows the earthquake epicenters for events with magnitude greater than 5.0 from January 1800 through August 2014. Since 1800, four major earthquakes have been recorded on the San Andreas Fault. In 1836 an earthquake with an estimated maximum intensity of VII on the Modified Mercalli (MM) scale (Figure 4) occurred east of Monterey Bay on the San Andreas Fault (Toppozada and Borchardt 1998). The estimated Moment magnitude, $M_{w,}$ for this earthquake is about 6.25. In 1838, an earthquake occurred with an estimated intensity of about VIII-IX (MM), corresponding to a M_w of about 7.5. The San Francisco Earthquake of 1906 caused the most significant damage in the history of the Bay Area in terms of loss of lives and property damage. This earthquake created a surface rupture along the San Andreas Fault

¹ Moment magnitude is an energy-based scale and provides a physically meaningful measure of the size of a faulting event. Moment magnitude is directly related to average slip and fault rupture area.

from Shelter Cove to San Juan Bautista approximately 470 kilometers in length. It had a maximum intensity of XI (MM), a M_w of about 7.9, and was felt 560 kilometers away in Oregon, Nevada, and Los Angeles. The Loma Prieta Earthquake occurred on 17 October 1989, in the Santa Cruz Mountains with a M_w of 6.9, approximately 89 km from the site. In 1868 an earthquake with an estimated maximum intensity of X on the MM scale occurred on the southern segment (between San Leandro and Fremont) of the Hayward Fault. The estimated M_w for the earthquake is 7.0. In 1861, an earthquake of unknown magnitude (probably a M_w of about 6.5) was reported on the Calaveras Fault. The most recent significant earthquake on this fault was the 1984 Morgan Hill earthquake ($M_w = 6.2$).

The most recent earthquake to affect the Bay Area occurred on 24 August 2014 and was located on the West Napa fault, approximately 50 kilometers northeast of the site, with a M_w of 6.0.

The 2007 WGCEP at the U.S. Geologic Survey (USGS) predicted a 63 percent chance of a magnitude 6.7 or greater earthquake occurring in the San Francisco Bay Area in 30 years. More specific estimates of the probabilities for different faults in the Bay Area are presented in Table 2.

Probability (percent)
31
21
7
6
3
3
1

TABLE 2 WGCEP (2007) Estimates of 30-Year Probability

of a Magnitude 6.7 or Greater Earthquake

Fault Rupture

Historically, ground surface displacements closely follow the traces of geologically young faults. The site is not within an Earthquake Fault Zone, as defined by the Alquist-Priolo Earthquake Fault Zoning Act, and no known active or potentially active faults exist on the site. In a seismically active area, a remote possibility exists for future faulting in areas where no faults previously existed; however, we conclude the risk of surface faulting and consequent secondary ground failure is very low.

Seismic Hazards

During a major earthquake on a segment of one of the nearby faults, strong to very strong shaking is expected to occur at the project site. Strong shaking during an earthquake can result in ground failure such as that associated with soil liquefaction², lateral spreading³, and differential compaction⁴.

When a saturated soil with little to no cohesion liquefies during a major earthquake, it experiences a temporary loss of strength as a result of a transient rise in pore water pressure generated by strong ground motion. Flow failure, lateral spreading, differential settlement, loss of bearing, ground fissures, and sand boils are evidence of excess pore pressure generation and liquefaction. The site is within a designated liquefaction hazard zone as designated by the California Geological Survey (CGS) seismic hazard zone map for the area titled *State of California Seismic Hazard Zones, City and County of San Francisco, Official Map,* dated 17 November 2001 (Figure 5).

Loose to medium dense sandy fill and native sand below the high groundwater level may liquefy during a major earthquake on a nearby active fault. We anticipate several inches of vertical, earthquake-induced ground settlement could occur within the project site. The anticipated settlement is expected to be erratic and vary significantly across the site.

Densification of the fill above the design groundwater level may result in a few inches of ground settlement; however, several inches of densification settlement could occur locally in the fill.

Site grades along the Bay margin have been significantly modified to current elevations by manmade improvements, primarily by excavation and fill activities. Considering the surface of the fill and Bay Mud, are sloping, and likely presence of continuous, potentially liquefiable loose to medium dense sand below the groundwater level, we conclude lateral movement of the fill

² Liquefaction is a transformation of soil from a solid to a liquefied state during which saturated soil temporarily loses strength resulting from the buildup of excess pore water pressure, especially during earthquake-induced cyclic loading. Soil susceptible to liquefaction includes loose to medium dense sand and gravel, low-plasticity silt, and some low-plasticity clay deposits.

³ Lateral spreading is a phenomenon in which surficial soil displaces along a shear zone that has formed within an underlying liquefied layer. Upon reaching mobilization, the surficial blocks are transported downslope or in the direction of a free face by earthquake and gravitational forces.

⁴ Differential compaction is a phenomenon in which non-saturated, cohesionless soil is densified by earthquake vibrations, causing differential settlement.

towards the bay will likely occur during a major earthquake on a nearby active fault. During a major earthquake on a nearby active fault, we anticipate lateral ground displacement on the order of several inches might occur. We anticipate the direction of the lateral ground displacement will likely be towards the east/ northeast (towards the bay).

PRELIMINARY DISCUSSION AND CONCLUSIONS

On the basis of the available subsurface information and our understanding of the proposed development, we conclude the project is feasible from a geotechnical standpoint. The main geotechnical issues at the project site are:

- presence of uncontrolled fill across the site
- presence of hazardous substances within the fill
- anticipated ground displacements within the fill and native sand during a major earthquake on a nearby active fault
- presence of week, compressible Bay Mud beneath the fill east of the old shoreline and Bay Mud consolidation under new building loads and new fill placement

During a major earthquake on a nearby active fault we anticipate ground displacements (vertical and lateral) within the fill may be on the order of several inches. Differential, earthquake-induced, vertical ground settlement might be on the order of four inches over a horizontal distance of 50 feet. Earthquake-induced ground settlement could affect the performance of the proposed Bay Trail, bike/pedestrian path, access road and utilities. Repairs will likely be required after a major earthquake on a nearby active fault.

We anticipate that in general, consolidation of the Bay Mud and Old Bay Clay under the weight of the existing fill is nearly complete. However, the onsite fill was placed without mechanical effort /compaction. Structures / proposed improvements over the existing fill will be subjected to excessive ground settlements induced by earthquake, new fill and building loads; in addition, differential settlement within the fill may be abrupt and erratic.

Placement of new fill will likely initiate consolidation of the Bay Mud. Bay Mud consolidation will result in large ground settlement that should be considered in the design of utilities, site grading, and other site improvements.

The anticipated earthquake-induced ground settlement and settlement from new fill should be accommodated in the design of the emergence access road and utilities, as need. The magnitude of the ground settlement should be evaluated during a design level geotechnical investigation.

Considering the presence of contaminants in the fill, site development for recreational use may require the construction of a barrier, and/or excavation and disposal of contaminated soils, and and/or containment of contaminated soil. Each cleanup alternative will require subsequent confirmation and delineation sampling of the impacted areas.

Lightweight, one-story structures may be supported on a stiffened mat foundation provided the mat is designed for the large anticipated differential ground settlement. Alternatively, lightweight structures may be supported on deep foundations.

The stability of the shoreline should be evaluated during the design level phase of the proposed improvements. If the anticipated ground movement is not acceptable, mitigation measures should be implemented, as needed.

PRELIMINARY RECOMMENDATIONS

Our preliminary recommendations for site preparation and grading, foundation design, floor slabs, and seismic design are presented in this section of the report.

Site Preparation and Grading

This section presents preliminary earthwork recommendations for site preparation and grading.

Site Clearing

Site demolition should include the removal of pavement, utility lines, and other below-grade elements that will interfere with the proposed construction. Excavations in fill for foundations and site utilities may encounter concrete elements and debris. Breaking up obstructions using jack hammers or hoe rams into small pieces may be required to facilitate offsite removal. Where utilities that are removed extend off site, they should be capped or plugged with grout.

Onsite fill will likely require special handling during site grading. Soil management measures to be implemented during construction should be addressed in the project Site Mitigation Plan.

Where concrete rubble is present, pieces larger than four inches in greatest dimension should be removed. Stripped pavement materials can be used as backfill provided they are crushed to less than four inches in greatest dimension and mixed with soil to prevent nesting. The weight of the asphalt and concrete fragments should not comprise more than 30 percent of the mixture. Existing concrete elements can be used as fill provided they are crushed to less than three inches in maximum dimension and properly mixed with onsite soil.

Subgrade Preparation

In areas to receive site improvements, including flatwork, the exposed soil subgrade should be scarified to a depth of at least eight inches, moisture-conditioned to above the optimum moisture content and compacted to at least 95 percent relative compaction⁵. The soil subgrade should be kept moist until it is covered by fill or other improvements.

Fill Placement and Compaction

Placement of more than three feet of new fill will result in large ground settlement that should be considered in the design of utilities, site grading, and other site improvements.

Fill should consist of onsite soil or imported soil that is non-corrosive, free of organic matter or other deleterious material, contains no rocks or lumps larger than four inches in greatest dimension, has a liquid limit of less than 40 and a plasticity index lower than 12, and is approved by the Geotechnical Engineer.

Fill should be placed in horizontal lifts not exceeding eight inches in loose thickness, moistureconditioned to near the optimum moisture content, and compacted to at least 90 percent relative compaction. Fill thicker than five feet or clean sand or gravel (soil with less than 10 percent fines by weight) used as fill should be compacted to at least 95 percent relative compaction.

The Geotechnical Engineer should approve all sources of fill at least three days before use at the site. The grading contractor should provide analytical test results or other suitable environmental documentation indicating the imported fill is free of hazardous materials at least three days before use at the site. If this data is not available, up to two weeks should be allowed to perform analytical testing on the proposed import material. A bulk sample of approved fill should be provided to the geotechnical engineer at least three working days before use at the site so a compaction curve can be prepared.

Utilities and Utility Trenches

Excavations for utility trenches can be readily made with a backhoe; however, unexpected obstructions may make some of the trenching operations difficult. All trenches should conform to the current CAL-OSHA requirements.

Backfill for utility trenches and other excavations is also considered fill, and it should be compacted according to the recommendations presented in Section 8.1.3. If imported clean sand or gravel is used as backfill, however, it should be compacted to at least 95 percent

⁵ Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density of the same material, as determined by the latest ASTM D1557 laboratory compaction procedure.

relative compaction. Jetting of trench backfill should not be permitted. Special care should be taken when backfilling utility trenches in pavement areas. Poor compaction may cause excessive settlements, resulting in damage at the ground surface.

Utilities should be designed to accommodate 6 to 12 inches of vertical settlement where they enter the new buildings. If lateral soil movement is not mitigated, utility connections should also accommodate six inches of lateral soil movement.

Lightweight Structures on Stiffened Mat Foundations

Lightweight, one-story structures may be supported on a stiffened mat foundation provided the mat is designed for a differential settlement of four inches over a horizontal distance of 50 feet. Considering the variability of onsite fill and lack of documentation of fill compaction, we conclude during a major earthquake on a nearby active fault the actual ground differential settlement may be on the order of four inches over a horizontal distance of 50 feet. Alternatively, structures may be supported on deep foundations.

Ground Building Slabs

If there are any areas where floor moisture is undesirable, the floor should be moisture-proofed. To reduce water vapor transmission through the floor slabs, we recommend installing a capillary moisture break and a water vapor retarder over the soil subgrade and beneath new floor slabs. A capillary moisture break consists of at least four inches of clean, free-draining gravel or crushed rock. The vapor retarder should meet the requirements for Class C vapor retarders stated in ASTM E1745-97. The vapor retarder should be placed in accordance with the requirements of ASTM E1643-98. These requirements include overlapping seams by six inches, taping seams, and sealing penetrations in the vapor retarder. The vapor retarder should be covered with two inches of sand to aid in curing the concrete and to protect the vapor retarder during slab construction. The particle size of the gravel/crushed rock and sand should meet the gradation requirements presented in Table 3.

TABLE 3

Sieve Size	Percentage Passing Sieve	
Gravel or Crushed Rock		
1 inch	90 – 100	
3/4 inch	30 – 100	
1/2 inch	5 – 25	
3/8 inch	0 – 6	
	Sand	
No. 4	100	
No. 200	0 – 5	

Gradation Requirements for Capillary Moisture Break

The sand overlying the membrane should be dry at the time concrete is placed. Excess water trapped in the sand could eventually be transmitted as vapor through the slab. If the sand becomes wet, concrete should not be placed until the sand has been dried or replaced.

Concrete mixes with high water/cement (w/c) ratios result in excess water in the concrete, which increases the cure time and results in excessive vapor transmission through the slab. Therefore, concrete for the floor slab should have a low water/cement (w/c) ratio – less than 0.5. If approved by the project structural engineer, the sand can be eliminated and the concrete can be placed directly over the vapor retarder, provided the w/c ratio of the concrete does not exceed 0.45 and water is not added in the field. If necessary, workability should be increased by adding plasticizers. In addition, the slab should be properly cured.

Before the floor covering is placed, the contractor should check that the concrete surface and the moisture emission levels (if emission testing is required) meet the manufacturer's requirements.

Corrosion Protection

Concrete elements with a maximum water cement ratio of 0.55 (including grade beams and slabs), supported on onsite soil should be Type I or Type II concrete. Concrete elements in contact with Bay Mud should use Type V concrete. Additional corrosion testing should be performed during the design level investigation for each building.

Any utilities extending into Bay Mud should be corrosion protected. Below ground concrete structures and steel piles will require protection from corrosion. A site corrosivity evaluation should be performed by a corrosivity specialist to develop long-term corrosion control for the selected foundation system and proposed construction materials for the underground site utilities.

Seismic Design

Seismic parameters for design of buildings at the site will depend where on the site the buildings will be constructed. Our preliminary conclusion is the Site Class could range from S_D (less than 10 feet of Bay Mud) to S_E (more than 10 feet of Bay Mud).

Maximum Considered Earthquake (MCE) mapped short (S_s) and one second (S₁) spectral values for the project site are 1.50g and 0.616g, respectively. Limits of building areas with less than ten feet of Bay Mud (Site Class D) and more than 10 feet of Bay Mud (Site Class E) can be estimated using the Bay Mud thickness contours presented on Figure 9. Values of F_a, F_v, S_{MS}, S_{M1}, S_{DS}, and S_{D1}, for Site Class D, and E per 2013 CBC / ASCE 7-10 are presented in Table 4. The actual Site Class for each building should be confirmed during the design level investigation.

TABLE 4

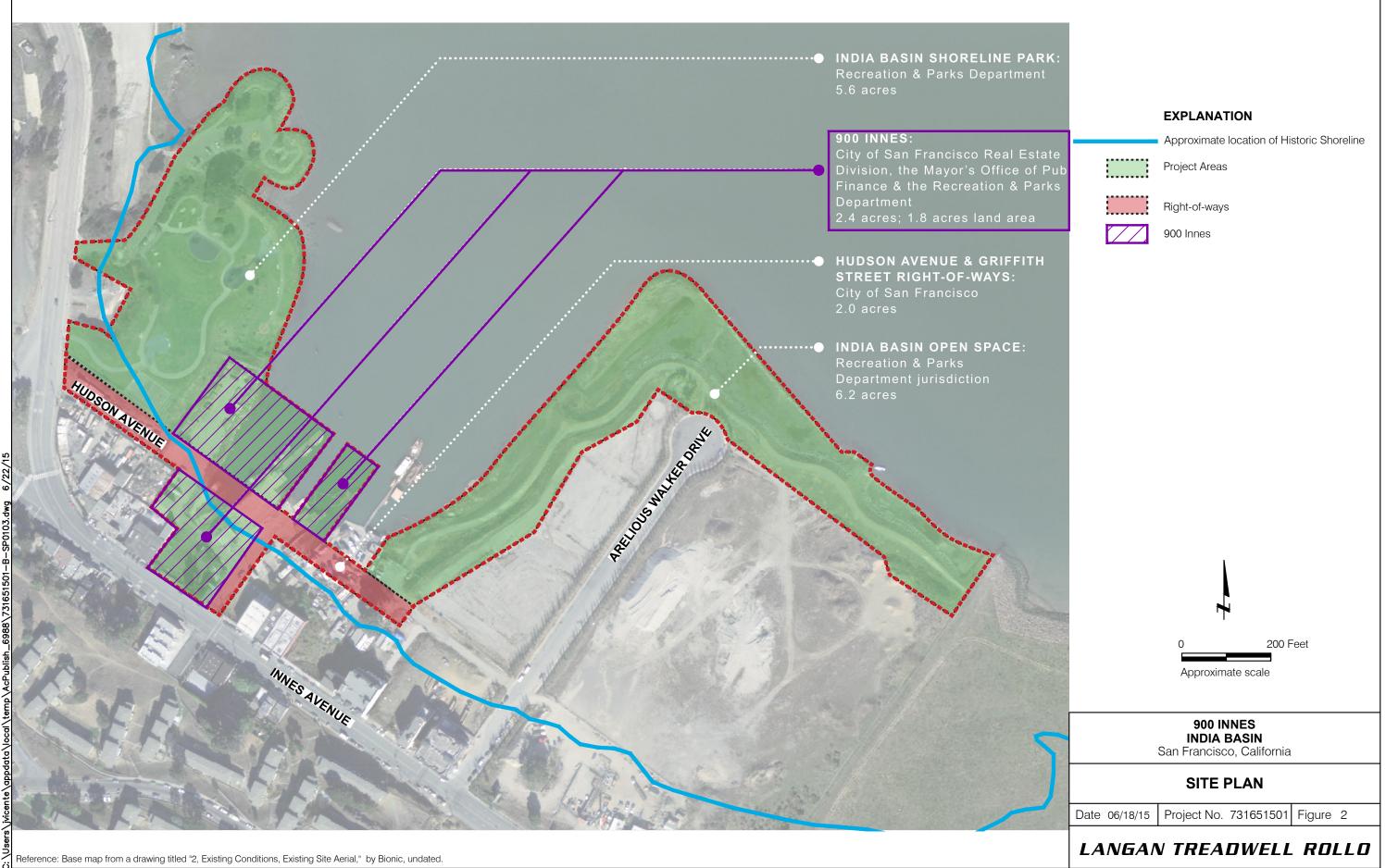
Recommended Site Coefficients and Mapped Response Acceleration Parameters

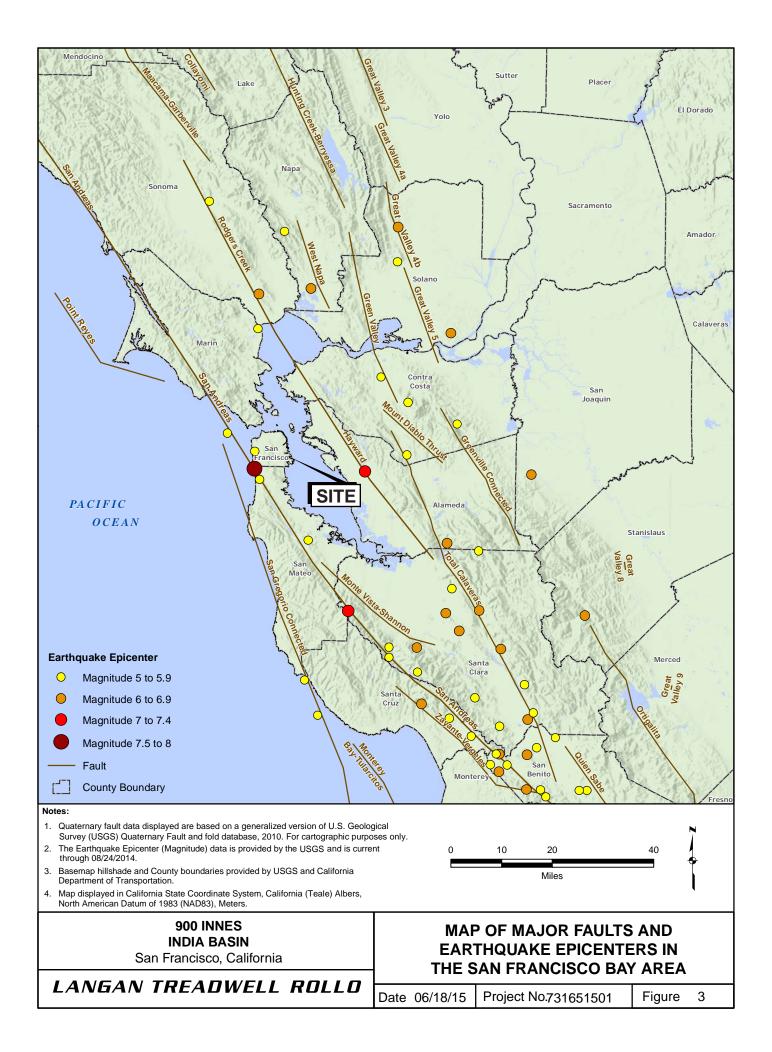
	Site Class D (West of Hudson Avenue)	Site Class E (East of Hudson Avenue)
Fa	1.00	0.90
Fv	1.50	2.40
S_{MS}	1.50	1.35
S _{M1}	0.92	1.48
S _{DS}	1.00	0.90
S _{D1}	0.62	0.99

If the design level investigation indicates a continuous liquefiable soil layer is present beneath new buildings, the Site Class is F, and a site specific response spectra will be required if the building period is greater than 0.5 second.

LIMITATIONS

The conclusions and recommendations presented in this report are preliminary and may be used to estimate costs for preliminary schematic drawings; however during final design, detailed geotechnical investigation(s) should be performed for the proposed improvements. The design level geotechnical investigations should include field investigations and laboratory testing, as needed; engineering analyses should be performed for the final design and the results should be used to further evaluate subsurface conditions and to develop geotechnical design parameters for soil improvement, foundations, and other geotechnical aspects of the design specific to this site.


Sincerely, Langan Treadwell Rollo


Maria Flessas, G.E. #2502 Principal

731651501.01_MGF_Feasibility Study 900 Innes Avenue

Attachments: Figure 1 – Site Location Map Figure 2 – Site Plan Figure 3 – Map of Major Faults and Earthquake Epicenters in the San Francisco Bay Area Figure 4 – Modified Mercalli Scale Figure 5 – Liquefaction Hazard Zone Map

- I Not felt by people, except under especially favorable circumstances. However, dizziness or nausea may be experienced. Sometimes birds and animals are uneasy or disturbed. Trees, structures, liquids, bodies of water may sway gently, and doors may swing very slowly.
- II Felt indoors by a few people, especially on upper floors of multi-story buildings, and by sensitive or nervous persons. As in Grade I, birds and animals are disturbed, and trees, structures, liquids and bodies of water may sway. Hanging objects swing, especially if they are delicately suspended.
- III Felt indoors by several people, usually as a rapid vibration that may not be recognized as an earthquake at first. Vibration is similar to that of a light, or lightly loaded trucks, or heavy trucks some distance away. Duration may be estimated in some cases. Movements may be appreciable on upper levels of tall structures. Standing motor cars may rock slightly.
- IV Felt indoors by many, outdoors by a few. Awakens a few individuals, particularly light sleepers, but frightens no one except those apprehensive from previous experience. Vibration like that due to passing of heavy, or heavily loaded trucks. Sensation like a heavy body striking building, or the falling of heavy objects inside.

Dishes, windows and doors rattle; glassware and crockery clink and clash. Walls and house frames creak, especially if intensity is in the upper range of this grade. Hanging objects often swing. Liquids in open vessels are disturbed slightly. Stationary automobiles rock noticeably.

V Felt indoors by practically everyone, outdoors by most people. Direction can often be estimated by those outdoors. Awakens many, or most sleepers. Frightens a few people, with slight excitement; some persons run outdoors.

Buildings tremble throughout. Dishes and glassware break to some extent. Windows crack in some cases, but not generally. Vases and small or unstable objects overturn in many instances, and a few fall. Hanging objects and doors swing generally or considerably. Pictures knock against walls, or swing out of place. Doors and shutters open or close abruptly. Pendulum clocks stop, or run fast or slow. Small objects move, and furnishings may shift to a slight extent. Small amounts of liquids spill from well-filled open containers. Trees and bushes shake slightly.

VI Felt by everyone, indoors and outdoors. Awakens all sleepers. Frightens many people; general excitement, and some persons run outdoors.

Persons move unsteadily. Trees and bushes shake slightly to moderately. Liquids are set in strong motion. Small bells in churches and schools ring. Poorly built buildings may be damaged. Plaster falls in small amounts. Other plaster cracks somewhat. Many dishes and glasses, and a few windows break. Knickknacks, books and pictures fall. Furniture overturns in many instances. Heavy furnishings move.

VII Frightens everyone. General alarm, and everyone runs outdoors.

People find it difficult to stand. Persons driving cars notice shaking. Trees and bushes shake moderately to strongly. Waves form on ponds, lakes and streams. Water is muddied. Gravel or sand stream banks cave in. Large church bells ring. Suspended objects quiver. Damage is negligible in buildings of good design and construction; slight to moderate in well-built ordinary buildings; considerable in poorly built or badly designed buildings, adobe houses, old walls (especially where laid up without mortar), spires, etc. Plaster and some stucco fall. Many windows and some furniture break. Loosened brickwork and tiles shake down. Weak chimneys break at the roofline. Cornices fall from towers and high buildings. Bricks and stones are dislodged. Heavy furniture overturns. Concrete irrigation ditches are considerably damaged.

VIII General fright, and alarm approaches panic.

Persons driving cars are disturbed. Trees shake strongly, and branches and trunks break off (especially palm trees). Sand and mud erupts in small amounts. Flow of springs and wells is temporarily and sometimes permanently changed. Dry wells renew flow. Temperatures of spring and well waters varies. Damage slight in brick structures built especially to withstand earthquakes; considerable in ordinary substantial buildings, with some partial collapse; heavy in some wooden houses, with some tumbling down. Panel walls break away in frame structures. Decayed pilings break off. Walls fall. Solid stone walls crack and break seriously. Wet grounds and steep slopes crack to some extent. Chimneys, columns, monuments and factory stacks and towers twist and fall. Very heavy furniture moves conspicuously or overturns.

IX Panic is general.

Ground cracks conspicuously. Damage is considerable in masonry structures built especially to withstand earthquakes; great in other masonry buildings - some collapse in large part. Some wood frame houses built especially to withstand earthquakes are thrown out of plumb, others are shifted wholly off foundations. Reservoirs are seriously damaged and underground pipes sometimes break.

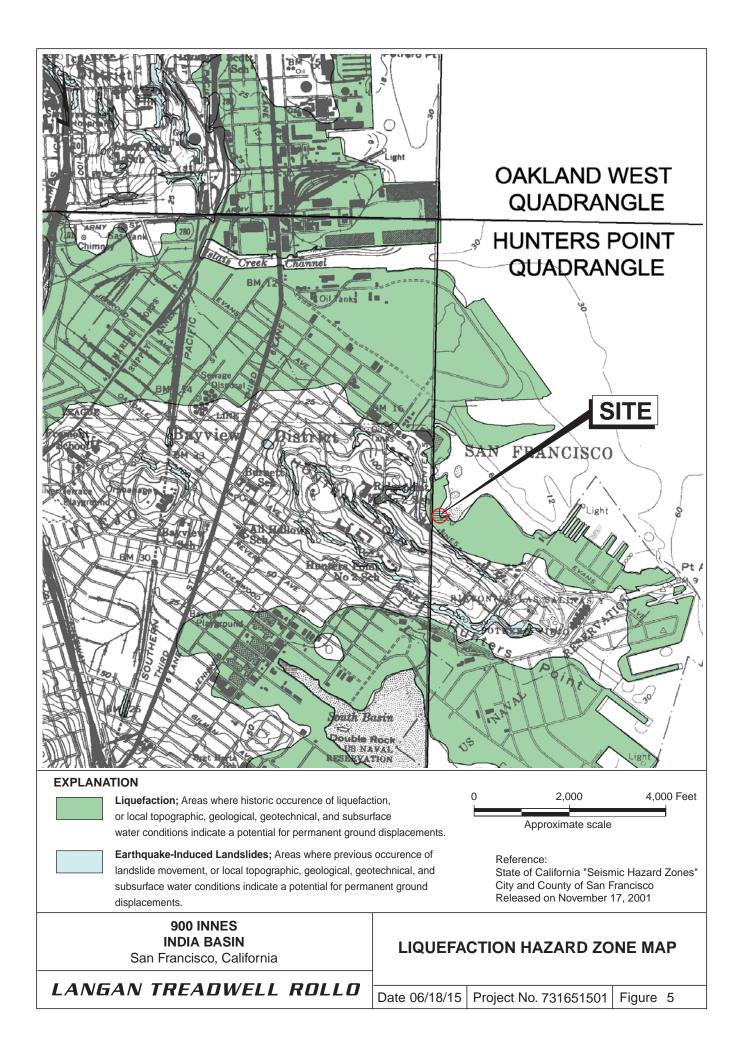
X Panic is general.

Ground, especially when loose and wet, cracks up to widths of several inches; fissures up to a yard in width run parallel to canal and stream banks. Landsliding is considerable from river banks and steep coasts. Sand and mud shifts horizontally on beaches and flat land. Water level changes in wells. Water is thrown on banks of canals, lakes, rivers, etc. Dams, dikes, embankments are seriously damaged. Well-built wooden structures and bridges are severely damaged, and some collapse. Dangerous cracks develop in excellent brick walls. Most masonry and frame structures, and their foundations are destroyed. Railroad rails bend slightly. Pipe lines buried in earth tear apart or are crushed endwise. Open cracks and broad wavy folds open in cement pavements and asphalt road surfaces.

XI Panic is general.

Disturbances in ground are many and widespread, varying with the ground material. Broad fissures, earth slumps, and land slips develop in soft, wet ground. Water charged with sand and mud is ejected in large amounts. Sea waves of significant magnitude may develop. Damage is severe to wood frame structures, especially near shock centers, great to dams, dikes and embankments, even at long distances. Few if any masonry structures remain standing. Supporting piers or pillars of large, well-built bridges are wrecked. Wooden bridges that "give" are less affected. Railroad rails bend greatly and some thrust endwise. Pipe lines buried in earth are put completely out of service.

XII Panic is general.


Damage is total, and practically all works of construction are damaged greatly or destroyed. Disturbances in the ground are great and varied, and numerous shearing cracks develop. Landslides, rock falls, and slumps in river banks are numerous and extensive. Large rock masses are wrenched loose and torn off. Fault slips develop in firm rock, and horizontal and vertical offset displacements are notable. Water channels, both surface and underground, are disturbed and modified greatly. Lakes are dammed, new waterfalls are produced, rivers are deflected, etc. Surface waves are seen on ground surfaces. Lines of sight and level are distorted. Objects are thrown upward into the air.

MODIFIED MERCALLI INTENSITY SCALE

LANGAN TREADWELL ROLLO

Date 06/18/15 Project No. 731651501 Figure 4

TECHNICAL MEMORANDUM Foreshore Sediment Sampling 900 Innes Avenue San Francisco, California

Prepared for: Contract No. 4061-12/13 San Francisco Department of the Environment 1455 Market Street, Suite 1200 San Francisco, California 94103

Prepared by:

Post Montgomery Center One Montgomery Street, Suite 900 San Francisco, California 94104

October 2015

IDENTIFICATION FORM

Document Title: TECHNICAL MEMORANDUM Foreshore Sediment Sampling 900 Innes Avenue San Francisco, California

- Organization Title:URS CorporationAddress:Post Montgomery CenterOne Montgomery Street, Suite 900San Francisco, California94104
- Project Manager:Kali FutnaniTelephone:(415) 243-3878
- **Project Geologist:**Erik Skov, PG, CHGTelephone:(415) 243-3845
- Plan Coverage:This Technical Memorandum constitutes the deliverable for technical
support to complete the scope of work described in the Sampling and
Analysis Plan Amendment Foreshore Sediment Sampling, 900 Innes
Avenue, Targeted Brownfields Assessment, San Francisco, CA for the
San Francisco Department of the Environment.

Approval Form Date: 10/30/2015 Page ii

APPROVAL FORM

Prepared for: San Francisco Department of the Environment 1455 Market Street, Suite 1200 San Francisco, California 94103

Prepared by: URS Corporation Post Montgomery Center One Montgomery Street, Suite 900 San Francisco, California 94104

· Q.

Date: 10/30/2015

Signature: Name: Title:

Kali Futnani Project Manager URS Corporation

Date: 10/30/2015

Signature: Name: Title:

Erik Skov, PG, CHG Senior Geologist Professional Geologist No. 7470 URS Corporation

This document has been prepared for the San Francisco Department of the Environment under Contract No. 4061-12/13.

TABLE OF CONTENTS

IDEN	TIFIC	CATION FORM	i
APPI	ROVA	L FORM	ii
TAB	LE OF	CONTENTS	iii
LIST	OF A	CRONYMS AND ABBREVIATIONS	v
1.0	INT	RODUCTION	1
2.0	BAC	CKGROUND	2
3.0	OBJ	ECTIVE AND SCOPE OF FORESHORE SEDIMENT SAMPLING.	5
3.0 4.0		ECTIVE AND SCOPE OF FORESHORE SEDIMENT SAMPLING. IMENT ANALYTICAL RESULTS	
			7
	SED	IMENT ANALYTICAL RESULTS Metals Analytical Results	7
	SED 4.1	IMENT ANALYTICAL RESULTS Metals Analytical Results Petroleum Hydrocarbon Analytical Results	7 7
	SED 4.1 4.2	IMENT ANALYTICAL RESULTS Metals Analytical Results Petroleum Hydrocarbon Analytical Results Polychlorinated Biphenyl Analytical Results	7 7
	SED 4.1 4.2 4.3	IMENT ANALYTICAL RESULTS Metals Analytical Results Petroleum Hydrocarbon Analytical Results Polychlorinated Biphenyl Analytical Results Polycyclic Aromatic Hydrocarbon Analytical Results	7 7 8 8 9
	SED 4.1 4.2 4.3 4.4	IMENT ANALYTICAL RESULTS Metals Analytical Results Petroleum Hydrocarbon Analytical Results Polychlorinated Biphenyl Analytical Results	7 7 8 8 8 9 9
	SED 4.1 4.2 4.3 4.4 4.5 4.6	IMENT ANALYTICAL RESULTS Metals Analytical Results Petroleum Hydrocarbon Analytical Results Polychlorinated Biphenyl Analytical Results Polycyclic Aromatic Hydrocarbon Analytical Results Organotin Analytical Results	7 7 8 8 9 9 9

LIST OF TABLES

Table 1	CAM 17 Metals Analytical Results
---------	----------------------------------

- Table 2Diesel Range Organics and Motor Oil Range Organics Analytical Results
- Table 3Polychlorinated Biphenyls Analytical Results
- Table 4Polycyclic Aromatic Hydrocarbon Analytical Results
- Table 5Organotins Analytical Results
- Table 6Metals Analytical Results Compared to Disposal Criteria
- Table 7Soluble Metals Analytical Results

LIST OF FIGURES

Figure 2 Sediment Sampling Locations

Figure 3 Metals Exceeding Screening Levels

- Figure 4Petroleum Hydrocarbons Exceeding Screening Levels
- Figure 5 Polychlorinated Biphenyls Exceeding Screening Levels
- Figure 6 Polycyclic Aromatic Hydrocarbons Exceeding Screening Levels
- Figure 7 Organotins Exceeding Screening Levels

APPENDICES

Appendix A	WESTON Figures
Appendix B	Data Validation and Laboratory Analytical Reports

LIST OF ACRONYMS AND ABBREVIATIONS

ABCA	Analysis of Brownfields Cleanup Alternatives
bgs	below ground surface
bss	below sediment surface
CCR	California Code of Regulations
ESA	Environmental Site Assessment
ESLs	Environmental Screening Levels
PAHs	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PVC	Polyvinyl Chloride
RCRA	Resource Conservation and Recovery Act
RSLs	Regional Screening Levels
RWQCB	Regional Water Quality Control Board
SAP	Sampling and Analysis Plan
SFDOE	San Francisco Department of the Environment
STLC	Soluble Threshold Limit Concentration
SVOCs	semi-volatile organic compounds
TBA	Targeted Brownfields Assessment
TC	Toxicity Characteristic
TCLP	Toxicity Characteristic Leaching Procedure
TPH-d	total petroleum hydrocarbons as diesel
TPH-mo	total petroleum hydrocarbons as motor oil
TTLC	Total Threshold Limit Concentration
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
USEPA	U.S. Environmental Protection Agency
URS	URS Corporation
WESTON	Weston Solutions, Inc.
WET	Waste Extraction Test

1.0 INTRODUCTION

URS Corporation (URS), under Contract No. 4061-12/13 with the San Francisco Department of the Environment (SFDOE), has prepared this Technical Memorandum to document the results of the additional sediment sampling conducted in the foreshore area of the 900 Innes Avenue property located in San Francisco, California (Site) (Figure 1). The scope of work was conducted in general accordance with the Sampling and Analysis Plan Amendment – Foreshore Sediment Sampling, 900 Innes Avenue, Targeted Brownfields Assessment, San Francisco, CA dated March 13, 2015.

The Sampling and Analysis Plan (SAP) Amendment for additional foreshore sediment sampling and analysis was prepared at the request of the San Francisco Department of the Environment. In 2014 the San Francisco Recreation and Parks Department completed their acquisition of the Site from the Tenderloin Housing Clinic. The SAP Amendment was prepared in order to generate additional sediment analytical data at the Site in order for the San Francisco Recreation and Parks Department to conduct further studies to assess the potential need for remediation of the sediments to allow for water access in the open space development proposed for the Site.

2.0 BACKGROUND

Weston Solutions, Inc. (WESTON), under contract with the United States Army Corps of Engineers (USACE) and in coordination with the United States Environmental Protection Agency (USEPA) Region 9, performed a Targeted Brownfields Assessment (TBA) at the Site. The TBA included both a Phase I Environmental Site Assessment (ESA), conducted in accordance with the scope and limitations of ASTM Practice E-1527-05, and a Phase II Site Investigation that included soil and sediment sampling and analysis.

Background information presented below was taken directly from the Phase I/II Investigation Targeted Brownfields Assessment, Final Report for 900 Innes Avenue, San Francisco, CA (WESTON 2013) and the 900 Innes Avenue Analysis of Brownfields Cleanup Alternatives (ABCA) (WESTON 2013a).

Information generated as part of the Phase I ESA indicated the Site is comprised of a cluster of eleven parcels centered at the 900 Innes Avenue property. The parcels are situated adjacent to India Basin in the San Francisco Bay, directly south of India Basin Shoreline Park. The Site is partially paved, with two functional docks, approximately two boat launches, and an access road. Two rights-of-way (also known as "Paper Streets") are located among the parcels comprising the Site. One right-of-way connects the eastern and western reaches of Hudson Avenue, the other right-of-way continuing Griffin Street to India Basin. These rights-of-way were not included in the scope of the WESTON TBA. The Site occupies approximately 105,550 square feet (2.4 acres) and is partially fenced. The map detailing the Site layout is presented on WESTON Figure 2-2 contained in *Appendix A*.

The Site functioned as a boatbuilding and ship repair facility for several companies spanning more than 120 years, particularly through the historic 1875 to 1930 period of marine-based cargo transportation in San Francisco. The Site was abandoned in 1992 after the owner, Donco Industries, declared bankruptcy. The Site remained in its abandoned state for nearly a decade until 2001, when it was sold to Joe Cassidy Construction for construction equipment and heavy machinery storage. The Site was sold to the Tenderloin Housing Clinic in 2007, though the Site continued to function as a construction equipment storage facility and laydown yard.

WESTON reviewed available Site information to determine historic uses and identify hazardous substances that may be present at the Site and used this information to determine the most effective sampling design to meet project objectives. The following potential sources of contamination were identified at the Site:

• Construction equipment storage and laydown yard – Previously, the Site was primarily utilized as storage for construction equipment. Several oily stains were observed at the

Site related to heavy machinery, and general trash was scattered around the Site including open bins, buckets and drums. Disorganized containers of presumably oil and/or paint were found at the Site, and large piles of tires were present in multiple locations. Potentially hazardous wastes associated with these conditions include metals, semi-volatile organic compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs), and constituents of gasoline, diesel and motor oil. After the Site was acquired by the San Francisco Recreation and Parks Department, they removed the remaining debris and other material left after the property was vacated by the tenant. Currently the site is vacant.

- Boatbuilding and ship repair services Historically, the Site has been the center of much boatbuilding and ship repair activities. Environmental contaminants typically associated with the shipbuilding and repair industry include those generated from vessel maintenance, general facility and yard operations, marine coatings and antifoulants, and abrasive blasting. These include metals, SVOCs including PAHs, organotins (biocides), waste engine fluids such as oil, hydraulic fluids, lubricants, and general solid wastes. The Site is currently located on land comprised of fill material of unknown origin which was added after 1946, and may present potential environmental impacts.
- Onsite structures Four structures in various states of disrepair are located onsite, all constructed prior to 1979; the presence of asbestos and/or lead paint is likely. Common household waste has been dumped at the Site, resulting from intermittent occupancy by various homeless populations. The dump materials might typically be comprised of paints, used oil, batteries, pesticides, and other solid waste (PAHs, metals, Total Petroleum Hydrocarbons (TPH) as diesel (TPH-d) and TPH as motor oil (TPH-mo). Additionally, four aboveground storage tanks, presumably associated with construction equipment storage and ship repair services, were identified at the Site along with visible staining around the tanks.
- Aboveground storage tank locations One steel waste oil storage tank is located onsite, likely used in conjunction with the heavy construction equipment. Another steel fuel / oil storage tank, this one mobile and showing signs of leakage, was located at the Site during a previous Phase I ESA conducted in 2011. Both steel tanks were identified to be in poor condition, with significant signs of wear apparent, and with oily staining identified around the base of the tanks. Two concrete tanks are located approximately 150 feet from the waste oil tank and both appear to be in good condition.

Based on the historic use and planned development of the Site, as part of the proposed San Francisco Blue Greenway public open space, a sampling grid was determined to be the most appropriate sampling approach to assess potential contamination. A triangular grid with 50 foot

spacing between sample points was selected to provide spatial coverage of the Site. The sampling locations are shown on WESTON Figure 5-1 contained in *Appendix A*.

In August 2013, WESTON conducted a Phase II Site Investigation at the Site. A total of 27 shallow soil sample locations and 6 shallow sediment sample locations were sampled from an interval 0 to 6 inches below ground surface (bgs) at each location. Additionally, subsurface soil samples were collected at a depth of 3-4 feet bgs from 8 selected boring locations to allow for vertical characterization.

All of the sediment samples collected were analyzed for California Code of Regulations (CCR) Title 22 metals, PAHs, TPH-d, TPH as motor oil TPH-mo, Polychlorinated Biphynels (PCBs), and organotins. All six of the sediment samples contained concentrations of two or more metals (arsenic, chromium, copper, lead, mercury, cobalt, and nickel) that exceeded established action levels. Additionally, PAHs were detected in five of the six samples above the action levels; PCBs were detected in three samples above the action levels; and Petroleum Hydrocarbons in four samples above the action level. Organotins were detected in all six samples but were below the action levels.

The analytical results of the soil and sediment samples results exceeding the action levels are shown graphically on WESTON Figures 6-1 through 6-4 contained in *Appendix A*.

In September 2013 WESTON prepared an ABCA in order to evaluate site conditions and possible remedial alternatives. Three potentially feasible cleanup alternatives were identified based on WESTON's experience with similar sites. These alternatives included the following:

- 1. No Action.
- 2. Construction of a Physical Barrier.
- 3. Excavation and Disposal.

However, the sediment data for this analysis was limited and the ABCA did not differentiate soil versus sediment remedial areas or alternatives and was more of a conceptualized approach document.

3.0 OBJECTIVE AND SCOPE OF FORESHORE SEDIMENT SAMPLING

Based on the limited number of data points (six) for sediment quality data, URS reviewed the sediment quality data presented in the WESTON TBA report summarized above to develop an approach to the supplemental sediment sampling. Additionally, aerial photos taken at both high and low tide were reviewed in order to assess where additional foreshore area sediment samples could be collected.

The objective of the additional foreshore sediment sampling and analysis is to augment the existing data set with additional sediment analytical data from around the foreshore area of the Site where potential future water access may take place. This will provide the San Francisco Recreation and Parks Department with additional data to conduct further studies associated with conceptual site redevelopment design and to assess the potential need for remediation of the sediments to allow for water access in the open space development proposed for the Site.

The additional foreshore sediment sampling scope of work included the following:

- Collection of additional sediment samples from 10 locations around the shoreline, building, and dock areas of the site where potential future water access may take place. The additional sediment sampling locations are shown on *Figure 2*.
- With the exception of areas where access was limited, sediment samples were collected in accordance with the March 2015 SAP Amendment prepared by URS which followed the same sampling procedures specified in the WESTON SAP (WESTON 2013b) prepared for the site. This included collection of a surface sediment sample from 0 to 0.5 feet below sediment surface (bss) at each of the proposed sampling locations. In addition to surface sediment samples, a deeper sample, collected from 1 to 1.5 feet bss, was also collected for analysis. Sediment grab samples were collected using a dedicated plastic trowel. In areas where access was limited, samples were collected from the edge of the docks or other structures using a 2-inch polyvinyl chloride (PVC) casing pushed to 1.5 feet bss. The casing was capped on the top and then extracted from the sediment. Sediment samples were extracted from the casing and transferred directly into a samplededicated polyethylene bag and homogenized, and then placed into a pre-labeled sample container for analyses. Sample containers were filled to the top, taking care to prevent sediment from remaining in the lid threads prior to being closed to prevent potential contaminant migration to or from the sample. This scope resulted in the collection and analysis of an additional 20 samples from the 10 supplemental sediment sampling locations.

- The sediment samples were analyzed for the same analytical suite as previously used by WESTON. This included the following analyses:
 - 1. TPH-d/TPH-mo.
 - 2. Title 22 Metals.
 - 3. Organotins.
 - 4. PAHs.
 - 5. PCBs.
- Conducted soluble analyses on approximately 50 percent of the samples with metals concentrations that exceed trigger levels 10 times the Soluble Threshold Limit Concentration (STLC) and/or 20 times the TCLP for the specified analyte to assess potential waste classification for material disposal purposes.
- Conducted data validation of the laboratory data in the same manner used by WESTON during the 2013 TBA.
- Prepared this Technical Memorandum for the San Francisco Department of the Environment for distribution to other Blue Greenway stakeholders, mainly the San Francisco Recreation and Parks Department, detailing the results of the additional sediment sampling and analyses.

With the exception of the use of dilute nitric acid and reagent grade hexane used in the equipment decontamination process and the use of PVC pipe for the collection of samples in limited access areas, the procedures for the collection and analysis of soil and groundwater samples followed the currently approved procedures presented in the 900 Innes Avenue, Targeted Brownfields Assessment, Phase I/II Investigation, Sampling and Analysis Plan dated August 2013 (WESTON 2013b).

4.0 SEDIMENT ANALYTICAL RESULTS

This section summarizes the analytical results from the additional foreshore sediment sampling and analysis conducted at the Site. All samples were analyzed by TestAmericam Laboratories, Inc. of Pleasanton, California. The metals analytical results are summarized in *Table 1* through *Table 6* and concentrations exceeding the United States Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs) are shown graphically on *Figure 3* through *Figure* 7. The sediment analytical results for metals, PCBs, SVOCs, and organotins were compared with the USEPA January 2015 RSLs for both Resident and Industrial soil categories. It should be noted that if a particular analyte is indicated to exceed its Industrial RSL it also exceeds its Resident RSL as the Resident RSL is a more conservative number than the Industrial RSL.

Analytical results for TPH-d (Diesel Range Organics) and TPH-mo (Motor Oil Range Organics) were compared to the San Francisco Bay Regional Water Quality Control Board (RWQCB) December 2013 Residential (Table A-1) and Commercial/Industrial (Table A-2) Environmental Screening Levels (ESLs) where groundwater is a current or potential drinking water source. Similar to the RSLs, if a particular analyte is indicated to exceed its Commercial/Industrial ESL it also exceeds its Residential ESL as the Residential ESL is a more conservative number than the Industrial ESL.

4.1 Metals Analytical Results

The metals analytical results are summarized in *Table 1* and concentrations exceeding the USEPA RSLs are shown graphically on *Figure 3* and are discussed in more detail below.

Arsenic was detected in all of the samples analyzed above the laboratory reporting limit at concentrations ranging from 4.6 mg/kg up to 75 mg/kg. All of the arsenic concentrations in all 22 samples exceeded both the Resident and the Industrial RSL for arsenic. Both of the RSL values, Resident and Industrial, are considered conservative and are below typically accepted background concentrations for arsenic in the Bay Area. A recent 2011 study calculated the upper estimate for background arsenic (99th percentile) concentrations within undifferentiated flatland soils to be 11 mg/kg (Duverge 2011).

Cobalt was detected in all of the samples analyzed above the laboratory reporting limit. Concentrations ranged from 5.7 mg/kg to 26 mg/kg. One sample (SS-4-1') exceeded the Resident RSL for cobalt.

Copper was detected in all of the samples analyzed at concentrations above the laboratory reporting limit. Concentrations ranged from 75 mg/kg to 27,000 mg/kg. Only one sample (SS-9-0.5') exceeded the Resident RSL for copper.

Lead was detected in all of the samples analyzed above the laboratory reporting limit at concentrations ranging from 28 mg/kg up to 1,600 mg/kg. Concentrations of lead exceeded the Resident RSL in five samples (SS-2-1', SS-7-0.5', SS-8-1', SS-9-0.5', and SS-9-1.0') and the Industrial RSL in one sample (SS-4-1').

Mercury was detected in all of the samples analyzed above the laboratory reporting limit at concentrations ranging from 0.49 mg/kg up to 88 mg/kg. Concentrations of mercury exceeded the Resident RSL in three samples (SS-8-1', SS-9-0.5', and SS-9-1.0') and the Industrial RSL in one sample (SS-4-0.5').

With the exception of selenium and thallium, all of the other metal analytes were detected in one or more of the samples analyzed above the laboratory reporting limit. However, none of the concentrations detected exceeded their respective Resident or Industrial RSL value.

4.2 Petroleum Hydrocarbon Analytical Results

The petroleum hydrocarbon analytical results are summarized in *Table 2* and concentrations exceeding the RWQCB ESLs are shown graphically on *Figure 4*. With the exception of three samples (SS-5-0.5', SS-6-0.5', and SS-10-0.5'), diesel range organics were detected above the laboratory reporting limit in all of the samples at concentrations ranging from 39 mg/kg up to 5,500 mg/kg. With the exception of one concentration in the duplicate sample (FD-2) from SS-10-1', all of the concentrations detected exceeded the commercial/industrial ESL for diesel range organics. The concentration of diesel range organics detected in sample FD-2 was equal to the residential ESL of 100 mg/kg. Similarly, with the exception of two samples (SS-5-0.5' and SS-10-0.5'), motor oil range organics were detected above the laboratory reporting limit in all of the samples at concentrations ranging from 74 mg/kg up to 2,900 mg/kg. Concentrations in ten of the samples exceeded the residential ESL and ten samples had concentrations exceeding the commercial/industrial ESL.

4.3 Polychlorinated Biphenyl Analytical Results

The PCB analytical results are summarized in *Table 3* and concentrations exceeding the USEPA RSLs are shown graphically on *Figure 5*. The PCB analytical method detects and quantifies seven different Arachlor compounds. With the exception of one sample (SS-3-0.5), one of four different Arachlors (Archlor-1242, Arachlor-1248, Arachlor-1254, and Arachlor-1260) was detected in all of the samples above the laboratory reporting limit. Of these, four samples (SS-7-0.5', SS-8-0.5', SS-10-0.5', and FD-2) had an Arachlor concentration that exceeded its Resident RSL and seven samples (SS-4-1', SS-7-1', FD-1, SS-8-1', SS-9-0.5', SS-9-1', and SS-10-1') had an Arachlor concentration that exceeded its Industrial RSL.

4.4 Polycyclic Aromatic Hydrocarbon Analytical Results

The PAH analytical results are summarized in *Table 4* and concentrations exceeding the USEPA RSLs are shown graphically on *Figure 6*. With the exception of three PAHs (acenaphthylene, benzo[a]anthracene, and dibenz[a,h]anthracene) one or more PAHs were detected above the laboratory reporting limit in all of the samples analyzed. Five PAHs (chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, and indeno[1,2,3-cd]pyrene) were detected above their respective Resident RSL and two PAHs (benzo[b]fluoranthene, and benzo[a]pyrene) were detected above their respective Industrial RSL. Phenanthrene and benzo[g.h.i]perylene were detected above the laboratory reporting limit in several samples however, they have no corresponding RSL values.

4.5 Organotin Analytical Results

The organotin analytical results are summarized in *Table 5* and concentrations exceeding the USEPA RSLs are shown graphically on *Figure 7*. The organotin analytical method detects and quantifies four different organotin compounds (dibutyltin, monobutyltin, tetra-n-butyltin, and tributyltin). All four of the organotin compounds were detected above the laboratory reporting limit in one or more of the samples analyzed. With the exception of two samples (SS-5-0.5' and SS-6-0.5'), dibutyltin was detected in all of the samples at concentrations that exceeded its respective RSLs. A total of 15 samples had concentrations greater than the Resident RSL and five samples had concentrations greater than the Industrial RSL. Tributyltin was detected in all but two samples (SS-2-0.5' and SS-5-0.5') at concentrations that exceed its Industrial RSL. Monobutyltin and tetra-n-butyltin were detected in a number of samples however they have no corresponding RSL values.

4.6 Disposal Implications

In order to assess potential implications associated with dredged/excavated sediment disposal, concentrations of detected metals were compared with their respective regulatory disposal criteria. The regulatory disposal criteria used for comparison with the metals concentrations are the Total Threshold Limit Concentration (TTLC) the STLC and the Toxicity Characteristic (TC) value also referred to as the TCLP. The TTLC and STLC are California State waste disposal criteria listed in the California Code of Regulations Title 22. If the TTLC (which represents the total concentration of an analyte in a sample) value is exceeded for any given analyte in waste material that is being profiled for disposal, the material is considered a California State Hazardous Waste and must be disposed of at a Class I landfill facility.

In addition to the total concentration values (TTLC) there are also corresponding soluble (STLC) values. The soluble fraction is typically evaluated when the total concentration of an analyte in a

sample is less than the TTLC but exceeds ten times (10x) the soluble criteria listed for the substance. The 10x "trigger" is used because there is a ten-fold dilution associated with the STLC extraction procedure. As such, if the total concentration measured in a sample is less than the TTLC but exceeds 10x the STLC value for the analyte, the Waste Extraction Test (WET) is conducted to determine the soluble component. If the results of the test indicate a value greater than the STLC for the given analyte, the material is considered a California State Hazardous Waste for disposal purposes.

In addition to the State standards, there are also Federal standards under the Resource Conservation and Recovery Act (RCRA) that apply to certain regulated compounds. This standard is known as the TC or TCLP value. The TC value addresses the soluble fraction of the contaminants. It is determined through the TCLP test. This test utilizes a twenty-fold dilution in the extraction process. As such, if the total concentration of a RCRA regulated compound exceeds 20x the TC value, a TCLP analysis is typically conducted. If the results of the TCLP analysis exceed the TC value, the material is considered a RCRA Hazardous Waste for disposal purposes and needs to be handled and disposed of appropriately. This typically involves treatment (usually stabilization or encapsulation to reduce the solubility of the contaminants) of the material prior to disposal at a Class I landfill.

The comparison of the metals results with the disposal criteria listed above are summarized in *Table 6*. As indicated in the table, four samples (SS-4-0.5', SS-4-1', SS-9-0.5', and SS-9-1.0') contained one of three metals (copper, lead, or mercury) above the respective TTLC value. Additionally, eight metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc, and mercury) were detected above their respective trigger concentrations indicating the potential for these samples to exceed either their respective STLC or TC value. Based on this select samples were subjected to the WET and TCLP tests to assess the potential for the material to be classified as either California or RCRA hazardous waste. The results of the soluble metals analyses are summarized in *Table 7*. As shown in the table, one sample (SS-2-1') had soluble lead concentration that exceeded the STLC value for lead. These results indicate that if sediment is dredged or excavated it has the potential to be classified as California or RCRA hazardous waste for disposal purposes.

5.0 DATA VALIDATION

The analytical data for this project were validated in accordance with the USEPA National Functional Guidelines for Organic and Inorganic Data Review. Based on the data validation, none of the data were rejected and the data were found to be usable, where qualified, for their intended purpose. Data qualifications included "J" flags, where concentrations were estimated based on the results of the data validation, and "UJ" flags where laboratory reporting limits were estimated based on the results of the data validation. The data qualification flags, where applicable, are listed in the analytical data summary tables. Copies of the data validation reports are contained in *Appendix B* along with the laboratory analytical reports.

6.0 REFERENCES

- Duverge, Dylan Jacques, 2011. Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region, December.
- Weston Solutions, Inc., 2013. Phase I/II Investigation, Targeted Brownfields Assessment, Final Report, 900 Innes Avenue Site, San Francisco, San Francisco County, California (November 2013).
- Weston Solutions, Inc., 2013a. Final Document, 900 Innes Avenue Site, San Francisco, San Francisco County, California, Analysis of Brownfield Cleanup Alternatives (September 2013).
- Weston Solutions, Inc., 2013b. 900 Innes Avenue, Targeted Brownfields Assessment, Phase I/II Investigation, San Francisco, California, Sampling and Analysis Plan (August 2013).

TABLES

Table 1 CAM 17 Metals Analytical Results Foreshore Sediment Sampling 900 Innes Avenue, San Francisco , CA

CAM17 Metals																	
Sample ID	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury
SS-1-0.5'	<1.7	7.0	58	<0.33	<0.41	68	11	180	76	<1.7	90	<3.3	<0.83	<1.7	40	140	0.54
SS-1-1'	<1.4	8.6	69	<0.29	<0.36	64	12	370	120	2.2	88	<2.9	<0.72	<1.4	37	220	3.2
SS-2-0.5'	<1.6	5.0	77	<0.33	<0.41	37	8.3	120	140	1.9	59	<3.3	<0.82	<1.6	25	730	0.49
SS-2-1'	3.0	16	97	<0.37	2.3	130	18	650	410	17	230	<3.7	<0.92	<1.8	28	2400	1.8
SS-3-0.5'	<0.41	4.6	28	<0.083	<0.010	41	6.2	80	28	<0.41	41	<0.83	<0.21	<0.41	29	80	0.49
SS-3-1'	<1.9	16	130	<0.38	0.49	82	19	1100	150	20	81	<3.8	<0.94	<1.9	44	440	4.6
SS-4-0.5'	3.5	20	180	<0.34	0.47	94	10	700	350	2.0	74	<3.4	<0.86	<1.7	29	660	88
SS-4-1'	3.6	20	250	<0.34	33	100	26	850	1600	9.7	94	<3.4	<0.85	<1.7	31	1900	9.1
SS-5-0.5'	<0.37	4.8	27	0.16	<0.0093	39	5.7	75	46	0.39	38	<0.75	<0.19	<0.37	26	80	1.2
SS-5-1'	<0.42	7.2	49	0.18	0.10	48	7.4	200	54	3.8	56	<0.83	<0.21	<0.42	30	130	1.4
SS-6-0.5'	<0.44	6.0	35	0.17	<0.11	46	6.7	120	37	0.87	40	<0.88	<0.22	<0.44	29	94	0.99
SS-6-1'	<1.6	11	44	<0.33	<0.41	78	10	380	100	10	100	<3.3	<0.81	<1.6	39	180	1.9
SS-7-0.5'	3.0	11	170	<0.28	<0.35	76	9.6	390	580	13	66	<02.8	<0.69	<1.4	28	2000	2.3
SS-7-1'	4.2	11	90	<0.38	<0.48	120	10	650	300	7.9	77	<3.8	<0.95	<1.9	28	450	3.1
SS-8-0.5'	<1.5	9.5	120	<0.30	<0.37	82	11	620	190	2.7	67	<3.0	<0.75	<1.5	35	370	4.7
FD-1	<1.7	9.7	140	<0.34	<0.42	82	10	540	220	3.2	59	<3.4	<0.84	<1.7	34	350	5.1
SS-8-1'	<1.6	24	96	<0.32	0.43	85	10	1200	600	3.4	62	<3.2	<0.80	<1.6	30	440	10
SS-9-0.5'	<2.8	38	120	<0.22	1.4	110	14	27000	480	10	93	<2.2	0.94	<2.8	24	4000	10
SS-9-1'	<1.1	75	110	<0.23	0.86	140	21	2400	540	1.4	360	<2.3	<0.57	<1.1	26	540	23
SS-10-0.5'	<0.45	8.2	36	<0.090	0.20	56	6.4	310	41	0.78	42	<0.90	<0.23	<0.45	32	170	2.4
SS-10-1'	<1.3	12	35	<0.27	<0.33	62	6.7	840	63	1.6	53	<2.7	<0.67	<1.3	29	240	4.6
FD-2	<0.41	9.5	38	<0.082	0.28	63	7.2	670	60	1.6	49	<0.82	<0.20	<0.41	29	260	4.1
RSL-Resident mg/kg	31	0.67	15,000	160	70	120,000	23	3,100	400	390	1,500	390	390	0.78	390	23,000	9.4
RSL-Industrial mg/kg	470	3	220,000	2,300	980	1,800,000	350	47,000	800	5,800	22,000	5,800	5,800	12	5,800	350,000	40

Notes:

Units in mg/Kg unless otherwise stated

FD-1 is a field duplicate of SS-8-0.5'

FD-2 is a field duplicate of SS-10-1'

Blue shaded values exceed Resident RSLs Green shaded values exceed Industrial RSLs

Table 2 Diesel Range Organics and Motor Oil Range Organics Analytical Results Foreshore Sediment Sampling 900 Innes Avenue, San Francisco, CA

Diesel Range Organics		
Sample ID	Diesel Range Organics (C10-C28)	Motor Oil Range Organics (C24-C36)
SS-1-0.5'	180	420
SS-1-1'	260	610
SS-2-0.5'	320	640
SS-2-1'	360	800
SS-3-0.5'	110	140
SS-3-1'	340	570
SS-4-0.5'	370	620
SS-4-1'	5500	2900
SS-5-0.5'	39	74
SS-5-1'	120	210
SS-6-0.5'	59	100
SS-6-1'	150	160
SS-7-0.5'	240	560
SS-7-1'	220	460
SS-8-0.5'	260	480
FD-1	210	390
SS-8-1'	300	630
SS-9-0.5'	600	1100
SS-9-1'	780	1800
SS-10-0.5'	39	78
SS-10-1'	120	230
FD-2	100	190
ESL-Residential mg/kg	100	100
ESL-Industrial mg/kg	110	500

Notes:

Units in mg/Kg FD-1 is a field duplicate of SS-8-0.5' FD-2 is a field duplicate of SS-10-1'

Blue shaded values exceed Residential ESLs

Green shaded values exceed Commercial / Industrial ESLs

Table 3Polychlorinated Biphenyls Analytical ResultsForeshore Sediment Sampling - 900 Innes Avenue, San Francisco, CA

Polychlorinated Bip	henyls (PCB	s)						
Sample ID	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Total PCBs
SS-1-0.5'	<49	<49	<49	<49	<49	74	<49	74
SS-1-1'	<50	<50	<50	<50	<50	180	<50	180
SS-2-0.5'	<50	<50	<50	<50	<50	54	<50	54
SS-2-1'	<50	<50	<50	<50	<50	180	<50	180
SS-3-0.5'	<49	<49	<49	<49	<49	<49	<49	<49
SS-3-1'	<250	<250	<250	<250	<250	980	<250	980
SS-4-0.5'	<250	<250	<250	<250	<250	920	<250	920
SS-4-1'	<240	<240	<240	<240	<240	1100	<240	1100
SS-5-0.5'	<49	<49	<49	<49	<49	59	<49	59
SS-5-1'	<50	<50	<50	<50	<50	79	<50	79
SS-6-0.5'	<49	<49	<49	<49	50	<49	<49	50
SS-6-1'	<49	<49	<49	<49	<49	210	<49	210
SS-7-0.5'	<97	<97	<97	<97	410	<97	<97	410
SS-7-1'	<480	<480	<480	1900	<480	<480	<480	1900
SS-8-0.5'	<250	<250	<250	<250	<250	<250	710 J	710
FD-1	<2500	<2500	<2500	<2500	<2500	<2500	7800 J	7800
SS-8-1'	<500	<500	<500	<500	1600	<500	<52	1600
SS-9-0.5'	<490	<490	<490	<490	2500	<490	<490	2500
SS-9-1'	<2500	<2500	<2500	<2500	8900	<2500	<2500	8900
SS-10-0.5'	<99	<99	<99	<99	<99	<99	360 J	360
SS-10-1'	<490	<490	<490	<490	1500 J	<490	<490 UJ	1500
FD-2	<250	<250	<250	<250	<250 UJ	<250	870 J	870
RSL-Resident ug/kg	4000	1500	1500	2400	2400	2400	2400	NV
RSL-Industrial ug/kg	300000	6600	6600	10000	10000	10000	10000	NV

Notes:

Units are in ug/Kg

FD-1 is a field duplicate of SS-8-0.5'

FD-2 is a field duplicate of SS-10-1'

NA (1) PCBs not regulated under RCRA

NV No value for either individual or total PCBs

Blue shaded values exceed Resident RSLs

Green shaded values exceed Industrial RSLs

Semivolatile	Organic Comp	ounds															
Sample ID	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-cd]pyrene	Benzo[g,h,i]perylene	2-Methylnaphthalene	Dibenz(a,h)anthracen
SS-1-0.5'	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<3.3	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67
SS-1-1'	<1.3	<1.3	<1.3	<1.3	4.4	<1.3	<1.3	<1.3	<6.6	27	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3
SS-2-0.5'	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<3.3	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67
SS-2-1'	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	0.73	<3.3	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67
SS-3-0.5'	<0.13	<0.13	0.17	0.20	1.0	0.62	2.0	2.0	<0.66	0.94	0.63	0.23	0.44	0.22	0.20	<0.13	<0.13
SS-3-1'	<0.27	<0.27	<0.27	<0.27	0.44	0.33	3.6	7.6	<1.3	0.93	1.8	0.73	1.1	0.62	0.62	<0.27	<0.27
SS-4-0.5'	<0.27	<0.27	<0.27	<0.27	1.5	0.58	2.6	3.1	<0.27	1.5	1.6	0.56	1.1	0.61	0.72	<0.27	<0.060
SS-4-1'	1.4	<1.3	1.8	2.3	7.6	2.3	2.6	3.7	<6.6	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	4.8	<1.3
SS-5-0.5'	<0.33	<0.33	<0.33	<0.33	<0.33	0.46	0.76	1.0	<1.6	1.1	1.3	0.53	0.87	0.48	0.45	<0.33	<0.33
SS-5-1'	<0.33	<0.33	<0.33	<0.33	0.45	0.34	0.67	1.7	<1.6	1.2	1.8	0.74	1.2	0.68	0.65	<0.33	<0.33
SS-6-0.5'	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	0.28	<1.3	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27
SS-6-1'	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	0.32	0.99	<1.3	0.47	0.63	<0.27	0.40	<0.27	0.27	<0.27	<0.27
SS-7-0.5'	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3
SS-7-1'	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	0.86	1.5	<0.66	<0.66	1.0	<0.66	0.78	<0.66	<0.66	<0.66	<0.66
SS-8-0.5'	<0.048	<0.056	<0.038	<0.040	0.96	<0.043	1.4	1.9	<0.18	0.90	1.4	0.70	1.1	<0.13	<0.20	<0.062	<0.15
FD-1	<0.33	<0.33	<0.33	<0.33	0.58	<0.33	0.99	1.2	<1.6	0.80	1.1	0.47	0.83	0.49	0.49	<0.33	<0.33
SS-8-1'	<0.33	<0.33	<0.33	<0.33	1.1	0.70	1.4	3.5	<1.6	0.88	3.1	3.0	1.7	0.77	0.81	<0.33	<0.33
SS-9-0.5'	<0.67	<0.67	<0.67	<0.67	0.72	<0.67	1.4	1.3	<3.3	0.75	0.88	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67
SS-9-1'	<0.66	<0.66	<0.66	<0.66	1.1	<0.66	3.0	3.2	<3.3	1.1	1.1	<0.66	0.80	<0.66	<0.66	<0.66	<0.66
SS-10-0.5'	<0.066	<0.066	<0.066	<0.066	0.066	<0.066	0.10	0.16	<0.33	0.069	0.093	<0.066	0.072	<0.066	<0.066	<0.066	<0.066
SS-10-1'	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	0.20	0.43	<0.65	0.13	0.21	<0.13	0.16	<0.13	<0.13	<0.13	<0.13
FD-2	<0.13	<0.13	<0.13	<0.13	0.43	0.13	0.45	0.75	<0.65	0.24	0.31	<0.13	0.21	0.13	<0.13	<0.13	<0.13
RSL-Resident																	
mg/kg	3.8	NV	3,500	4,700	NV	17,000	2,300	1,700	0.15	15	0.15	1.5	0.015	0.15	NV	230	0.015
RSL-Industrial mg/kg	17	NV	45,000	70,000	NV	230,000	30,000	23,000	2.9	290	2.9	29	0.29	2.9	NV	3,000	0.29

Notes:

Units in mg/Kg

FD-1 is a field duplicate of SS-8-0.5'

FD-2 is a field duplicate of SS-10-1'

Blue shaded values exceed Resident RSLs

Green shaded values exceed Industrial RSLs

Table 5 Organotins Analytical Results Foreshore Sediment Sampling 900 Innes Avenue, San Francisco, CA

Organotins				
Sample ID	Dibutyltin	Monobutyltin	Tetra-n-butyltin	Tributyltin
SS-1-0.5'	81	24	<2.5 UJ	70
SS-1-1'	230	69	<2.5 UJ	150
SS-2-0.5'	62	<4.9	<13 UJ	<4.9
SS-2-1'	83	<0.95	<2.6 UJ	110
SS-3-0.5'	31	<0.92	<2.5 UJ	25
SS-3-1'	990	92	61 J	2200
SS-4-0.5'	130	57 J	26	160
SS-4-1'	76	<1.1 UJ	<2.9	150
SS-5-0.5'	<1.0	<1.0 UJ	<2.8	<1.0
SS-5-1'	38	<1.0 UJ	<2.8	74
SS-6-0.5'	12	<1.0 UJ	<2.8	32
SS-6-1'	26	<1.0 UJ	<2.8	62
SS-7-0.5'	120 J	76 J	<2.9 UJ	650 J
SS-7-1'	110	<1.0 UJ	42	180
SS-8-0.5'	79 J	<1.1 UJ	<3.0	130
FD-1	37 J	12 J	<2.8	89
SS-8-1'	66	<1.0 UJ	<2.7	130
SS-9-0.5'	16000	3900 J	150	13000
SS-9-1'	670	94 J	27	980
SS-10-0.5'	110	29 J	<2.9	130
SS-10-1'	260	50 J	40 J	780 J
FD-2	330	78 J	19 J	360 J
RSL-Resident mg,	/kg 18	NV	NV	18
RSL-Industrial mg	g/kg 250	NV	NV	250

Notes:

Units are in ug/Kg FD-1 is a field duplicate of SS-8-0.5'

FD-2 is a field duplicate of SS-10-1'

Blue shaded values exceed Resident RSLs

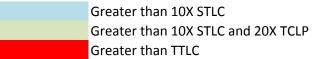

Green shaded values exceed Industrial RSLs

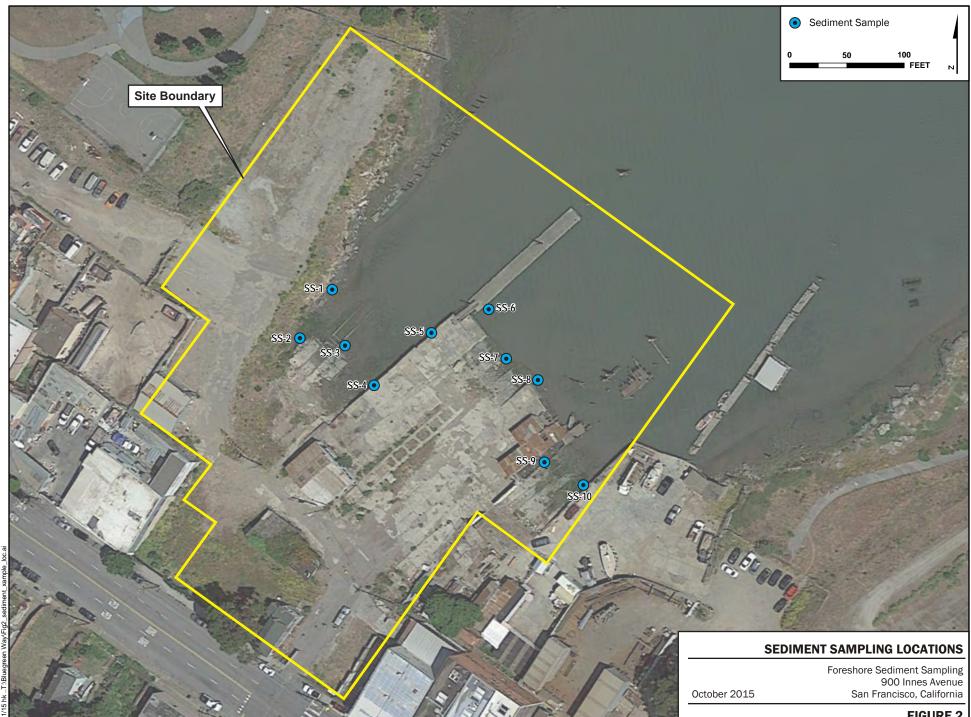
Table 6 Metals Analytical Results Compared to Disposal Criteria Foreshore Sediment Sampling 900 Innes Avenue, San Francisco, CA

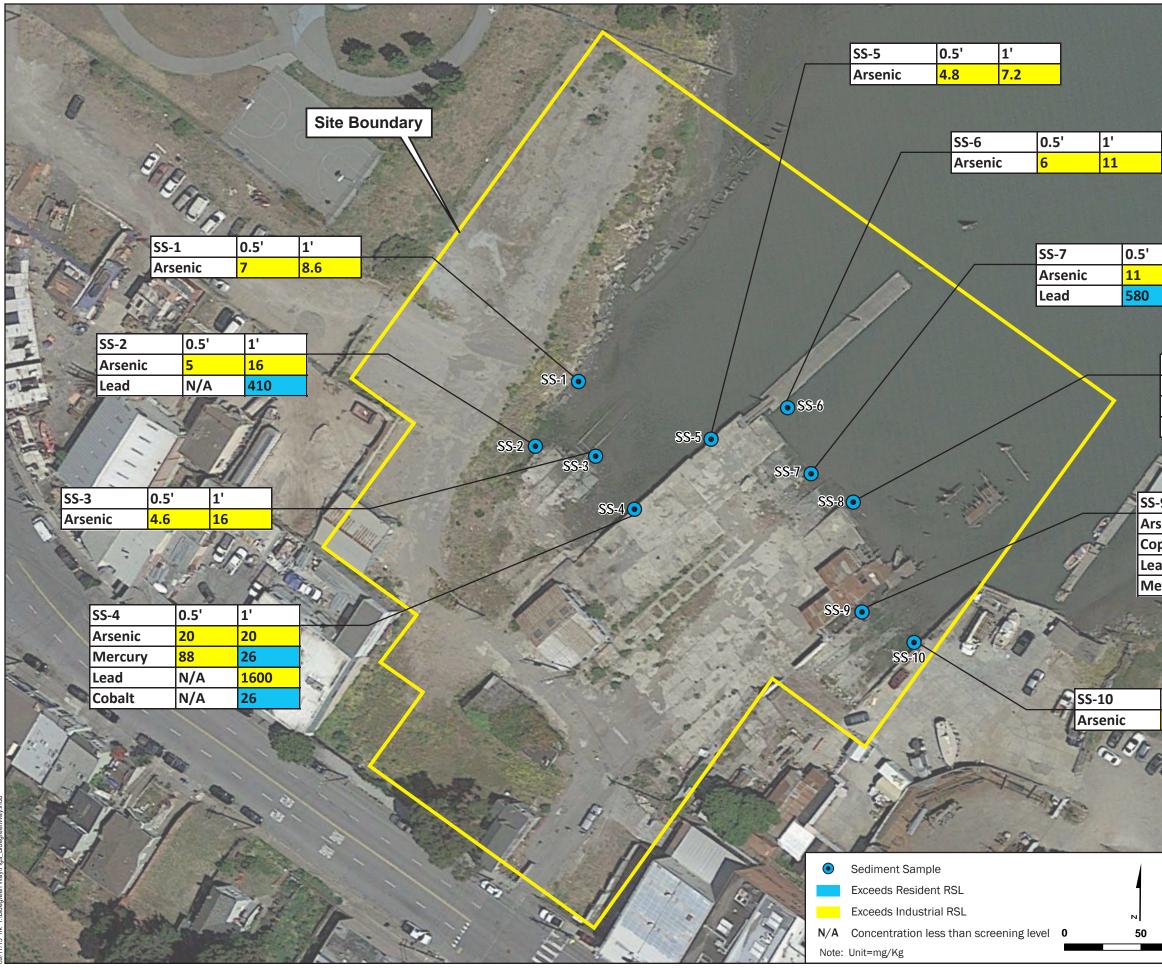
CAM17 Meta	ls																
Sample ID	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	1olybdenur	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury
SS-1-0.5'	<1.7	7.0	58	<0.33	<0.41	68	11	180	76	<1.7	90	<3.3	<0.83	<1.7	40	140	0.54
SS-1-1'	<1.4	8.6	69	<0.29	<0.36	64	12	370	120	2.2	88	<2.9	<0.72	<1.4	37	220	3.2
SS-2-0.5'	<1.6	5.0	77	<0.33	<0.41	37	8.3	120	140	1.9	59	<3.3	<0.82	<1.6	25	730	0.49
SS-2-1'	3.0	16	97	<0.37	2.3	130	18	650	410	17	230	<3.7	<0.92	<1.8	28	2400	1.8
SS-3-0.5'	<0.41	4.6	28	<0.083	<0.010	41	6.2	80	28	<0.41	41	<0.83	<0.21	<0.41	29	80	0.49
SS-3-1'	<1.9	16	130	<0.38	0.49	82	19	1100	150	20	81	<3.8	<0.94	<1.9	44	440	4.6
SS-4-0.5'	3.5	20	180	<0.34	0.47	94	10	700	350	2.0	74	<3.4	<0.86	<1.7	29	660	88
SS-4-1'	3.6	20	250	<0.34	33	100	26	850	1600	9.7	94	<3.4	<0.85	<1.7	31	1900	9.1
SS-5-0.5'	<0.37	4.8	27	0.16	<0.0093	39	5.7	75	46	0.39	38	<0.75	<0.19	<0.37	26	80	1.2
SS-5-1'	<0.42	7.2	49	0.18	0.10	48	7.4	200	54	3.8	56	<0.83	<0.21	<0.42	30	130	1.4
SS-6-0.5'	<0.44	6.0	35	0.17	<0.11	46	6.7	120	37	0.87	40	<0.88	<0.22	<0.44	29	94	0.99
SS-6-1'	<1.6	11	44	<0.33	<0.41	78	10	380	100	10	100	<3.3	<0.81	<1.6	39	180	1.9
SS-7-0.5'	3.0	11	170	<0.28	<0.35	76	9.6	390	580	13	66	<02.8	<0.69	<1.4	28	2000	2.3
SS-7-1'	4.2	11	90	<0.38	<0.48	120	10	650	300	7.9	77	<3.8	<0.95	<1.9	28	450	3.1
SS-8-0.5'	<1.5	9.5	120	<0.30	<0.37	82	11	620	190	2.7	67	<3.0	<0.75	<1.5	35	370	4.7
FD-1	<1.7	9.7	140	<0.34	<0.42	82	10	540	220	3.2	59	<3.4	<0.84	<1.7	34	350	5.1
SS-8-1'	<1.6	24	96	<0.32	0.43	85	10	1200	600	3.4	62	<3.2	<0.80	<1.6	30	440	10
SS-9-0.5'	<2.8	38	120	<0.22	1.4	110	14	27000	480	10	93	<2.2	0.94	<2.8	24	4000	10
SS-9-1'	<1.1	75	110	<0.23	0.86	140	21	2400	540	1.4	360	<2.3	<0.57	<1.1	26	540	23
SS-10-0.5'	<0.45	8.2	36	<0.090			6.4	310	41	0.78	42	<0.90	<0.23	<0.45	32	170	2.4
SS-10-1'	<1.3	12	35	<0.27	<0.33	62	6.7	840	63	1.6	53	<2.7	<0.67	<1.3	29	240	4.6
FD-2	<0.41	9.5	38	<0.082	0.28	63	7.2	670	60	1.6	49	<0.82	<0.20	<0.41	29	260	4.1
TTLC	500	500	10,000	75	100	2,500	8,000	2,500	1,000	3,500	2,000	100	500	700	2,400	5,000	20
STLC (mg/L)	15	5	100	0.75	1	5	80	25	5	350	20	1	5	7	24	250	0.2
TCLP (mg/L)	NV	5	100	NV	1	5	NV	NV	5	NV	NV	1	5	NV	NV	NV	0.2

Notes:

Units in mg/Kg unless otherwise stated FD-1 is a field duplicate of SS-8-0.5' FD-2 is a field duplicate of SS-10-1'

Table 7 Soluable Metals Analytical Results Foreshore Sediment Sampling 900 Innes Avenue, San Francisco, CA


	Arsenic	Cadmium	Cadmium	Chromium	Chromium	Copper	Lead	Lead	Nickel	Mercury	Mercury
Sample ID	STLC	STLC	TCLP	STLC	TCLP	STLC	STLC	TCLP	STLC	STLC	TCLP
SS-1-1'	NA	NA	NA	0.75	NA	<0.20	4.1	<0.050	NA	<0.0050 UJ	NA
SS-2-1'	NA	NA	NA	0.92	<0.10	<0.20	40	13	NA	NA	NA
SS-4-0.5'	NA	NA	NA	1.1	NA	<0.20	24	0.16	NA	NA	<0.0020 UJ
SS-4-1'	NA	<0.020	<0.10	1.6	<0.10	<0.20	NA	<0.050	NA	<0.0050 UJ	<0.0020
SS-7-0.5'	NA	NA	NA	0.4	NA	10	4.8	<0.050	NA	<0.0050 UJ	NA
SS-8-1'	NA	NA	NA	1.6	NA	<0.20	<0.050	<0.050	NA	<0.0050 UJ	<0.0020
SS-9-1'	0.31	NA	NA	2.5	<0.10	<0.20	<0.050	<0.050	6.9	NA	<0.0020 UJ
SS-10-1'	NA	NA	NA	NA	NA	<0.20	1.5	NA	NA	<0.0050 UJ	<0.0020 UJ
STLC (mg/L)	5	1	1	5	5	25	5	5	20	0.2	0.2
TCLP (mg/L)	5	1	1	5	5	NV	5	5	NV	0.2	0.2


Notes:

Units in mg/L unless otherwise stated

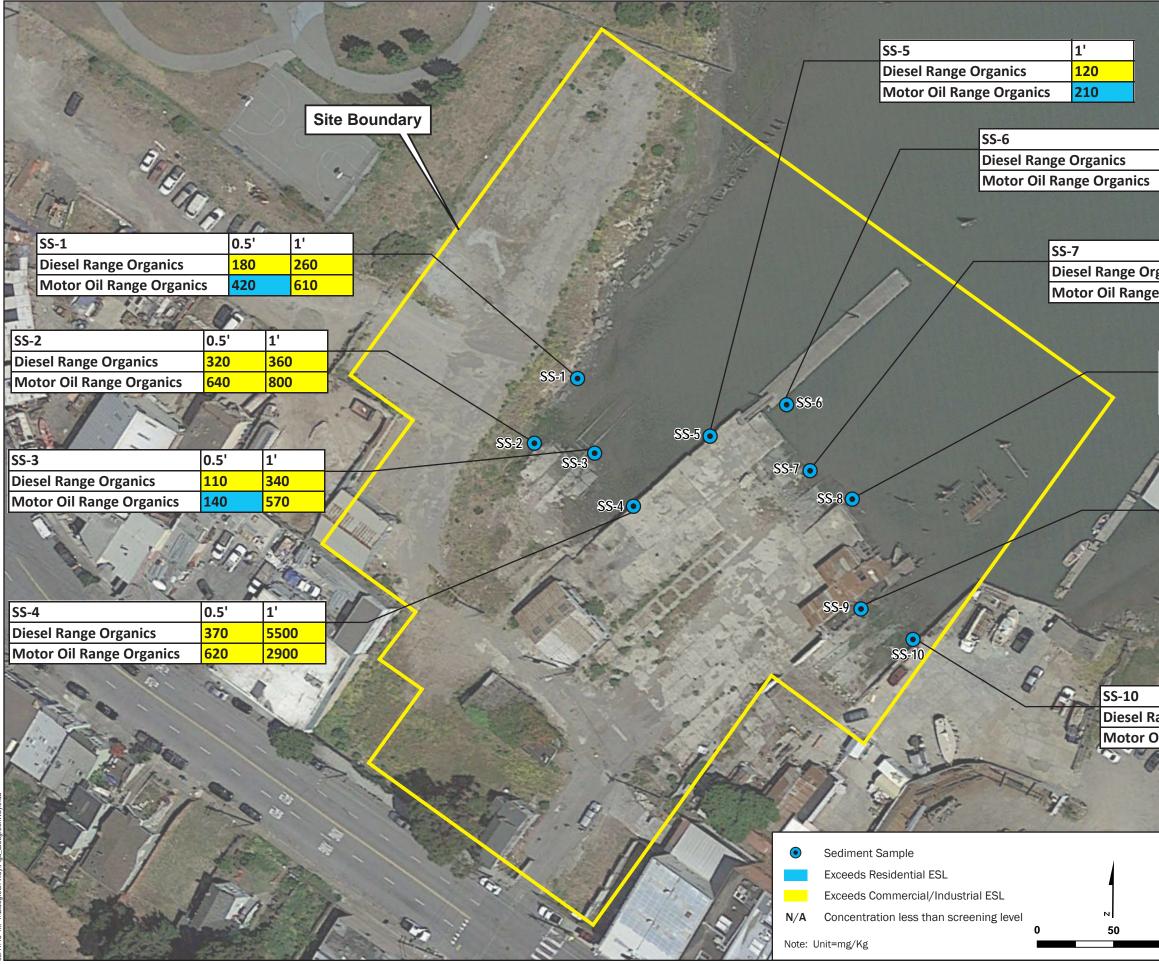
Greater than STLC Greater than STLC and TCLP

1'
11
N/A

SS-8	0.5'	1'
Arsenic	9.5	24
Lead	N/A	600
Mercury	N/A	10

77		
-9	0.5'	1'
senic	38	75
pper	27000	N/A
ad	480	540
ercury	10	23

	a manufacture	free and
	0.5' <mark>8.2</mark>	1'
	8.2	12
	AL SA	Strail P
500	an-	
	C -	


100

SAMPLING RESULTS MAP METAL EXCEEDING SCREENING LEVELS

Foreshore Sediment Sampling 900 Innes Avenue San Francisco, California

October 2015

FEET

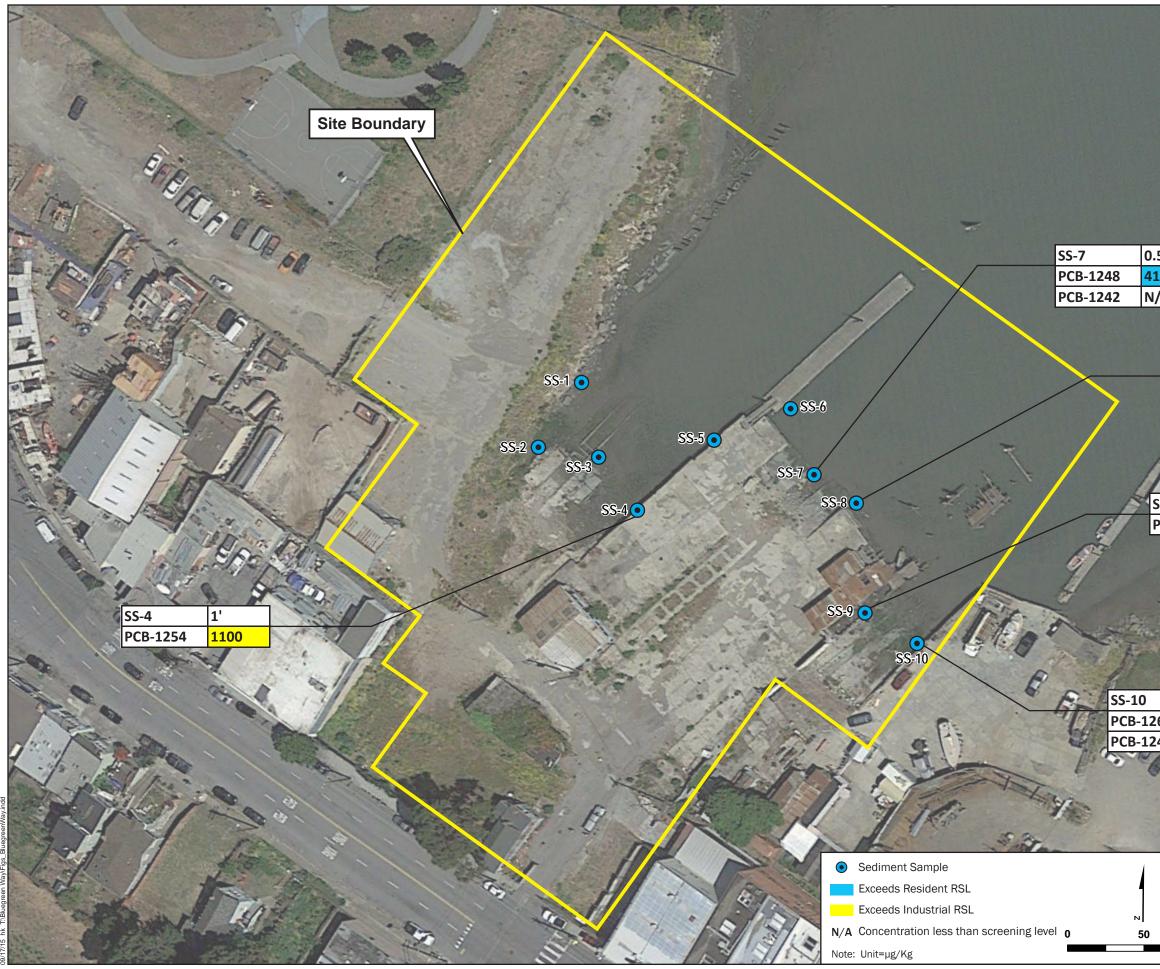
0.5'	1'
N/A	150
100	160

	0.5'	1'
ganics	240	220
e Organics	560	460

SS-8	0.5'	1'
Diesel Range Organics	<mark>260</mark>	300
Motor Oil Range Organics	480	630

	ditte	in the second
SS-9	0.5'	1'
Diesel Range Organics	<mark>600</mark>	780
Motor Oil Range Organics	1100	1800

A A A A A A A A A A A A A A A A A A A	Contraction	
	1'	
ange Organics	120	31/1
Dil Range Organics	230	C.C.
1000		All and


SAMPLING RESULTS MAP DIESEL RANGE ORGANICS AND MOTOR OIL RANGE ORGANICS EXCEEDING SCREENING LEVELS

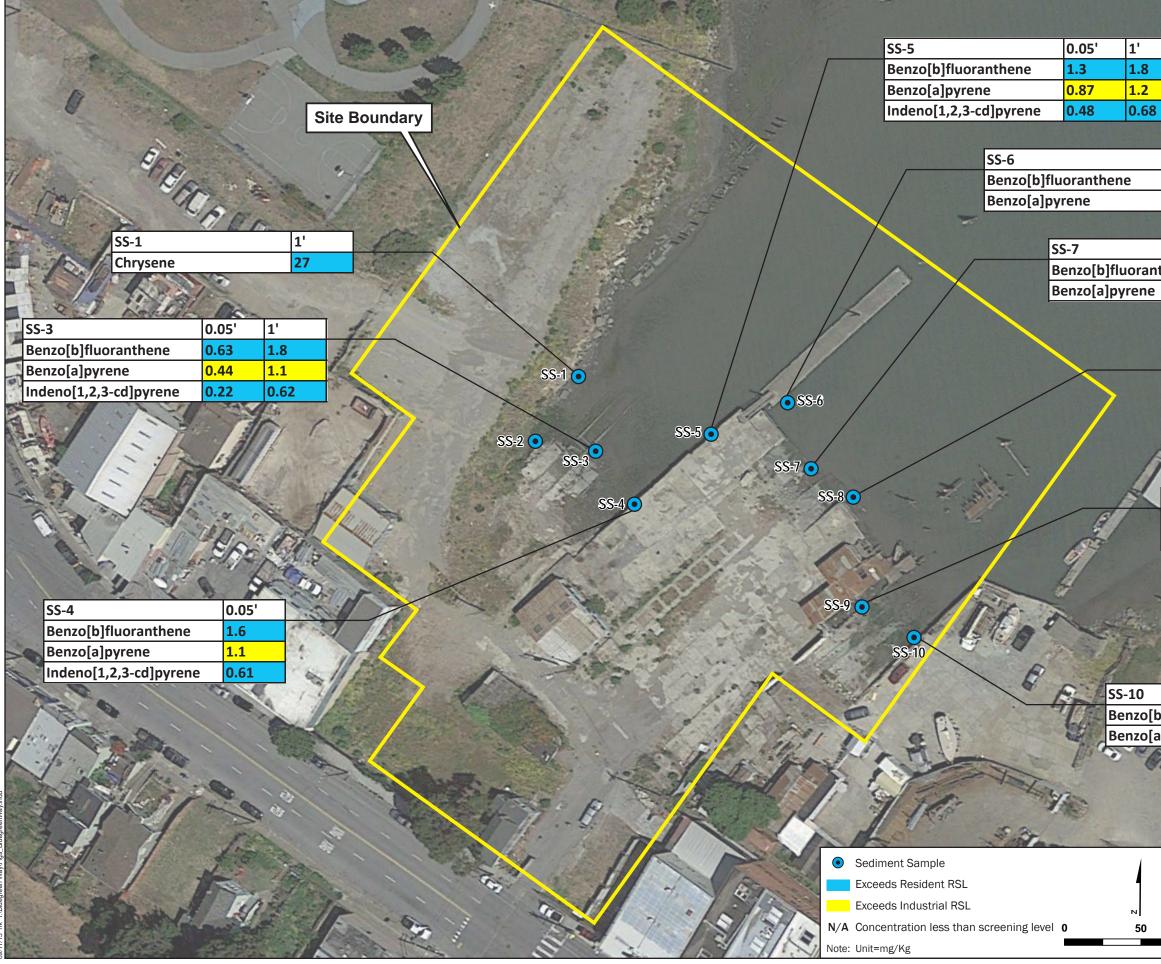
Foreshore Sediment Sampling 900 Innes Avenue San Francisco, California

October 2015

FIGURE 4

100 FEET

.5'		1' N/A											
/A		1900									-		
												310	30
	SS-8			0.5'		1'						1	0
		1260	-	710		n/a						E.	and the second
PCB-1248			N/A		1600						1	Contra Contra	
APT	the for					1		the seal		ういで	and and	-	
SS-			0.5		1'			1					The second
PC	B-124	48	25	00	89	00	a la	1				- all	5
				in t			2				5	1	
		100		de.		- m	- 3		ind.	5	1.		
*	10/10	Seet				6	to	20.	A.C.		and the		11
	A.	-	The second	12 -			N.	25	E A	12			
		and the second	S.P	1	15 m				1				aller a
1000	3	The party of	100	-		1 al	A Real			/			
	C).5'		1'		C. C.			1	11	the second	-	
260		860		N/A		the second	1 h	1	1 and	E.		Har	24
248		N/A		1500		all		1 to	26			in the	Ser.
9	10	A A	2	And the		P. S.	and and		2	1			
	2	En-	1			1 and	E.			S.	200	and a	
					-	Tet in				X	1	2	
	and and	and a			1. Sala	el ria		Sec.	1	- All			
													-


PCBs EXCEEDING SCREENING LEVELS

Foreshore Sediment Sampling 900 Innes Avenue San Francisco, California

October 2015

100

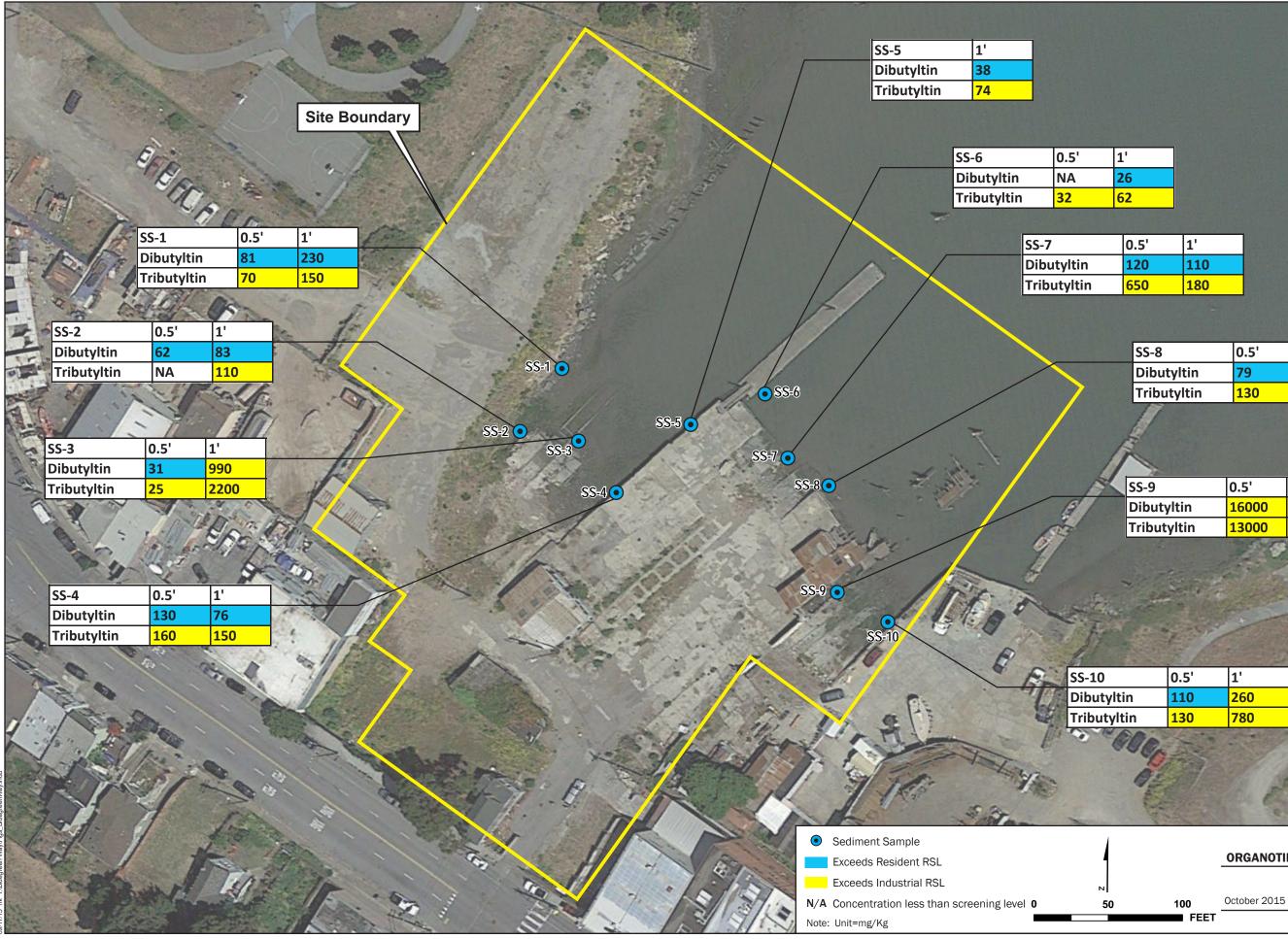
FEET

	ľ	
1'		

T
0.63
0.40

	1'
thene	1.0
	0.78

SS-8	0.05'	1'
Benzo[b]fluoranthene	1.4	3.1
Benzo[k]fluoranthene	N/A	3.0
Benzo[a]pyrene	1.1	1.7
Indeno[1,2,3-cd]pyrene	N/A	0.77
SS-9	0.05'	1'
Benzo[b]fluoranthene	0.88	1.1
Benzo[a]pyrene	N/A	0.8
	Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene SS-9 Benzo[b]fluoranthene	Benzo[b]fluoranthene1.4Benzo[k]fluorantheneN/ABenzo[a]pyrene1.1Indeno[1,2,3-cd]pyreneN/ASS-90.05'Benzo[b]fluoranthene0.88


a the state of the state	and the		State - State -
	0.05'	1'	1 Alexan
b]fluoranthene		0.21	
a]pyrene	0.072	0.16	Carl Salar
10 Co	i the		

SAMPLING RESULTS MAP – SVOCs EXCEEDING SCREENING LEVELS

October 2015

Foreshore Sediment Sampling 900 Innes Avenue San Francisco, California

100 FEET

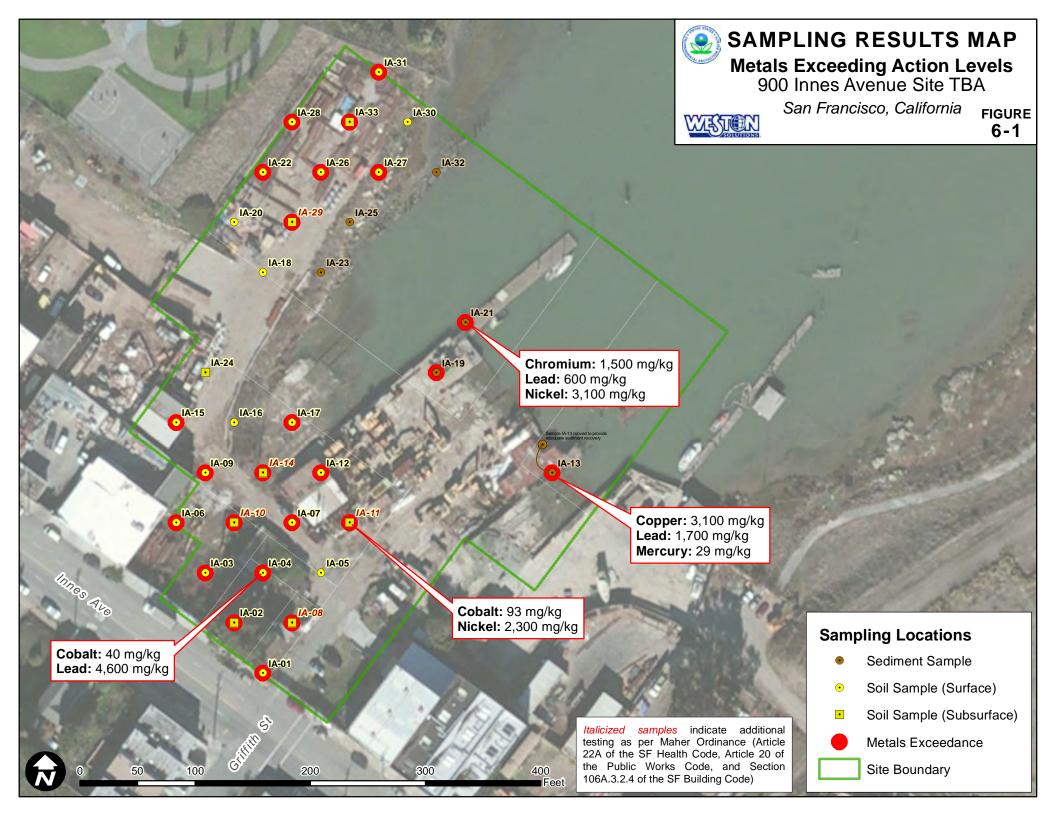
!	
6	
2	

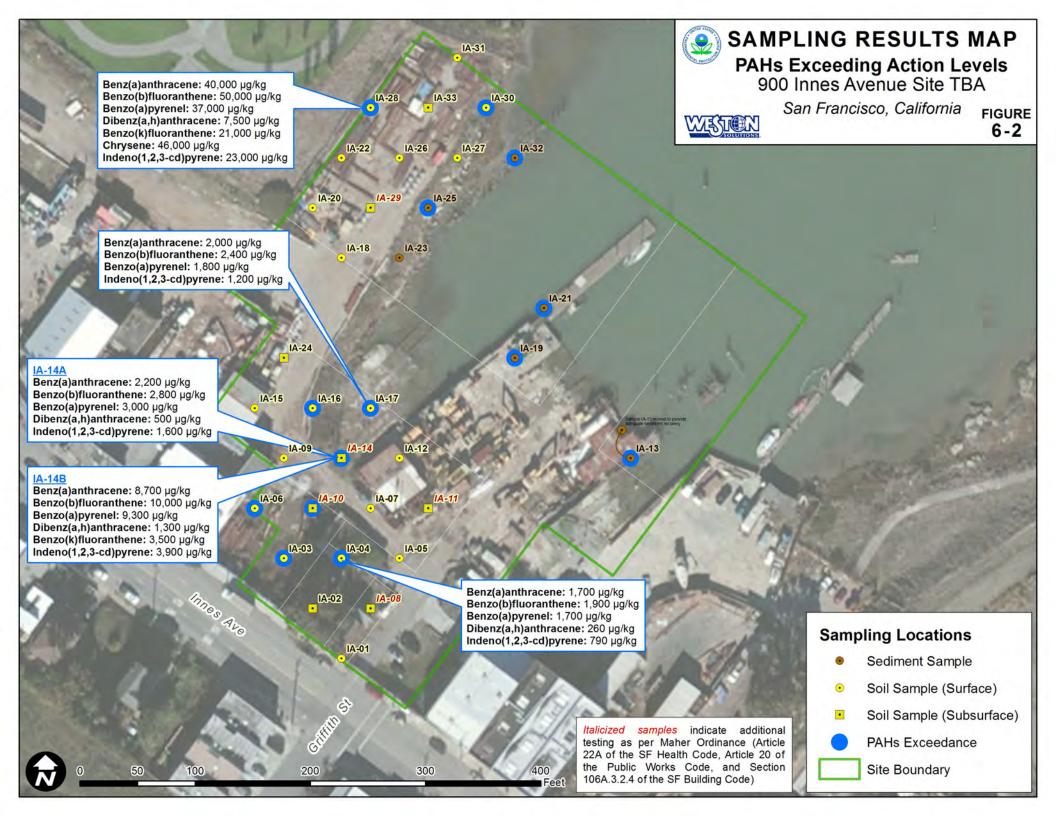
0.5'	1'
120	110
650	180

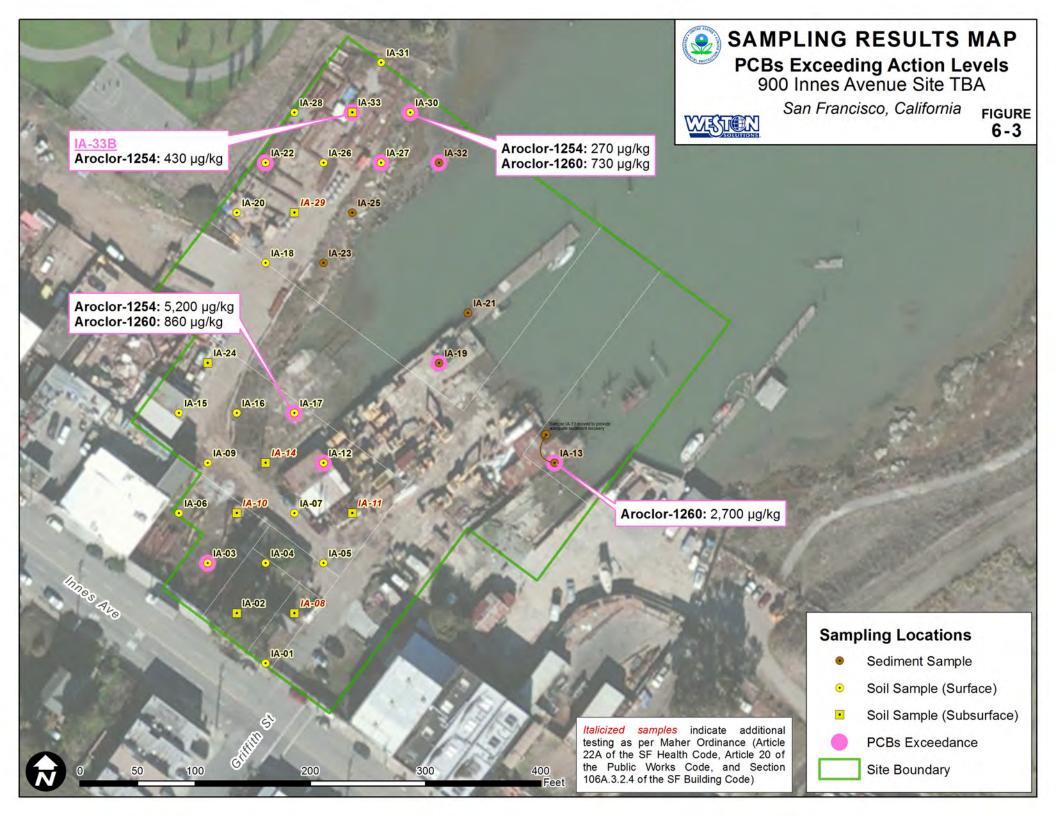
SS-8	0.5'	1'
Dibutyltin	79	66
Tributyltin	130	130

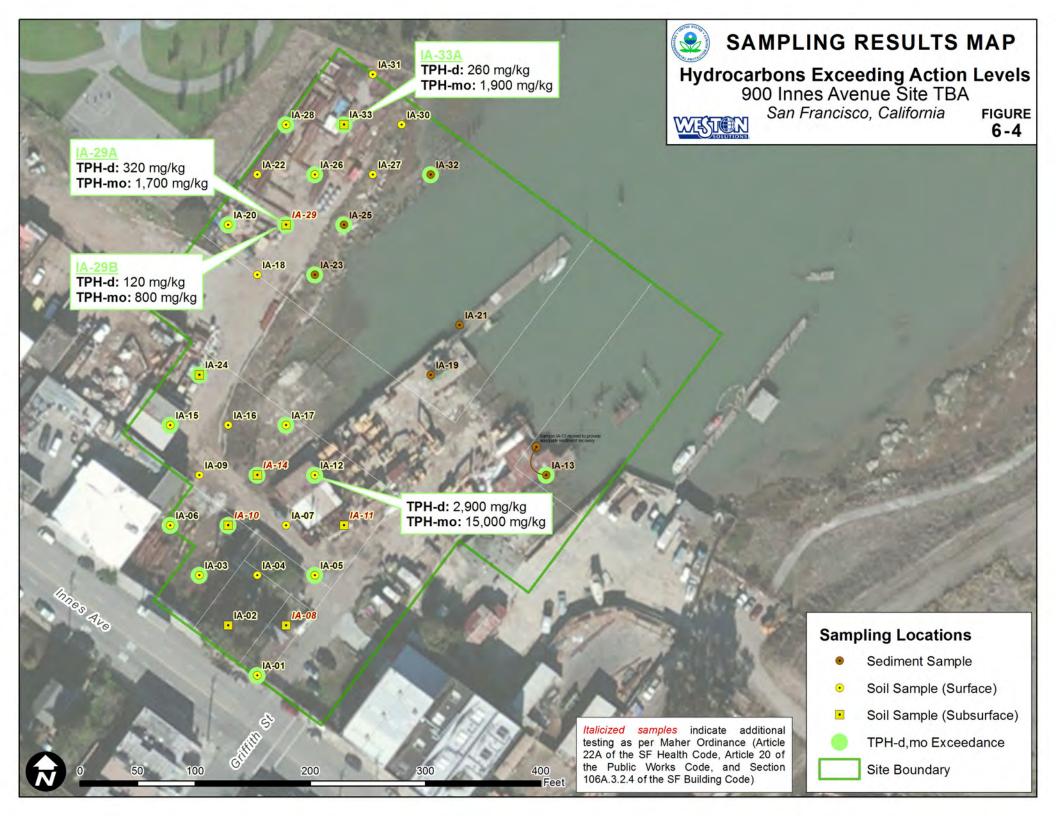
The second second	A COMPANY OF THE	State of the second second
SS-9	0.5'	1'
Dibutyltin	16000	670
Tributyltin	13000	980


SAMPLING RESULTS MAP ORGANOTINS EXCEEDING SCREENING LEVELS


Foreshore Sediment Sampling 900 Innes Avenue San Francisco, California


APPENDIX A


WESTON FIGURES



APPENDIX B

ANALYTICAL LABORATORY AND DATA VALIDATION REPORTS

LEVEL III Data Validation Report

PROJECT: Blue Greenway, 900 Innes

LABORATORY: Test America, Pleasanton, CA

LAB NUMBER: 720-64901

SAMPLES: SS-1-1', SS-2-0.5', SS-2-1', SS-3-0.5', SS-3-1', SS-4-0.5', SS-4-1', SS-5-0.5', SS-5-1', SS-6-0.5', SS-6-1', SS-7-0.5', SS-7-1', SS-8-0.5', SS-8-1', SS-9-0.5', SS-9-1', SS-10-0.5', SS-10-1', FD-1, FD-2

MATRIX: Sediment

Analysis	PAHs 8270C
Holding Time	✓
Surrogate Recovery	Note 1
MS/MSD	NA
LCS (Blank Spike)	✓ <i>✓</i>
Method Blanks	✓
Field Duplicates (FD-1 and SS-8-0.5'; FD-2 and SS-10-1')	✓
Field/Equipment Blanks	NA
Reporting Limits	Note 2

 \checkmark – QC criteria were met.

Notes:

<u>s</u>: 1. The following surrogate recoveries were outside of their QC acceptance range:

Sample	Surrogate	Percent Recovery	Acceptance Range
SS-6-0.5'	Terphenyl-d ₁₄	118	32% to 117%
SS-10-0.5'	Terphenyl-d ₁₄	134	32% to 117%
SS-10-1'	Terphenyl-d ₁₄	121	32% to 117%

Since only one of the surrogates was out, data were not qualified.

Sample	Dilution Factor
SS-5-1'	
SS-6-1'	
SS-5-0.5'	
SS-2-1'	
SS-1-0.5'	
SS-2-0.5'	5
SS-7-1'	
SS-8-0.5'	
SS-8-1'	
SS-9-0.5'	
FD-1	
FD-2	
SS-9-1'	
SS-4-1'	10
SS-1-1'	10
SS-7-0.5'	
SS-6-0.5'	
SS-4-0.5'	
SS-3-0.5'	2
SS-3-1'	
SS-10-1'	

2. Due to the presence of non-target compounds, the following dilutions were required:

Reporting limits were increased by the same factors as the dilution.

Summary:

Based on this Level III validation, these data are usable for their intended purpose. None of these data were qualified or rejected.

LEVEL III Data Validation Report

PROJECT:	Blue Greenway, 900 Innes	
LABORATORY:	Test America, Pleasanton, CA	
LAB NUMBER:	720-64901	
SAMPLES:	SS-1-1', SS-2-0.5', SS-2-1', SS-3-0.5', SS-3-1', SS-4-0.5', SS-4-1', SS-5-0.5', SS-5-1', SS-6-0.5', SS-6-1', SS-7-0.5', SS-7-1', SS-8-0.5', SS-8-1', SS-9-0.5', SS-9-1', SS-10-0.5', SS-10-1', FD-1, FD-2	

MATRIX: Sediment

Analysis	Diesel Range Organics, Motor Oil Range 8015B
Holding Time	\checkmark
Surrogate Recovery	Note 1
MS/MSD	NA
LCS (Blank Spike)	✓
Method Blanks	✓
Field Duplicates (FD-1 and SS-8-0.5'; FD-2 and SS-10-1')	\checkmark
Field/Equipment Blanks	NA
Reporting Limits	Note 2

 \checkmark – QC criteria were met.

<u>Notes</u>: 1. For dilutions by factors of five or greater, the surrogate was diluted out. Results are not qualified when surrogates are diluted from the sample (0% recovery).

Sample	Dilution Factor
SS-7-1'	
SS-8-1'	
SS-7-0.5'	5
SS-4-0.5'	5
SS-1-0.5'	
SS-3-1'	
SS-2-1'	
SS-1-1'	10
SS-2-0.5'	10
SS-9-0.5'	
SS-6-1'	
SS-5-1'	2
SS-3-0.5'	Δ
FD-2	
SS-4-1'	50
FD-1	
SS-8-0.5'	3
SS-10-1'	
SS-9-1'	20

2. In order to quantitate diesel, the following dilutions were required:

Reporting limits were increased by the same factors as the dilution. Reported concentrations exceeded the elevated reporting limits.

Summary:

Based on this Level III validation, these data are usable for their intended purpose. None of these data were qualified or rejected.

LEVEL III Data Validation Report

PROJECT:	Blue Greenway, 900 Innes
LABORATORY:	Test America, Pleasanton, CA
LAB NUMBER:	720-64901
SAMPLES:	SS-1-1', SS-2-0.5', SS-2-1', SS-3-0.5', SS-3-1', SS-4-0.5', SS-4-1', SS-5-0.5', SS-5-1', SS-6-0.5', SS-6-1', SS-7-0.5', SS-7-1', SS-8-0.5', SS-8-1', SS-9-0.5', SS-9-1', SS-10-0.5', SS-10-1', FD-1, FD-2

MATRIX: Sediment

Analysis	PCBs 8082
Holding Time	√
Surrogate Recovery	Note 1
MS/MSD (SS-1-0.5')	✓
LCS (Blank Spike)	✓
Method Blanks	✓
Field Duplicates (FD-1 and SS-8-0.5'; FD-2 and SS-10-1')	Note 2
Field/Equipment Blanks	NA
Reporting Limits	Note 3

 \checkmark – QC criteria were met.

- Notes: 1. Surrogates were diluted out of samples SS-7-1', SS-9-0.5', SS-9-1', SS-10-1', and FD-1. Results are not qualified when surrogates are diluted from samples.
 - In both field duplicate pairs, significant discrepancies for reported concentrations were noted. In the case of FD-1 and SS-8-0.5', the reported concentrations of PCB-1260 were flagged "J," in each sample (710 μg/kg and 7800 μg/kg); (RPD=166.6%). In the duplicate pair FD-2 and SS-10-1', no RPD was calculated due to the non-detects. By inspection PCB-1248 in SS-10-1' and PCB-1260 in FD-2 were flagged "J," estimated. In the FD-1, SS-8-0.5' the mean should be used for the reported concentration PCB-1260.
 - 3. Reporting limits of the associated non-detects were flagged "UJ," estimated.

Summary:

Based on this Level III validation, these data are usable, as qualified, for their intended purpose. None of these data were rejected.

AECOM

LEVEL III Data Validation Report

PROJECT:	Blue Greenway, 900 Innes
LABORATORY:	Test America, Pleasanton, CA
LAB NUMBER:	720-64901
SAMPLES:	SS-1-1', SS-2-0.5', SS-2-1', SS-3-0.5', SS-3-1', SS-4-0.5', SS-4-1', SS-5-0.5', SS-5-1', SS-6-0.5', SS-6-1', SS-7-0.5', SS-7-1', SS-8-0.5', SS-8-1', SS-9-0.5', SS-9-1', SS-10-0.5', SS-10-1', FD-1, FD-2

MATRIX: Sediment

Analysis	Organotins* PSEP (GC/MS)
Holding Time	\checkmark
Surrogate Recovery	✓
MS/MSD (SS-7-0.5')	Note 1
LCS (Blank Spike)	Note 2
Method Blanks	\checkmark
Field Duplicates (FD-1 and SS-8-0.5'; FD-2 and SS-10-1')	Note 3
Field/Equipment Blanks	NA
Reporting Limits	Note 4

* Monobutyltin, tetra-n-butyltin, dibutyltin, tributyltin

 \checkmark – QC criteria were met.

<u>Notes</u>:
 The MS/MSD run on sample SS-7-0.5' had percent recoveries outside of QC acceptance range for all four compounds. In addition, the RPD was either not calculated or above the QC limit for all compounds. Since the concentration of tributyltin in sample SS-07-0.5' exceeded the spiking concentration by a factor greater than four, no qualifiers were required for this compound due to the MS/MSD. All reported concentrations in the spiked sample were flagged "J," estimated.

AECOM

R:\GH\15DIH059.docx p.6

2. The following LCS recoveries had RPDs between the LCS and the LCSD that exceeded the QC limit.

Prep Batch	Compound	RPD	RPD Limit
190241	Tetra-n-butyltin	36	25
190247	Monobutyltin		36

Samples were flagged "J," and "UJ" for results of Tetra-butyltin in prep Batch 190241 and Monobutyltin in Prep Batch 190247.

3. The RPD between the reported Dibutytin concentrations in the field duplicate pair FD-1 and SS-8-0.5' of 103% exceeded the QC limit of 50%. Both results were flagged "J."

For the duplicate pair, SS-10-1' and FD-2, the RPD between the reported concentration of Tetra-n-butytin of 71% and between Tributyltin reported concentrations of 73% exceed the QC limit of 50%. All four reported concentrations were flagged "J," estimated. The mean of all three flagged *Auglicate parts* eompounds should be used as the estimated concentration. In Section of Secting of Section of Section o

Sample	Compounds (-Butyltin)	Dilution Factor
SS-1-1'	Dibutyltin	5
SS-2-0.5'	All	5
00.2.12	Mono and Tetro-n	5
SS-3-1'	Di and Tri	25
00.0.05	Mono	50
SS-9-0.5'	Di and Tri	250
SS-10-1'	Di and Tri	10
SS-9-1'	Di and Tri	10
FD-2	Di and Tri	5

4. In order to quantitate target compounds, the following dilutions were required:

Reporting limits were increased by the same factors as the dilutions.

Summary:

Based on this Level III validation, these data are usable, as qualified, for their intended purpose. None of these data were rejected. 2. The following LCS recoveries had RPDs between the LCS and the LCSD that exceeded the QC limit.

Prep Batch	Compound	RPD	RPD Limit
190241	Tetra-n-butyltin	36	25
190247	Monobutyltin	65	36

Samples were flagged "J," and "UJ" for results of Tetra-butyltin in prep Batch 190241 and Monobutyltin in Prep Batch 190247.

3. The RPD between the reported Dibutytin concentrations in the field duplicate pair FD-1 and SS-8-0.5' of 103% exceeded the QC limit of 50%. Both results were flagged "J."

For the duplicate pair, SS-10-1' and FD-2, the RPD between the reported concentration of Tetra-n-butytin of 71% and between Tributyltin reported concentrations of 73% exceed the QC limit of 50%. All four reported concentrations were flagged "J," estimated. The mean of all sets of flagged duplicate pairs should be used as the estimated concentration for each sampling point.

Sample	Compounds (-Butyltin)	Dilution Factor
SS-1-1'	Dibutyltin	5
SS-2-0.5'	All	5
66.2.12	Mono and Tetro-n	5
SS-3-1'	Di and Tri	25
CC 0 0 5'	Mono	50
SS-9-0.5'	Di and Tri	250
SS-10-1'	Di and Tri	10
SS-9-1'	Di and Tri	10
FD-2	Di and Tri	5

4. In order to quantitate target compounds, the following dilutions were required:

Reporting limits were increased by the same factors as the dilutions.

Summary:

Based on this Level III validation, these data are usable, as qualified, for their intended purpose. None of these data were rejected.

LEVEL III Data Validation Report

PROJECT:	Blue Greenway, 900 Innes	
LABORATORY:	Test America, Pleasanton, CA	
LAB NUMBER:	720-64901	
SAMPLES:	SS-1-1', SS-2-0.5', SS-2-1', SS-3-0.5', SS-3-1', SS-4-0.5', SS-4-1', SS-5-0.5', SS-5-1', SS-6-0.5', SS-6-1', SS-7-0.5', SS-7-1', SS-8-0.5', SS-8-1', SS-9-0.5', SS-9-1', SS-10-0.5', SS-10-1', FD-1, FD-2	

MATRIX: Sediment

Analysis	CAM 17 Metals 6010B / Hg by 7471A
Holding Time	\checkmark
Surrogate Recovery	NA
MS/MSD	\checkmark
LCS (Blank Spike)	✓
Method Blanks	✓
Field Duplicates (FD-1 and SS-8-0.5')	✓
Field/Equipment Blanks	NA
Reporting Limits	Note 1

 \checkmark – QC criteria were met.

Notes: 1. 6010B Metals were diluted by factors of four in all samples other than the specifid metals listed below:

Sample	Un-diluted Metals	
SS-3-0.5'	Sb, Be, Cd, Mo, Se, Ag, Tl	
SS-5-0.5'	Sb, Be, Cd, Mo, Se, As, Tl	
SS-5-1'	Sb, Be, Cd, Se, Ag, Tl	
SS-6-0.5'	Sb, Be, Cd, Mo, Se, As, Tl	
SS-10-0.5'	Sb, Be, Cd, Pb, Mo, Ni, Se, Ag, Tl	
FD-2	Sb, Be, Cd, Pb, Ni, Se, Ag, Tl	

Higher dilutions than four were needed in sample SS-9-0.5' as follows:

Sb (10)

Cu (50), [Pb, Mo, Ni, Tl (10)]

Reporting limits were increased by the same factors as the dilutions.

For Mercury, the following dilutions were required:

Sample	Hg Dilution Factor
SS-7-0.5'	
SS-2-1'	
SS-7-1'	5
SS-1-1'	
SS-6-1'	
SS-10-1'	
SS-10-0.5'	
SS-3-1'	10
SS-8-0.5'	10
FD-1	
FD-2	
SS-4-1'	
SS-4-0.5'	
SS-8-1'	100
SS-9-0.5'	
SS-9-1'	

Reporting limits were increased by the same factors as the dilutions. Reported concentrations of mercury exceeded the elevated reporting limits.

Summary:

Based on this Level III validation, these data are usable for their intended purpose. None of these data were qualified or rejected.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-64901-1

Client Project/Site: Blue Greenway 900 Innes

For:

URS Corporation One Montgomery Street Suite 900 San Francisco, California 94104-4538

Attn: Mr. Erik Skov

Alemphal D

Authorized for release by: 5/29/2015 4:09:06 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page 1	1
Table of Contents 2	2
Definitions/Glossary	3
Case Narrative 4	ŀ
Detection Summary	7
Client Sample Results 1	19
Surrogate Summary 6	53
QC Sample Results	67
QC Association Summary	79
Lab Chronicle	39
Method Summary 1	100
Sample Summary 1	101
Chain of Custody 1	102
Receipt Checklists 1	105

1 3 4 5 6 7 8 9 10 11 13 13

Qualifiers

GC/MS Se	mi VOA
Qualifier	Qualifier Description
•	RPD of the LCS and LCSD exceeds the control limits
х	Surrogate is outside control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
E	Result exceeded calibration range.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
^	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
GC Semi \	ΙΟΑ

Qualifier	Qualifier Description
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
Х	Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
α	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 720-64901-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-64901-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 5/19/2015 3:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS Semi VOA

Method(s) 8270C: The following samples was diluted due to the abundance of non-target analytes: SS-9-1' (720-64901-18) and SS-10-1' (720-64901-20). Elevated reporting limits (RLs) are provided.

Method(s) 8270C: Surrogate recovery for the following samples was outside control limits: SS-10-0.5' (720-64901-19) and SS-10-1' (720-64901-20). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8270C: Surrogate recovery for the following sample was outside the upper control limit: (MB 720-182427/1-A). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8270C: The following samples was diluted due to the abundance of non-target analytes: SS-2-0.5' (720-64901-3), SS-2-1' (720-64901-4), SS-3-0.5' (720-64901-5), SS-3-1' (720-64901-6), FD-1 (720-64901-21) and FD-2 (720-64901-22). Elevated reporting limits (RLs) are provided.

Method(s) 8270C: The following samples was diluted due to the abundance of non-target analytes: SS-1-1' (720-64901-2), SS-4-0.5' (720-64901-7) and SS-4-1' (720-64901-8). Elevated reporting limits (RLs) are provided.

Method(s) Organotins: The continuing calibration verification (CCV) associated with batch 580-190365 recovered above the upper control limit for Monobutyl Tin. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: SS-1-0.5' (720-64901-1), SS-1-1' (720-64901-2), SS-2-0.5' (720-64901-3), SS-2-1' (720-64901-4), SS-3-0.5' (720-64901-5), SS-3-1' (720-64901-6), (LCS 580-190241/2-A), (LCSD 580-190241/3-A), (MB 580-190241/1-A) and (580-47466-A-7-C MDLS).

Method(s) Organotins: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 580-190241, 580-190241 and 580-190241 recovered outside control limits for Tetrabutyltin. All targets had passing recovery in both the LCS and LCSD.

Method(s) Organotins: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 580-190247, 580-190247 and 580-190247 recovered outside control limits for MonobutyITin. All targets had passing recovery in the LCS and LCSD.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8015B: The following samples required a dilution due to the nature of the sample matrix: SS-1-1' (720-64901-2), SS-2-0.5' (720-64901-3) and SS-2-1' (720-64901-4). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8082: The following samples required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: SS-1-0.5' (720-64901-1), SS-1-1' (720-64901-2), SS-2-0.5' (720-64901-3), SS-2-1' (720-64901-4), SS-3-0.5' (720-64901-5), (LCS 720-182348/2-A), (MB 720-182348/1-A), (720-64901-A-1-B MS) and (720-64901-A-1-C MSD).

Method(s) 8082: The following sample(s) contained more than one Aroclor with insufficient separation to quantify individually. The PCBs present are quantified as the predominant Aroclor: SS-1-0.5' (720-64901-1), SS-1-1' (720-64901-2), SS-2-0.5' (720-64901-3) and SS-2-1' (720-64901-4).

TestAmerica Pleasanton 5/29/2015

1 3 4 5 6 7 8 9 10

Job ID: 720-64901-1 (Continued)

Laboratory: TestAmerica Pleasanton (Continued)

Method(s) 8082: The following samples required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: SS-5-1' (720-64901-10), SS-6-0.5' (720-64901-11) and SS-6-1' (720-64901-12).

Method(s) 8082: The following sample(s) contained more than one Aroclor with insufficient separation to quantify individually. The PCBs present are quantified as the predominant Aroclor: SS-5-1' (720-64901-10), SS-6-0.5' (720-64901-11) and SS-6-1' (720-64901-12).

Method(s) 8015B: The following sample required a dilution due to the nature of the sample matrix: SS-4-1' (720-64901-8). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8015B: The following samples required a dilution due to the nature of the sample matrix: SS-3-1' (720-64901-6) and SS-4-0.5' (720-64901-7). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8015B: The following sample required a dilution due to the nature of the sample matrix: SS-1-0.5' (720-64901-1). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8082: The following samples required a dilution due to the nature of the sample matrix: SS-7-1' (720-64901-14), SS-9-0.5' (720-64901-17) and SS-9-1' (720-64901-18). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8082: The following sample(s) contained more than one Aroclor with insufficient separation to quantify individually. The PCBs present are quantified as the predominant Aroclor: SS-7-0.5' (720-64901-13), SS-7-1' (720-64901-14), SS-8-0.5' (720-64901-15), SS-8-1' (720-64901-16), SS-9-0.5' (720-64901-17), SS-9-1' (720-64901-18) and FD-2 (720-64901-22).

Method(s) 8082: The following samples required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: SS-7-0.5' (720-64901-13), SS-7-1' (720-64901-14), SS-8-0.5' (720-64901-15), SS-8-1' (720-64901-16), SS-9-0.5' (720-64901-17), SS-9-1' (720-64901-18), FD-2 (720-64901-22), (LCS 720-182388/2-A), (MB 720-182388/1-A), (720-64909-A-1-G), (720-64909-A-1-E MS) and (720-64909-A-1-F MSD).

Method(s) 8082: The following samples required a dilution due to the nature of the sample matrix: SS-10-1' (720-64901-20) and FD-1 (720-64901-21). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8082: The following sample(s) contained more than one Aroclor with insufficient separation to quantify individually. The PCBs present are quantified as the predominant Aroclor: SS-3-1' (720-64901-6), SS-4-0.5' (720-64901-7), SS-4-1' (720-64901-8), SS-5-0.5' (720-64901-9), SS-10-0.5' (720-64901-19), SS-10-1' (720-64901-20) and FD-1 (720-64901-21).

Method(s) 8082: The following samples required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: SS-3-1' (720-64901-6), SS-4-0.5' (720-64901-7), SS-4-1' (720-64901-8), SS-5-0.5' (720-64901-9), SS-10-0.5' (720-64901-19), SS-10-1' (720-64901-20) and FD-1 (720-64901-21).

Method(s) 8015B: The following samples required a dilution due to the nature of the sample matrix: SS-7-0.5' (720-64901-13) and SS-7-1' (720-64901-14). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8015B: The Diesel Range Organics (DRO) concentration reported for the following sample is due to the presence of discrete peaks: (720-64909-B-1-E).

Method(s) 8015B: The following samples required a dilution due to the nature of the sample matrix: SS-8-1' (720-64901-16), SS-9-0.5' (720-64901-17) and SS-9-1' (720-64901-18). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Job ID: 720-64901-1 (Continued)

Laboratory: TestAmerica Pleasanton (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010B: The following samples was diluted due to the abundance of non-target analyte : SS-1-0.5' (720-64901-1), SS-1-1' (720-64901-2), SS-2-0.5' (720-64901-3), SS-2-1' (720-64901-4), SS-3-1' (720-64901-6), SS-4-0.5' (720-64901-7) and SS-4-1' (720-64901-8). Elevated reporting limits (RLs) are provided.

Method(s) 6010B: The following samples was diluted due to the abundance of non-target analyte: SS-6-1' (720-64901-12), SS-7-0.5' (720-64901-13), SS-7-1' (720-64901-14), SS-8-0.5' (720-64901-15), SS-8-1' (720-64901-16), SS-9-0.5' (720-64901-17), SS-9-1' (720-64901-18), SS-10-1' (720-64901-20) and FD-1 (720-64901-21). Elevated reporting limits (RLs) are provided.

Method(s) 6010B: The following sample was diluted to bring the concentration of target analytes within the calibration range: SS-9-0.5' (720-64901-17). Elevated reporting limits (RLs) are provided.

Method(s) 6010B: The following sample was diluted due to the abundance of non-target analyte : FD-1 (720-64901-21). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: SS-1-0.5'

Lab Sample ID: 720-64901-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Dibutyltin	81		0.93		ug/Kg	1		Organotins	Total/NA
Monobutyltin	24		0.93		ug/Kg	1		Organotins	Total/NA
TributyItin	70		0.93		ug/Kg	1		Organotins	Total/NA
Diesel Range Organics [C10-C28]	180		5.0		mg/Kg	5		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	420		250		mg/Kg	5		8015B	Total/NA
PCB-1254	74		49		ug/Kg	1		8082	Total/NA
Arsenic	7.0		3.3		mg/Kg	4		6010B	Total/NA
Barium	58		1.7		mg/Kg	4		6010B	Total/NA
Chromium	68		1.7		mg/Kg	4		6010B	Total/NA
Cobalt	11		0.66		mg/Kg	4		6010B	Total/NA
Copper	180		5.0		mg/Kg	4		6010B	Total/NA
Lead	76		1.7		mg/Kg	4		6010B	Total/NA
Nickel	90		1.7		mg/Kg	4		6010B	Total/NA
Vanadium	40		1.7		mg/Kg	4		6010B	Total/NA
Zinc	140		5.0		mg/Kg	4		6010B	Total/NA
Mercury	0,54		0.0095		mg/Kg	1		7471A	Total/NA

Client Sample ID: SS-1-1'

Lab Sample ID: 720-64901-2

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	D Method	Prep Type
Phenanthrene	4.4	1.3	mg/Kg	10	8270C	Total/NA
Chrysene	27	1.3	mg/Kg	10	8270C	Total/NA
MonobutyItin	69	0.94	ug/Kg	1	Organotins	Total/NA
Tributyltin	150	0.94	ug/Kg	1	Organotins	Total/NA
Dibutyltin - DL	230	4.7	ug/Kg	5	Organotins	Total/NA
Diesel Range Organics [C10-C28]	260	9,9	mg/Kg	10	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	610	500	mg/Kg	10	8015B	Total/NA
PCB-1254	180	50	ug/Kg	1	8082	Total/NA
Arsenic	8.6	2,9	mg/Kg	4	6010B	Total/NA
Barium	69	1.4	mg/Kg	4	6010B	Total/NA
Chromium	64	1.4	mg/Kg	4	6010B	Total/NA
Cobalt	12	0.58	mg/Kg	4	6010B	Total/NA
Copper	370	4.3	mg/Kg	4	6010B	Total/NA
Lead	120	1.4	mg/Kg	4	6010B	Total/NA
Molybdenum	2.2	1.4	mg/Kg	4	6010B	Total/NA
Nickel	88	1.4	mg/Kg	4	6010B	Total/NA
Vanadium	37	1.4	mg/Kg	4	6010B	Total/NA
Zinc	220	4.3	mg/Kg	4	6010B	Total/NA
Mercury	3.2	0.047	mg/Kg	5	7471A	Total/NA

Client Sample ID: SS-2-0.5'

Lab Sample ID: 720-64901-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Dibutyltin	62	4.9	ug/Kg	5	Organotins	Total/NA
Diesel Range Organics [C10-C28]	320	9.9	mg/Kg	10	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	640	500	mg/Kg	10	8015B	Total/NA
PCB-1254	54	50	ug/Kg	1	8082	Total/NA
Arsenic	5.0	3.3	mg/Kg	4	6010B	Total/NA
Barium	77	1.6	mg/Kg	4	6010B	Total/NA
Chromium	37	1.6	mg/Kg	4	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Client Sample ID: SS-2-0.5' (Continued)

Lab Sample ID: 720-64901-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Cobalt	8.3		0,66		mg/Kg	4	-	6010B	Total/NA
Соррег	120		4,9		mg/Kg	4		6010B	Total/NA
Lead	140		1.6		mg/Kg	4		6010B	Total/NA
Molybdenum	1.9		1.6		mg/Kg	4		6010B	Total/NA
Nickel	59		1.6		mg/Kg	4		6010B	Total/NA
Vanadium	25		1_6		mg/Kg	4		6010B	Total/NA
Zinc	730		4.9		mg/Kg	4		6010B	Total/NA
Mercury	0.49		0.0088		mg/Kg	1		7471A	Total/NA
lient Sample ID: SS-2-1'						Lab S	a	nple ID: 7	20-64901-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Pyrene	0.73		0.67		mg/Kg	5	_	8270C	Total/NA
Dibutyltin	83		0,95		ug/Kg	1		Organotins	Total/NA
Tributyltin	110		0.95		ug/Kg	1		Organotins	Total/NA
Diesel Range Organics [C10-C28]	360		9.9		mg/Kg	10		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	800		490		mg/Kg	10		8015B	Total/NA
PCB-1254	180		50		ug/Kg	1		8082	Total/NA
Antimony	3.0		1.8		mg/Kg	4		6010B	Total/NA
Arsenic	16		3.7		mg/Kg	4		6010B	Total/NA
			4.0						
Barium	97		1.8		mg/Kg	4		6010B	Total/NA

Client Sample ID: SS-2-1'

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Pyrene	0.73	0.67	mg/Kg	5	8270C	Total/NA
Dibutyltin	83	0,95	ug/Kg	1	Organotins	Total/NA
Tributyltin	110	0.95	ug/Kg	1	Organotins	Total/NA
Diesel Range Organics [C10-C28]	360	9.9	mg/Kg	10	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	800	490	mg/Kg	10	8015B	Total/NA
PCB-1254	180	50	ug/Kg	1	8082	Total/NA
Antimony	3.0	1.8	mg/Kg	4	6010B	Total/NA
Arsenic	16	3.7	mg/Kg	4	6010B	Total/NA
Barium	97	1.8	mg/Kg	4	6010B	Total/NA
Cadmium	2.3	0.46	mg/Kg	4	6010B	Total/NA
Chromium	130	1.8	mg/Kg	4	6010B	Total/NA
Cobalt	18	0.73	mg/Kg	4	6010B	Total/NA
Copper	650	5.5	mg/Kg	4	6010B	Total/NA
Lead	410	1.8	mg/Kg	4	6010B	Total/NA
Molybdenum	17	1.8	mg/Kg	4	6010B	Total/NA
Nickel	230	1,8	mg/Kg	4	6010B	Tota!/NA
Vanadium	28	1.8	m g/K g	4	6010B	Total/NA
Zinc	2400	5.5	mg/Kg	4	6010B	Total/NA
Mercury	1.8	0.045	mg/Kg	5	7471A	Total/NA

Client Sample ID: SS-3-0.5'

Lab Sample ID: 720-64901-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Acenaphthene	0.17		0.13		mg/Kg	2		8270C	Total/NA
Fluorene	0,20		0.13		mg/Kg	2		8270C	Total/NA
Phenanthrene	1.0		0.13		mg/Kg	2		8270C	Total/NA
Anthracene	0,62		0.13		mg/Kg	2		8270C	Total/NA
Fluoranthene	2.0		0.13		mg/Kg	2		8270C	Total/NA
Pyrene	2.0		0.13		mg/Kg	2		8270C	Total/NA
Chrysene	0,94		0.13		mg/Kg	2		8270C	Total/NA
Benzo[b]fluoranthene	0.63		0.13		mg/Kg	2		8270C	Total/NA
Benzo[k]fluoranthene	0.23		0.13		mg/Kg	2		8270C	Total/NA
Benzo[a]pyrene	0.44		0.13		mg/Kg	2		8270C	Total/NA
Indeno[1,2,3-cd]pyrene	0.22		0.13		mg/Kg	2		8270C	Total/NA
Benzo[g,h,i]perylene	0,20		0.13		mg/Kg	2		8270C	Total/NA
Dibutyltin	31		0.92		ug/Kg	1		Organotins	Total/NA
TributyItin	25		0.92		ug/Kg	1		Organotins	Total/NA
Diesel Range Organics [C10-C28]	110		2,0		mg/Kg	2		8015B	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: SS-3-0.5' (Continued)

Lab Sample ID: 720-64901-5

Client Sample ID: SS-3-0.5'	Lab Sample ID: 720-64901-5						
Analyte	Result Q	ualifier RL	MDL U	Init	Dil Fac D	Method	Ргер Туре
Motor Oil Range Organics [C24-C36]	140	99	m	ng/Kg	2	8015B	Total/NA
Arsenic	4.6	3.3	m	ng/Kg	4	6010B	Total/NA
Barium	28	1.7	m	ng/Kg	4	6010B	Total/NA
Chromium	41	1.7	m	ng/Kg	4	6010B	Total/NA
Cobalt	6.2	0,66	m	ng/Kg	4	6010B	Total/NA
Copper	80	5.0	m	ng/Kg	4	6010B	Total/NA
Lead	28	1.7	m	ng/Kg	4	6010B	Total/NA
Nickel	41	1.7	m	ng/Kg	4	6010B	Total/NA
Vanadium	29	1.7	m	ng/Kg	4	6010B	Total/NA
Zinc	80	5.0	m	ng/Kg	4	6010B	Total/NA
Mercury	0.49	0.0090	m	ng/Kg	1	7471A	Total/NA
Client Sample ID: SS-3-1'					Lab Sa	mple ID:	720-64901-6

Client Sample ID: SS-3-1'

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Ргер Туре
Phenanthrene	0.44		0.27	mg/Kg	2	8270C	Total/NA
Anthracene	0,33		0.27	mg/Kg	2	8270C	Total/NA
Fluoranthene	3.6		0,27	mg/Kg	2	8270C	Total/NA
Pyrene	7.6		0.27	mg/Kg	2	8270C	Total/NA
Chrysene	0.93		0.27	mg/Kg	2	8270C	Total/NA
Benzo[b]fluoranthene	1.8		0.27	mg/Kg	2	8270C	Total/NA
Benzo[k]fluoranthene	0.73		0.27	mg/Kg	2	8270C	Total/NA
Benzo[a]pyrene	1,1		0.27	mg/Kg	2	8270C	Total/NA
Indeno[1,2,3-cd]pyrene	0.62		0.27	mg/Kg	2	8270C	Total/NA
Benzo[g,h,i]perylene	0.62		0_27	mg/Kg	2	8270C	Total/NA
MonobutyItin	92		4.7	ug/Kg	5	Organotins	Total/NA
Tetra-n-butyltin	61		13	ug/Kg	5	Organotins	Total/NA
Dibutyltin - DL	990		24	ug/Kg	25	Organotins	Total/NA
Tributyltin - DL	2200		24	ug/Kg	25	Organotins	Total/NA
Diesel Range Organics [C10-C28]	340		5.0	mg/Kg	5	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	570		250	mg/Kg	5	8015B	Total/NA
PCB-1254	980		250	ug/Kg	5	8082	Total/NA
Arsenic	16		3.8	mg/Kg	4	6010B	Total/NA
Barium	130		1.9	mg/Kg	4	6010B	Total/NA
Cadmium	0.49		0.47	mg/Kg	4	6010B	Total/NA
Chromium	82		1.9	mg/Kg	4	6010B	Total/NA
Cobalt	19		0.75	mg/Kg	4	6010B	Total/NA
Copper	1100		5.7	mg/Kg	4	6010B	Total/NA
Lead	150		1.9	mg/Kg	4	6010B	Total/NA
Molybdenum	20		1.9	mg/Kg	4	6010B	Total/NA
Nickel	81		1.9	mg/Kg	4	6010B	Total/NA
Vanadium	44		1.9	mg/Kg	4	6010B	Total/NA
Zinc	440		5.7	mg/Kg	4	6010B	Total/NA
Mercury	4.6		0.097	mg/Kg	10	7471A	Total/NA

Client Sample ID: SS-4-0.5'

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Phenanthrene	1.5	0.27	mg/Kg	2	8270C	Total/NA
Anthracene	0.58	0.27	mg/Kg	2	8270C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Lab Sample ID: 720-64901-7

Detection Summary

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Client Sample ID: SS-4-0.5' (Continued)

Lab Sample ID: 720-64901-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Fluoranthene	2.6		0.27		mg/Kg	2		8270C	Total/NA
Pyrene	3,1		0.27		mg/Kg	2		8270C	Total/NA
Chrysene	1.5		0.27		mg/Kg	2		8270C	Total/NA
Benzo[b]fluoranthene	1.6		0.27		mg/Kg	2		8270C	Total/NA
Benzo[k]fluoranthene	0.56		0.27		mg/Kg	2		8270C	Total/NA
Benzo[a]pyrene	1.1		0.27		mg/Kg	2		8270C	Total/NA
Indeno[1,2,3-cd]pyrene	0,61		0.27		mg/Kg	2		8270C	Total/NA
Benzo[g,h,i]perylene	0.72		0.27		mg/Kg	2		8270C	Total/NA
Dibutyltin	130		1.1		ug/Kg	1		Organotins	Total/NA
MonobutyItin	57	•	1.1		ug/Kg	1		Organotins	Total/NA
Tetra-n-butyltin	26		2.9		ug/Kg	1		Organotins	Total/NA
TributyItin	160		1.1		ug/Kg	1		Organotins	Total/NA
Diesel Range Organics [C10-C28]	370		5.0		mg/Kg	5		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	620		250		mg/Kg	5		8015B	Total/NA
PCB-1254	920		250		ug/Kg	5		8082	Total/NA
Antimony	3.5		1.7		mg/Kg	4		6010B	Total/NA
Arsenic	20		3.4		mg/Kg	4		6010B	Total/NA
Barium	180		1.7		mg/Kg	4		6010B	Total/NA
Cadmium	0.47		0.43		mg/Kg	4		6010B	Total/NA
Chromium	94		1.7		mg/Kg	4		6010B	Total/NA
Cobalt	10		0.69		mg/Kg	4		6010B	Total/NA
Copper	700		5.2		mg/Kg	4		6010B	Total/NA
Lead	350		1.7		mg/Kg	4		6010B	Total/NA
Molybdenum	2.0		1.7		mg/Kg	4		6010B	Total/NA
Nickel	74		1.7		mg/Kg	4		6010B	Total/NA
Vanadium	29		1.7		mg/Kg	4		6010B	Total/NA
Zinc	660		5,2		mg/Kg	4		6010B	Total/NA
Mercury	88		0.91		mg/Kg	100		7471A	Total/NA

Client Sample ID: SS-4-1'

Lab Sample ID: 720-64901-8

Analyte	Result Q	Qualifier RL	MDL Unit	Dil Fac	D Method	Ргер Туре
Naphthalene	1.4	1.3	mg/Kg	10	8270C	Total/NA
Acenaphthene	1.8	1.3	mg/Kg	10	8270C	Total/NA
Fluorene	2.3	1.3	mg/Kg	10	8270C	Total/NA
Phenanthrene	7.6	1,3	mg/Kg	10	8270C	Total/NA
Anthracene	2.3	1.3	mg/Kg	10	8270C	Total/NA
Fluoranthene	2.6	1.3	mg/Kg	10	8270C	Total/NA
Pyrene	3.7	1,3	mg/Kg	10	8270C	Total/NA
2-Methylnaphthalene	4.8	1.3	mg/Kg	10	8270C	Total/NA
Dibutyltin	76	1.1	ug/Kg	1	Organotins	Total/NA
Tributyltin	150	s 1,1	ug/Kg	1	Organotins	Total/NA
Diesel Range Organics [C10-C28]	5500	50	mg/Kg	50	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	2900	2500	mg/Kg	50	8015B	Total/NA
PCB-1254	1100	240	ug/Kg	5	8082	Total/NA
Antimony	3.6	1.7	mg/Kg	4	6010B	Total/NA
Arsenic	20	3.4	mg/Kg	4	6010B	Total/NA
Barium	250	1.7	mg/Kg	4	6010B	Total/NA
Cadmium	33	0.43	mg/Kg	4	6010B	Total/NA
Chromium	100	1,7	mg/Kg	4	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: SS-4-1' (Continued)

Lab Sample ID: 720-64901-8

Lab Sample ID: 720-64901-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	26		0.68		mg/Kg	4	-	6010B	Total/NA
Copper	850		5.1		mg/Kg	4		6010B	Total/NA
Lead	1600		1,7		mg/Kg	4		6010B	Total/NA
Molybdenum	9.7		1.7		mg/Kg	4		6010B	Total/NA
Nickel	94		1.7		mg/Kg	4		6010B	Total/NA
Vanadium	31		1.7		mg/Kg	4		6010B	Total/NA
Zinc	1900		5,1		mg/Kg	4		6010B	Total/NA
Mercury	9.1		0.94		mg/Kg	100		7471A	Total/NA

Client Sample ID: SS-5-0.5'

Analyte	Result	Qualifier	RL	MDL U	Unit	Dil Fac	D	Method	Ргер Туре
Anthracene	0.46		0.33	r	ng/Kg	5	-	8270C	Total/NA
Fluoranthene	0.76		0.33	г	mg/Kg	5		8270C	Total/NA
Pyrene	1.0		0.33	r	mg/Kg	5		8270C	Total/NA
Chrysene	1,1		0.33	г	mg/Kg	5		8270C	Total/NA
Benzo[b]fluoranthene	1.3		0.33	г	mg/Kg	5		8270C	Total/NA
Benzo[k]fluoranthene	0.53		0.33	г	mg/Kg	5		8270C	Total/NA
Benzo[a]pyrene	0.87		0.33	r	mg/Kg	5		8270C	Total/NA
Indeno[1,2,3-cd]pyrene	0.48		0.33	r	mg/Kg	5		8270C	Total/NA
Benzo[g,h,i]perylene	0.45		0.33	r	mg/Kg	5		8270C	Total/NA
Diesel Range Organics [C10-C28]	39		1.0	г	mg/Kg	1		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	74		50	r	mg/Kg	1		8015B	Total/NA
PCB-1254	59		49	ι	ug/Kg	1		8082	Total/NA
Arsenic	4.8		3.0	r	mg/Kg	4		6010B	Total/NA
Barium	27		1.5	r	mg/Kg	4		6010B	Total/NA
Beryllium	0.16		0.075	г	mg/Kg	1		6010B	Total/NA
Chromium	39		1.5	r	mg/Kg	4		6010B	Total/NA
Cobalt	5.7		0.60	r	mg/Kg	4		6010B	Total/NA
Copper	75		4.5	r	mg/Kg	4		6010B	Total/NA
Lead	46		1.5	r	m g/Kg	4		6010B	Total/NA
Molybdenum	0.39		0.37	r	m g/Kg	1		6010B	Total/NA
Nickel	38		1.5	r	m g/K g	4		6010B	Total/NA
Vanadium	26		1.5	г	mg/Kg	4		6010B	Total/NA
Zinc	80		4.5	r	mg/Kg	4		6010B	Total/NA
Mercury	1.2		0.0085	r	mg/Kg	1		7471A	Total/NA

Client Sample ID: SS-5-1'

Lab Sample ID: 720-64901-10

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	0.45	0.33		mg/Kg	5		8270C	Total/NA
Anthracene	0.34	0.33		mg/Kg	5		8270C	Total/NA
Fluoranthene	0.67	0.33		mg/Kg	5		8270C	Total/NA
Pyrene	1.7	0.33		mg/Kg	5		8270C	Total/NA
Chrysene	1.2	0.33		mg/Kg	5		8270C	Total/NA
Benzo[b]fluoranthene	1.8	0.33		mg/Kg	5		8270C	Total/NA
Benzo[k]fluoranthene	0.74	0.33		mg/Kg	5		8270C	Total/NA
Benzo[a]pyrene	1.2	0.33		mg/Kg	5		8270C	Total/NA
Indeno[1,2,3-cd]pyrene	0.68	0.33		mg/Kg	5		8270C	Total/NA
Benzo[g,h,i]perylene	0.65	0.33		mg/Kg	5		8270C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Client Sample ID: SS-5-1' (Continued)

Lab Sample ID: 720-64901-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Dibutyltin	38		1.0		ug/Kg		Organotins	Total/NA
Tributyltin	74		1.0		ug/Kg	1	Organotins	Total/NA
Diesel Range Organics [C10-C28]	120		2,0		mg/Kg	2	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	210		100		mg/Kg	2	8015B	Total/NA
PCB-1254	79		50		ug/Kg	1	8082	Total/NA
Arsenic	7.2		3.3		mg/Kg	4	6010B	Total/NA
Barium	49		1.7		mg/Kg	4	6010B	Total/NA
Beryllium	0.18		0.083		mg/Kg	1	6010B	Total/NA
Cadmium	0.10		0.10		mg/Kg	1	6010B	Total/NA
Chromium	48		1.7		mg/Kg	4	6010B	Total/NA
Cobalt	7.4		0.67		mg/Kg	4	6010B	Total/NA
Copper	200		5.0		mg/Kg	4	6010B	Total/NA
Lead	54		1.7		mg/Kg	4	6010B	Total/NA
Molybdenum	3.8		1.7		mg/Kg	4	6010B	Total/NA
Nickel	56		1.7		mg/Kg	4	6010B	Total/NA
Vanadium	30		1.7		mg/Kg	4	6010B	Total/NA
Zinc	130		5.0		mg/Kg	4	6010B	Total/NA
Mercury	1.4		0.0085		mg/Kg	1	7471A	Total/NA

Client Sample ID: SS-6-0.5'

Lab Sample ID: 720-64901-11

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	Method	Prep Type
Pyrene	0.28	0.27	mg/Kg	2	8270C	Total/NA
Dibutyltin	12	1.0	ug/Kg	1	Organotins	Total/NA
TributyItin	32	1.0	ug/Kg	1	Organotins	Total/NA
Diesel Range Organics [C10-C28]	59	1.0	mg/Kg	1	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	100	50	mg/Kg	1	8015B	Total/NA
PCB-1248	50	49	ug/Kg	1	8082	Total/NA
Arsenic	6.0	3,5	mg/Kg	4	6010B	Total/NA
Barium	35	1.8	mg/Kg	4	6010B	Total/NA
Beryllium	0.17	0.088	mg/Kg	1	6010B	Total/NA
Chromium	46	1.8	mg/Kg	4	6010B	Total/NA
Cobalt	6.7	0.70	mg/Kg	4	6010B	Total/NA
Copper	120	5.3	mg/Kg	4	6010B	Total/NA
Lead	37	1.8	mg/Kg	4	6010B	Total/NA
Molybdenum	0.87	0.44	mg/Kg	1	6010B	Total/NA
Nickel	40	1.8	mg/Kg	4	6010B	Total/NA
Vanadium	29	1.8	mg/Kg	4	6010B	Total/NA
Zinc	94	5.3	mg/Kg	4	6010B	Total/NA
Mercury	0.99	0.0087	mg/Kg	1	7471A	Total/NA

Client Sample ID: SS-6-1'

Lab Sample ID: 720-64901-12

Analyte	Result Qualifier	RL.	MDL Unit	Dil Fac	D Me	hod	Ргер Туре
Fluoranthene	0.32	0.27	mg/Kg	2	827	0C	Total/NA
Pyrene	0.99	0.27	mg/Kg	2	827	0C	Total/NA
Chrysene	0.47	0.27	mg/Kg	2	827	0C	Total/NA
Benzo[b]fluoranthene	0.63	0.27	mg/Kg	2	827	0C	Total/NA
Benzo[a]pyrene	0_40	0.27	mg/Kg	2	827	0C	Total/NA
Benzo[g,h,i]perylene	0.27	0.27	mg/Kg	2	827	0C	Total/NA

Page 12 of 106

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Client Sample ID: SS-6-1' (Continued)

Lab Sample ID: 720-64901-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Dibutyltin	26		1.0		ug/Kg	1	-	Organotins	Total/NA	
Tributyltin	62		1.0		ug/Kg	1		Organotins	Total/NA	
Diesel Range Organics [C10-C28]	150		2.0		mg/Kg	2		8015B	Total/NA	
Motor Oil Range Organics [C24-C36]	160		99		mg/Kg	2		8015B	Total/NA	
PCB-1254	210		49		ug/Kg	1		8082	Total/NA	
Arsenic	11		3.3		mg/Kg	4		6010B	Total/NA	
Barium	44		1.6		mg/Kg	4		6010B	Total/NA	
Chromium	78		1_6		mg/Kg	4		6010B	Total/NA	
Cobalt	10		0.65		mg/Kg	4		6010B	Total/NA	
Copper	380		4.9		mg/Kg	4		6010B	Total/NA	
Lead	100		1.6		mg/Kg	4		6010B	Total/NA	
Molybdenum	10		1,6		mg/Kg	4		6010B	Total/NA	
Nickel	100		1.6		mg/Kg	4		6010B	Total/NA	
Vanadium	39		1,6		mg/Kg	4		6010B	Total/NA	
Zinc	180		4.9		mg/Kg	4		6010B	Total/NA	
Mercury	1.9		0.050		mg/Kg	5		7471A	Total/NA	

Client Sample ID: SS-7-0.5'

Lab Sample ID: 720-64901-13

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Dibutyltin	120	F2 F1	1,1	ug/Kg	1	Organotins	Total/NA
Monobutyltin	76	F2 F1 *	1,1	ug/Kg	1	Organotins	Total/NA
Tributyltin	650	F2 E	1,1	ug/Kg	1	Organotins	Total/NA
Diesel Range Organics [C10-C28]	240		5.0	mg/Kg	5	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	560		250	mg/Kg	5	8015B	Total/NA
PCB-1248	410		97	ug/Kg	2	8082	Total/NA
Antimony	3.0		1.4	mg/Kg	4	6010B	Total/NA
Arsenic	11		2,8	mg/Kg	4	6010B	Total/NA
Barium	170		1.4	mg/Kg	4	6010B	Total/NA
Chromium	76		1,4	mg/Kg	4	6010B	Total/NA
Cobalt	9.6		0.56	mg/Kg	4	6010B	Total/NA
Copper	390		4,2	mg/Kg	4	6010B	Total/NA
Lead	580		1.4	mg/Kg	4	6010B	Total/NA
Molybdenum	13		1.4	mg/Kg	4	6010B	Total/NA
Nickel	66		1.4	mg/Kg	4	6010B	Total/NA
Vanadium	28		1.4	mg/Kg	4	6010B	Totai/NA
Zinc	2000		4,2	mg/Kg	4	6010B	Total/NA
Mercury	2.3		0.045	mg/Kg	5	7471A	Total/NA

Client Sample ID: SS-7-1'

Lab Sample ID: 720-64901-14

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	0.86	0.66		mg/Kg	5	-	8270C	Total/NA
Pyrene	1.5	0.66		mg/Kg	5		8270C	Total/NA
Benzo[b]fluoranthene	1.0	0.66		mg/Kg	5		8270C	Total/NA
Benzo[a]pyrene	0.78	0.66		mg/Kg	5		8270C	Total/NA
Dibutyltin	110	1.0		ug/Kg	1		Organotins	Total/NA
Tetra-n-butyltin	42	2.8		ug/Kg	1		Organotins	Total/NA
TributyItin	180	1.0		ug/Kg	1		Organotins	Total/NA
Diesel Range Organics [C10-C28]	220	5.0		mg/Kg	5		8015B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Client Sample ID: SS-7-1' (Continued)

Lab Sample ID: 720-64901-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Motor Oil Range Organics [C24-C36]	460		250	-	mg/Kg	5	-	8015B	Total/NA
PCB-1242	1900		480		ug/Kg	10		8082	Total/NA
Antimony	4,2		1,9		mg/Kg	4		6010B	Total/NA
Arsenic	11		3.8		mg/Kg	4		6010B	Total/NA
Barium	90		1.9		mg/Kg	4		6010B	Total/NA
Chromium	120		1.9		mg/Kg	4		6010B	Total/NA
Cobalt	10		0.76		mg/Kg	4		6010B	Total/NA
Copper	650		5.7		mg/Kg	4		6010B	Total/NA
Lead	300		1.9		mg/Kg	4		6010B	Total/NA
Molybdenum	7.9		1.9		mg/Kg	4		6010B	Total/NA
Nickel	77		1.9		mg/Kg	4		6010B	Total/NA
Vanadium	28		1.9		mg/Kg	4		6010B	Total/NA
Zinc	450		5.7		mg/Kg	4		6010B	Total/NA
Mercury	3.1		0.049		mg/Kg	5		7471A	Total/NA

Client Sample ID: SS-8-0.5'

Lab Sample ID: 720-64901-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Phenanthrene	0.96		0,67		mg/Kg	5	-	8270C	Total/NA
Fluoranthene	1_4		0.67		mg/Kg	5		8270C	Total/NA
Pyrene	1.9		0.67		mg/Kg	5		8270C	Total/NA
Chrysene	0.90		0.67	GRC .	mg/Kg	5		8270C	Total/NA
Benzo[b]fluoranthene	1.4		0.67		mg/Kg	5		8270C	Total/NA
Benzo[k]fluoranthene	0.70		0.67		mg/Kg	5		8270C	Total/NA
Benzo[a]pyrene	1.1		0.67		mg/Kg	5		8270C	Total/NA
Dibutyltin	79		1.1		ug/Kg	1		Organotins	Total/NA
TributyItin	130		1,1		ug/Kg	1		Organotins	Total/NA
Diesel Range Organics [C10-C28]	260		3,0		mg/Kg	3		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	480		150		mg/Kg	3		8015B	Total/NA
PCB-1260	710		250		ug/Kg	5		8082	Total/NA
Arsenic	9.5		3.0		mg/Kg	4		6010B	Total/NA
Barium	120		1.5		mg/Kg	4		6010B	Total/NA
Chromium	82		1.5		mg/Kg	4		6010B	Total/NA
Cobalt	11		0.60		mg/Kg	4		6010B	Total/NA
Copper	620		4.5		mg/Kg	4		6010B	Total/NA
Lead	190		1.5		mg/Kg	4		6010B	Total/NA
Molybdenum	2.7		1.5		mg/Kg	4		6010B	Total/NA
Nickel	67		1.5		mg/Kg	4		6010B	Total/NA
Vanadium	35		1.5		mg/Kg	4		6010B	Total/NA
Zinc	370		4.5		mg/Kg	4		6010B	Total/NA
Mercury	4.7		0.097		mg/Kg	10		7471A	Total/NA

Client Sample ID: SS-8-1'

								-	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	1.1		0.33		mg/Kg	5	_	8270C	Total/NA
Anthracene	0.70		0,33		mg/Kg	5		8270C	Total/NA
Fluoranthene	1.4		0.33		mg/Kg	5		8270C	Total/NA
Pyrene	3.5		0,33		mg/Kg	5		8270C	Total/NA
Chrysene	0.88		0.33		mg/Kg	5		8270C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Lab Sample ID: 720-64901-16

Client Sample ID: SS-8-1' (Continued)

Lab Sample ID: 720-64901-16

Lab Sample ID: 720-64901-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	3,1		0.33		mg/Kg	5	-	8270C	Total/NA
Benzo[k]fluoranthene	3.0		0.33		mg/Kg	5		8270C	Total/NA
Benzo[a]pyrene	1.7		0.33		mg/Kg	5		8270C	Total/NA
Indeno[1,2,3-cd]pyrene	0.77		0.33		mg/Kg	5		8270C	Total/NA
Benzo[g,h,i]perylene	0.81		0.33		mg/Kg	5		8270C	Total/NA
Dibutyltin	66		1.0		ug/Kg	1		Organotins	Total/NA
TributyItin	130		1.0		ug/Kg	1		Organotins	Total/NA
Diesel Range Organics [C10-C28]	300		5,0		mg/Kg	5		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	630		250		mg/Kg	5		8015B	Total/NA
PCB-1248	1600		500		ug/Kg	10		8082	Total/NA
Arsenic	24		3.2		mg/Kg	4		6010B	Total/NA
Barium	96		1.6		mg/Kg	4		6010B	Total/NA
Cadmium	0.43		0.40		mg/Kg	4		6010B	Total/NA
Chromium	85		1.6		mg/Kg	4		6010B	Total/NA
Cobalt	10		0.64		mg/Kg	4		6010B	Total/NA
Copper	1200		4.8		mg/Kg	4		6010B	Total/NA
Lead	600		1.6		mg/Kg	4		6010B	Total/NA
Molybdenum	3,4		1,6		mg/Kg	4		6010B	Total/NA
Nickel	62		1.6		mg/Kg	4		6010B	Total/NA
Vanadium	30		1.6		mg/Kg	4		6010B	Total/NA
Zinc	440		4.8		mg/Kg	4		6010B	Total/NA
Мегсигу	10		0.85		mg/Kg	100		7471A	Total/NA

Client Sample ID: SS-9-0.5'

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Phenanthrene	0.72	0.67	mg/Kg	5	8270C	Total/NA
Fluoranthene	1.4	0.67	mg/Kg	5	8270C	Total/NA
Pyrene	1.3	0.67	mg/Kg	5	8270C	Total/NA
Chrysene	0.75	0.67	mg/Kg	5	8270C	Total/NA
Benzo[b]fluoranthene	0.88	0.67	mg/Kg	5	8270C	Total/NA
Tetra-n-butyltin	150	2.7	ug/Kg	1	Organotins	Total/NA
Monobutyltin - DL2	3900 *	50	ug/Kg	50	Organotins	Total/NA
Dibutyltin - DL3	16000	250	ug/Kg	250	Organotins	Total/NA
Tributyltin - DL3	13000	250	ug/Kg	250	Organotins	Total/NA
Diesel Range Organics [C10-C28]	600	9.9	mg/Kg	10	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	1100	500	mg/Kg	10	8015B	Total/NA
PCB-1248	2500	490	ug/Kg	10	8082	Total/NA
Arsenic	38	2.2	mg/Kg	4	6010B	Total/NA
Barium	120	1.1	mg/Kg	4	6010B	Total/NA
Cadmium	1.4	0.28	mg/Kg	4	6010B	Total/NA
Chromium	110	1.1	mg/Kg	4	6010B	Total/NA
Cobalt	14	0.45	mg/Kg	4	6010B	Total/NA
Copper	27000	42	mg/Kg	50	6010B	Total/NA
Lead	480	2.8	mg/Kg	10	6010B	Total/NA
Molybdenum	10	2.8	mg/Kg	10	6010B	Total/NA
Nickel	93	2.8	mg/Kg	10	6010B	Total/NA
Silver	0.94	0.56	mg/Kg	4	6010B	Total/NA
Vanadium	24	1.1	mg/Kg	4	6010B	Total/NA
Zinc	4000	42	mg/Kg	50	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Detection Summary

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

TestAmerica Job ID: 720-64901-1

5

Client Sample ID: SS-9-0.5' (Continued) Lab Sample ID: 720-64901-17 Analyte RL **Result Qualifier** MDL Unit Dil Fac D Method Ргер Туре Mercury 10 0.91 100 7471A mg/Kg Total/NA Client Sample ID: SS-9-1' Lab Sample ID: 720-64901-18 Analyte Qualifier RL Result MDL Unit Dil Fac D Method Ргер Туре Phenanthrene 0.66 8270C Total/NA 1.1 mg/Kg 10 Fluoranthene 3.0 0.66 8270C 10 Total/NA mg/Kg Pyrene 3.2 0.66 mg/Kg 10 8270C Total/NA Chrysene 1.1 0.66 10 8270C Total/NA mg/Kg Benzo[b]fluoranthene 0.66 $1_{7}1$ mg/Kg 10 8270C Total/NA Benzo[a]pyrene 0.80 0.66 8270C 10 Total/NA mg/Kg 94 • Monobutyltin 1.0 ug/Kg 1 Organotins Total/NA 27 Tetra-n-butyltin 2.7 ug/Kg 1 Organotins Total/NA Dibutyltin - DL 670 10 10 Organotins ug/Kg Total/NA Tributyltin - DL 980 10 10 Organotins Total/NA ug/Kg Diesel Range Organics [C10-C28] 780 20 20 8015B Total/NA mg/Kg Motor Oil Range Organics [C24-C36] 1800 990 20 8015B mg/Kg Total/NA PCB-1248 8900 2500 ug/Kg 50 8082 Total/NA Arsenic 75 2.3 6010B mg/Kg 4 Total/NA Barium 110 1.1 4 6010B Total/NA mg/Kg Cadmium 0.86 0.29 6010B 4 Total/NA mg/Kg Chromium 140 1.1 mg/Kg 4 6010B Total/NA Cobalt 21 0.46 mg/Kg 4 6010B Total/NA Copper 2400 3,4 mg/Kg 4 6010B Total/NA Lead 540 1.1 mg/Kg 4 6010B Total/NA

1.1

1:1

Vanadium 26 1.1 Zinc 540 3.4 Mercury 23 0.91

1.4

360

Client Sample ID: SS-10-0.5'

Molybdenum

Nickel

Lab Sample ID: 720-64901-19

Total/NA

Total/NA

Total/NA

Totai/NA

Total/NA

4

4

4

4

100

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

6010B

6010B

6010B

6010B

7471A

Analyte	Result Q	ualifier RL	MDL	Unit	Dil Fac	Ð	Method	Prep Type
Phenanthrene	0.066	0.066		mg/Kg	1	-	8270C	Total/NA
Fluoranthene	0.10	0.066		mg/Kg	1		8270C	Total/NA
Pyrene	0.16	0.066		mg/Kg	1		8270C	Totai/NA
Chrysene	0.069	0.066		mg/Kg	1		8270C	Total/NA
Benzo[b]fluoranthene	0.093	0.066		mg/Kg	1		8270C	Total/NA
Benzo[a]pyrene	0.072	0.066		mg/Kg	1		8270C	Total/NA
Dibutyltin	110	1.1		ug/Kg	1		Organotins	Total/NA
MonobutyItin	29 *	1.1		ug/Kg	1		Organotins	Total/NA
Tributyltin	130	1,1		ug/Kg	1		Organotins	Total/NA
Diesel Range Organics [C10-C28]	39	0.99		mg/Kg	1		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	78	49		mg/Kg	1		8015B	Total/NA
PCB-1260	360	99		ug/Kg	2		8082	Totai/NA
Arsenic	8.2	3.6		mg/Kg	4		6010B	Total/NA
Barium	36	1.8		mg/Kg	4		6010B	Total/NA
Cadmium	0.20	0.11		mg/Kg	1		6010B	Total/NA
Chromium	56	1.8		mg/Kg	4		6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Lab Sample ID: 720-64901-19

Lab Sample ID: 720-64901-20

Lab Sample ID: 720-64901-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	6.4		0.72		mg/Kg	4	-	6010B	Total/NA
Соррег	310		5,4		mg/Kg	4		6010B	Total/NA
Lead	41		0.45		mg/Kg	1		6010B	Total/NA
Molybdenum	0.78		0.45		mg/Kg	1		6010B	Total/NA
Nickel	42		0.45		mg/Kg	1		6010B	Total/NA
Vanadium	32		1.8		mg/Kg	4		6010B	Total/NA
Zinc	170		5.4		mg/Kg	4		6010B	Total/NA
Mercury	2.4		0.087		mg/Kg	10		7471A	Total/NA

Client Sample ID: SS-10-1'

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Fluoranthene	0.20		0.13		mg/Kg	2	-	8270C	Total/NA
Pyrene	0.43		0.13		mg/Kg	2		8270C	Total/NA
Chrysene	0.13		0.13		mg/Kg	2		8270C	Total/NA
Benzo[b]fluoranthene	0.21		0.13		mg/Kg	2		8270C	Total/NA
Benzo[a]pyrene	0_16		0.13		mg/Kg	2		8270C	Total/NA
Monobutyltin	50	•	1.0		ug/Kg	1		Organotins	Total/NA
Tetra-n-butyltin	40		2,7		ug/Kg	1		Organotins	Total/NA
Dibutyltin - DL	260		10		ug/Kg	10		Organotins	Total/NA
Tributyltin - DL	780		10		ug/Kg	10		Organotins	Total/NA
Diesel Range Organics [C10-C28]	120		3.0		mg/Kg	3		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	230		150		mg/Kg	3		8015B	Total/NA
PCB-1248	1500		490		ug/Kg	10		8082	Total/NA
Arsenic	12		2.7		mg/Kg	4		6010B	Total/NA
Barium	35		1.3		mg/Kg	4		6010B	Total/NA
Chromium	62		1,3		mg/Kg	4		6010B	Total/NA
Cobalt	6.7		0.53		mg/Kg	4		6010B	Total/NA
Copper	840		4.0		mg/Kg	4		6010B	Total/NA
Lead	63		1.3		mg/Kg	4		6010B	Total/NA
Molybdenum	1.6		1.3		mg/Kg	4		6010B	Total/NA
Nickel	53		1.3		mg/Kg	4		6010B	Total/NA
Vanadium	29		1.3		mg/Kg	4		6010B	Total/NA
Zinc	240		4.0		mg/Kg	4		6010B	Total/NA
Mercury	4.6		0.086		mg/Kg	10		7471A	Total/NA

Client Sample ID: FD-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Phenanthrene	0.58		0.33		mg/Kg	5	-	8270C	Total/NA
Fluoranthene	0.99		0.33		mg/Kg	5		8270C	Total/NA
Pyrene	1.2		0.33		mg/Kg	5		8270C	Total/NA
Chrysene	0.80		0.33		mg/Kg	5		8270C	Total/NA
Benzo[b]fluoranthene	1.1		0.33		mg/Kg	5		8270C	Total/NA
Benzo[k]fluoranthene	0.47		0.33		mg/Kg	5		8270C	Total/NA
Benzo[a]pyrene	0.83		0.33		mg/Kg	5		8270C	Total/NA
Indeno[1,2,3-cd]pyrene	0.49		0.33		mg/Kg	5		8270C	Total/NA
Benzo[g,h,i]perylene	0.49		0.33		mg/Kg	5		8270C	Total/NA
Dibutyltin	37		1.0		ug/Kg	1		Organotins	Total/NA
Monobutyltin	12	•	1.0	1951 - C	ug/Kg	1		Organotins	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: FD-1 (Continued)

Lab Sample ID: 720-64901-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac) Method	Prep Type
Tributyltin	89		1.0		ug/Kg	1	Organotins	Total/NA
Diesel Range Organics [C10-C28]	210		3.0		mg/Kg	3	8015B	Tota!/NA
Motor Oil Range Organics [C24-C36]	390		150		mg/Kg	3	8015B	Total/NA
PCB-1260	7800		2500		ug/Kg	50	8082	Total/NA
Arsenic	9.7		3.4		mg/Kg	4	6010B	Total/NA
Barium	140		1.7		mg/Kg	4	6010B	Total/NA
Chromium	82		1.7		mg/Kg	4	6010B	Total/NA
Cobalt	10		0.67		mg/Kg	4	6010B	Total/NA
Copper	540		5.0		mg/Kg	4	6010B	Total/NA
Lead	220		1.7		mg/Kg	4	6010B	Total/NA
Molybdenum	3.2		1.7		mg/Kg	4	6010B	Total/NA
Nickel	59		1.7		mg/Kg	4	6010B	Total/NA
Vanadium	34		1.7		mg/Kg	4	6010B	Total/NA
Zinc	350		5.0		mg/Kg	4	6010B	Total/NA
Mercury	5.1		0.090		mg/Kg	10	7471A	Total/NA

Client Sample ID: FD-2

Lab Sample ID: 720-64901-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	0.43		0.13		mg/Kg	2	-	8270C	Total/NA
Anthracene	0.13	(0.13		mg/Kg	2		8270C	Total/NA
Fluoranthene	0.45	(0.13		mg/Kg	2		8270C	Total/NA
Pyrene	0.75	(0.13		mg/Kg	2		8270C	Total/NA
Chrysene	0.24	(0.13		mg/Kg	2		8270C	Total/NA
Benzo[b]fluoranthene	0.31	(0.13		mg/Kg	2		8270C	Total/NA
Benzo[a]pyrene	0.21	(0.13		mg/Kg	2		8270C	Total/NA
Indeno[1,2,3-cd]pyrene	0.13	(0.13		mg/Kg	2		8270C	Total/NA
Monobutyltin	78	*	1.0		ug/Kg	1		Organotins	Total/NA
Tetra-n-butyltin	19		2.7		ug/Kg	1		Organotins	Total/NA
Dibutyltin - DL	330		5.0		ug/Kg	5		Organotins	Total/NA
Tributyltin - DL	360		5.0		ug/Kg	5		Organotins	Total/NA
Diesel Range Organics [C10-C28]	100		2.0		mg/Kg	2		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	190		99		mg/Kg	2		8015B	Total/NA
PCB-1260	870		250		ug/Kg	5		8082	Total/NA
Arsenic	9.5		3.3		mg/Kg	4		6010B	Total/NA
Barium	38		1.6		mg/Kg	4		6010B	Total/NA
Cadmium	0.28	(0.10		mg/Kg	1		6010B	Total/NA
Chromium	63		1.6		mg/Kg	4		6010B	Total/NA
Cobalt	7.2		0.66		mg/Kg	4		6010B	Total/NA
Copper	670		4.9		mg/Kg	4		6010B	Total/NA
Lead	60	().41		mg/Kg	1		6010B	Total/NA
Molybdenum	1.6		1.6		mg/Kg	4		6010B	Total/NA
Nickel	49	(0.41		mg/Kg	1		6010B	Total/NA
√anadium	29		1.6		mg/Kg	4		6010B	Total/NA
Zinc	260		4.9		mg/Kg	4		6010B	Total/NA
Mercury	4.1	0.	092		mg/Kg	10		7471A	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Client Sample ID: SS-1-0.5'

Date Collected: 05/19/15 07:31 Date Received: 05/19/15 15:00

Motor Oil Range Organics

Lab Sample	ID:	720-649	01-1
		Matrix:	Solid

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.67		mg/Kg	-	05/26/15 23:13	05/27/15 23:58	6
Acenaphthylene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	5
Acenaphthene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	5
Fluorene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	5
Phenanthrene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	5
Anthracene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	5
Fluoranthene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	ŧ
Pyrene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	ŧ
Benzo[a]anthracene	ND		3.3		mg/Kg		05/26/15 23:13	05/27/15 23:58	ŧ
Chrysene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	ŧ
Benzo[b]fluoranthene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	5
Benzo[k]fluoranthene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	5
Benzo[a]pyrene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	Ę
Indeno[1,2,3-cd]pyrene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	Ę
Benzo[g,h,i]perylene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	Ę
2-Methylnaphthalene	ND		0.67		mg/Kg		05/26/15 23:13	05/27/15 23:58	Ę
Dibenz(a,h)anthracene	ND		0,67		mg/Kg		05/26/15 23:13	05/27/15 23:58	Ę
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	64		21-98				05/26/15 23:13	05/27/15 23:58	
2-Fluorobiphenyl	71		30_112				05/26/15 23:13	05/27/15 23:58	ł
Terphenyl-d14	70		32 - 117				05/26/15 23:13	05/27/15 23:58	ł

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	81		0.93		ug/Kg		05/23/15 15:17	05/27/15 20:49	1
Monobutyltin	24		0.93		ug/Kg		05/23/15 15:17	05/27/15 20:49	1
Tetra-n-butyltin	ND	*	25 🕻 J		ug/Kg		05/23/15 15:17	05/27/15 20:49	1
Tributyltin	70		0,93		ug/Kg		05/23/15 15:17	05/27/15 20:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	56		20 - 151				05/23/15 15:17	05/27/15 20:49	1
Method: 8015B - Diesel Range	Organics ((DRO) (GC)						8	
		•	DI.	MDL	I I an in	D	Branarad	Analymad	Dil Fac
Analyte	Result	Qualifier	RL	NIDL	Unit	υ	Prepared	Analyzed	DirFac

[C24-C36]						
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	0	XD	40 - 130	05/22/15 12:51	05/27/15 15:07	5

250

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

420

Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	49	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1221	ND	49	ug/Kg		05/26/15 13:18	05/26/15 22:22	-1
PCB-1232	ND	49	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1242	ND	49	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1248	ND	49	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1254	74	49	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1260	ND	49	ug/Kg		05/26/15 13:18	05/26/15 22:22	1

Page 19 of 106

TestAmerica Pleasanton

05/22/15 12:51 05/27/15 15:07

mg/Kg

5

Lab Sample ID: 720-64901-1

Matrix: Solid

Client Sample ID: SS-1-0.5' Date Collected: 05/19/15 07:31 Date Received: 05/19/15 15:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	70		45 - 132				05/26/15 13:18	05/26/15 22:22	1
DCB Decachlorobiphenyl	70		42 - 146				05/26/15 13:18	05/26/15 22:22	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	-	1.7		mg/Kg	-	05/26/15 17:30	05/27/15 12:32	4
Arsenic	7.0		3.3		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Barium	58		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Beryllium	ND		0.33		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Cadmium	ND		0.41		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Chromium	68		1,7		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Cobalt	11		0.66		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Соррег	180		5.0		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Lead	76		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Molybdenum	ND		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Nickel	90		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Selenium	NÐ		3,3		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Silver	ND		0.83		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Thallium	ND		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:32	· 4
Vanadium	40		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Zinc	140		5.0		mg/Kg		05/26/15 17:30	05/27/15 12:32	4
Method: 7471A - Mercury (CVA	A)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.54		0.0095		mg/Kg		05/26/15 16:15	05/27/15 19:09	1

Lab Sample ID: 720-64901-2 Matrix: Solid

ø

Client Sample ID: SS-1-1' Date Collected: 05/19/15 07:35 Date Received: 05/19/15 15:00

Method: 8270C - Semivolatile (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	Quanner	1.3	NIDE	mg/Kg	_ 5	05/26/15 23:13	05/28/15 18:01	10
Acenaphthylene	ND		1.3		mg/Kg		05/26/15 23:13		10
Acenaphthene	ND		1.3		mg/Kg		05/26/15 23:13		10
Fluorene	ND		1.3		mg/Kg		05/26/15 23:13		10
Phenanthrene	4.4		1.3		mg/Kg		05/26/15 23:13		10
Anthracene	4.4 ND		1.3				05/26/15 23:13		10
Fluoranthene	ND		1.3		mg/Kg			05/28/15 18:01	10
			1.3		mg/Kg			05/28/15 18:01	10
Pyrene	ND		6.6		mg/Kg				
Benzo[a]anthracene	ND		1.3		mg/Kg			05/28/15 18:01 05/28/15 18:01	10 10
Chrysene	27				mg/Kg				
Benzo[b]fluoranthene	ND		1,3		mg/Kg			05/28/15 18:01	10
Benzo[k]fluoranthene	ND		1.3		mg/Kg			05/28/15 18:01	10
Benzo[a]pyrene	ND		1.3		mg/Kg			05/28/15 18:01	10
Indeno[1,2,3-cd]pyrene	ND		1.3		mg/Kg			05/28/15 18:01	10
Benzo[g,h,i]perylene	ND		1.3		mg/Kg		05/26/15 23:13		10
2-Methylnaphthalene	ND		1.3		mg/Kg		05/26/15 23:13		10
Dibenz(a,h)anthracene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 18:01	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	59	guunner	21-98				05/26/15 23:13	05/28/15 18:01	10
2-Fluorobiphenyl	69		30 - 112					05/28/15 18:01	1(
Terphenyl-d14	70		32 - 117					05/28/15 18:01	1
Analyte	Result	(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	-
Analyte Monobutyltin			RL 0.94 2.5 UJ		Unit ug/Kg ug/Kg	D	05/23/15 15:17	Analyzed 05/27/15 21:12 05/27/15 21:12	Dil Fa
Analyte Monobutyltin Tetra-n-butyltin	Result 69		0.94		ug/Kg	D	05/23/15 15:17 05/23/15 15:17	05/27/15 21:12	-
Analyte Monobutyltin Tetra-n-butyltin Tributyltin	Result 69 ND 150	Qualifier	0.94 2.5 UJ		ug/Kg ug/Kg	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12	-
Analyte MonobutyItin Tetra-n-butyItin TributyItin Surrogate	Result 69 ND	Qualifier	0.94 2.5 UJ 0.94		ug/Kg ug/Kg	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 <i>Prepared</i>	05/27/15 21:12 05/27/15 21:12	Dil Fa
Analyte MonobutyItin Fetra-n-butyItin FributyItin Surrogate FripentyItin	Result 69 ND 150 %Recovery 74	Qualifier * Qualifier	0.94 2.5 UJ 0.94 Limits 20 - 151		ug/Kg ug/Kg	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 <i>Prepared</i>	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed	Dil Fa
Analyte Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: Organotins - Organot	Result 69 ND 150 %Recovery 74 tins, PSEP 1	Qualifier * Qualifier	0.94 2.5 UJ 0.94 Limits 20 - 151	-	ug/Kg ug/Kg	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 <i>Prepared</i>	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed	-
Analyte Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte	Result 69 ND 150 %Recovery 74 tins, PSEP 1	Qualifier * Qualifier (GC/MS) -	0.94 2.5 UJ 0.94 Limits 20 - 151 DL	-	ug/Kg ug/Kg ug/Kg		05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 Prepared 05/23/15 15:17	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12	Dil Fa
Analyte Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin	Result 69 ND 150 %Recovery 74 tins, PSEP Result	Qualifier * (GC/MS) - Qualifier	0.94 2.5 UJ 0.94 Limits 20 - 151 DL RL	-	ug/Kg ug/Kg ug/Kg Unit		05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 Prepared 05/23/15 15:17 Prepared	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed	Dil Fa Dil Fa
Analyte Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Surrogate	Result 69 ND 150 %Recovery 74 tins, PSEP Result 230	Qualifier * (GC/MS) - Qualifier	0.94 2.5 UJ 0.94 Limits 20 - 151 DL RL 4.7	-	ug/Kg ug/Kg ug/Kg Unit		05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 Prepared 05/23/15 15:17 Prepared 05/23/15 15:17 Prepared	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed 05/27/15 21:35	Dil Fa Dil Fa Dil Fa
Analyte Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Surrogate Tripentyltin	Result 69 ND 150 %Recovery 74 tins, PSEP Result 230 %Recovery 124	Qualifier * (GC/MS) - Qualifier Qualifier	0.94 2.5 UJ 0.94 Limits 20 - 151 DL RL 4.7 Limits 20 - 151	-	ug/Kg ug/Kg ug/Kg Unit		05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 Prepared 05/23/15 15:17 Prepared 05/23/15 15:17 Prepared	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed 05/27/15 21:35 Analyzed	Dil Fa Dil Fa Dil Fa
Analyte Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Surrogate Tripentyltin Method: 8015B - Diesel Range	Result 69 ND 150 %Recovery 74 tins, PSEP Result 230 %Recovery 124 Organics	Qualifier * (GC/MS) - Qualifier Qualifier	0.94 2.5 UJ 0.94 Limits 20 - 151 DL RL 4.7 Limits 20 - 151	MDL	ug/Kg ug/Kg ug/Kg Unit		05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 Prepared 05/23/15 15:17 Prepared 05/23/15 15:17 Prepared	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed 05/27/15 21:35 Analyzed	Dil Fa
Analyte Monobutyltin Fetra-n-butyltin Fributyltin Surrogate Fripentyltin Method: Organotins - Organot Analyte Dibutyltin Surrogate Fripentyltin Method: 8015B - Diesel Range Analyte	Result 69 ND 150 %Recovery 74 tins, PSEP Result 230 %Recovery 124 Organics	Qualifier * (GC/MS) - Qualifier Qualifier	$ \begin{array}{c} 0.94 \\ 2.5 \\ 0.94 \end{array} $ $ \begin{array}{c} Limits \\ \hline 20 - 151 \end{array} $ $ \begin{array}{c} RL \\ 4.7 \\ \hline Limits \\ \hline 20 - 151 \end{array} $	MDL	ug/Kg ug/Kg Unit ug/Kg	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 Prepared 05/23/15 15:17 Prepared 05/23/15 15:17 Prepared 05/23/15 15:17	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed 05/27/15 21:35 Analyzed 05/27/15 21:35	Dil Fa Dil Fa Dil Fa
Analyte Monobutyltin Fetra-n-butyltin Fributyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics	Result 69 ND 150 %Recovery 74 tins, PSEP Result 230 %Recovery 124 Organics Result	Qualifier * (GC/MS) - Qualifier Qualifier	0.94 2.5 0.94 <u>Limits</u> 20 - 151 DL <u>RL</u> 4.7 <u>Limits</u> 20 - 151	MDL	ug/Kg ug/Kg Unit ug/Kg Unit	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed 05/27/15 21:35 Analyzed 05/27/15 21:35	Dil Fa Dil Fa Dil Fa
Method: Organotins - Organot Analyte Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate	Result 69 ND 150 %Recovery 74 tins, PSEP Result 230 %Recovery 124 Organics (Result 260	Qualifier * Qualifier (GC/MS) - Qualifier Qualifier (DRO) (GC Qualifier	0.94 2.5 0.94 <u>Limits</u> 20-151 DL <u>RL</u> 4.7 <u>Limits</u> 20-151 C) <u>RL</u> 9.9	MDL	ug/Kg ug/Kg Unit ug/Kg Unit mg/Kg	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed 05/27/15 21:35 Analyzed 05/27/15 21:35 Analyzed 05/27/15 21:35	Dil Fa Dil Fa Dil Fa Dil Fa
Analyte Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate	Result 69 ND 150 %Recovery 74 tins, PSEP Result 230 %Recovery 124 Organics (Result 260 610 %Recovery	Qualifier * Qualifier (GC/MS) - Qualifier Qualifier (DRO) (GC Qualifier	0.94 2.5 0.94 Limits 20-151 DL RL 4.7 Limits 20-151) RL 9.9 500	MDL	ug/Kg ug/Kg Unit ug/Kg Unit mg/Kg	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/22/15 12:51 05/22/15 12:51	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed 05/27/15 21:35 Analyzed 05/27/15 21:35 Analyzed 05/23/15 23:01 05/23/15 23:01	Dil Fa Dil Fa Dil Fa Dil Fa
Analyte Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate D-Terphenyl	Result 69 ND 150 %Recovery 74 tins, PSEP Result 230 %Recovery 124 Organics (Result 260 610 %Recovery 0	Qualifier	$\begin{array}{c} 0.94\\ 2.5\\ 0.94\\ \hline \\ 0.94\\ \hline \\ 100\\ \hline \\ 1$	MDL	ug/Kg ug/Kg Unit ug/Kg Unit mg/Kg mg/Kg	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/22/15 12:51 05/22/15 12:51	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed 05/27/15 21:35 Analyzed 05/27/15 21:35 Analyzed 05/23/15 23:01 05/23/15 23:01	Dil Fa Dil Fa Dil Fa Dil Fa
Analyte Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]	Result 69 ND 150 %Recovery 74 tins, PSEP Result 230 %Recovery 124 Organics (Result 260 610 %Recovery 0 d Biphenyl	Qualifier	$\begin{array}{c} 0.94\\ 2.5\\ 0.94\\ \hline \\ 0.94\\ \hline \\ 100\\ \hline \\ 1$	MDL	ug/Kg ug/Kg Unit ug/Kg Unit mg/Kg mg/Kg	D	05/23/15 15:17 05/23/15 15:17 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/23/15 15:17 <i>Prepared</i> 05/22/15 12:51 05/22/15 12:51	05/27/15 21:12 05/27/15 21:12 05/27/15 21:12 Analyzed 05/27/15 21:12 Analyzed 05/27/15 21:35 Analyzed 05/27/15 21:35 Analyzed 05/23/15 23:01 05/23/15 23:01	Dil Fa Dil Fa Dil Fa

Lab Sample ID: 720-64901-2

Matrix: Solid

Client Sample ID: SS-1-1' Date Collected: 05/19/15 07:35 Date Received: 05/19/15 15:00

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
PCB-1221	ND	50	ug/Kg	05/26/15 13:18	05/26/15 22:39	· · · ·
PCB-1232	ND	50	ug/Kg	05/26/15 13:18	05/26/15 22:39	3
PCB-1242	ND	50	ug/Kg	05/26/15 13:18	05/26/15 22:39	ĩ
PCB-1248	ND	50	ug/Kg	05/26/15 13:18	05/26/15 22:39	ĩ
PCB-1254	180	50	ug/Kg	05/26/15 13:18	05/26/15 22:39	1
PCB-1260	ND	50	ug/Kg	05/26/15 13:18	05/26/15 22:39	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	69	45 - 132		05/26/15 13:18	05/26/15 22:39	
DCB Decachlorobiphenyl	70	42 - 146		05/26/15 13:18	05/26/15 22:39	8

Method: 6010B - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.4		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Arsenic	8.6		2.9		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Barium	69		1.4		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Beryllium	ND		0.29		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Cadmium	ND		0.36		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Chromium	64		1.4		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Cobalt	12		0.58		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Copper	370		4,3		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Lead	120		1.4		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Molybdenum	2.2		1.4		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Nickel	88		1.4		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Selenium	ND		2.9		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Silver	ND		0.72		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Thallium	ND		1.4		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Vanadium	37		1.4		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Zinc	220		4,3		mg/Kg		05/26/15 17:30	05/27/15 12:37	4
Method: 7471A - Mercury (CVAA))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	3.2		0.047		mg/Kg		05/26/15 16:15	05/27/15 20:07	5

Client Sample ID: SS-2-0.5' Date Collected: 05/19/15 07:43 Date Received: 05/19/15 15:00

Lab Sample	ID:	720-64901-3
		Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Acenaphthylene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Acenaphthene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Fluorene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Phenanthrene	ND		0,67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Anthracene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Fluoranthene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Pyrene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Benzo[a]anthracene	ND		3.3		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Chrysene	ND		0,67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Benzo[b]fluoranthene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Benzo[k]fluoranthene	ND		0,67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Benzo[a]pyrene	= ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Indeno[1,2,3-cd]pyrene	ND		0,67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Benzo[g,h,i]perylene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
2-Methylnaphthalene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Dibenz(a,h)anthracene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 16:38	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	56		21 - 98				05/26/15 23:13	05/28/15 16:38	5
2-Fluorobiphenyl	52		30-112				05/26/15 23:13	05/28/15 16:38	5
Terphenyl-d14	76		32 - 117				05/26/15 23:13	05/28/15 16:38	5
Method: Organotins - Or	rganotins. PSEP	(GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DibutyItin	62		4.9		ug/Kg		05/23/15 15:17	05/27/15 01:57	5
MonobutyItin	ND	^	4,9		ug/Kg		05/23/15 15:17	05/27/15 01:57	5
Tetra-n-butyltin	ND	*	13 UJ		ug/Kg		05/23/15 15:17	05/27/15 01:57	5
Tributyltin	ND		4.9		ug/Kg		05/00/45 45.47	05/27/15 01:57	5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	79		20 - 151				05/23/15 15:17	05/27/15 01:57	5
Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]		(DRO) (GC) Qualifier	RL 9.9 500	MDL	Unit mg/Kg mg/Kg	D	Prepared 05/22/15 12:51 05/22/15 12:51	Analyzed 05/24/15 00:58 05/24/15 00:58	Dil Fac 10 10

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyze	d Dil Fac
p-Terphenyl	0 >	XD	40 - 130	05/22/15 12:51 05/24/15 0	0:58 10

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	50		ug/Kg		05/26/15 13:18	05/26/15 22:55	1
PCB-1221	ND	50		ug/Kg		05/26/15 13:18	05/26/15 22:55	1
PCB-1232	ND	50		ug/Kg		05/26/15 13:18	05/26/15 22:55	1
PCB-1242	ND	50		ug/Kg		05/26/15 13:18	05/26/15 22:55	1
PCB-1248	ND	50		ug/Kg		05/26/15 13:18	05/26/15 22:55	1
PCB-1254	54	50		ug/Kg		05/26/15 13:18	05/26/15 22:55	1
PCB-1260	ND	50		ug/Kg		05/26/15 13:18	05/26/15 22:55	1

ŧ,

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

TestAmerica Job ID: 720-64901-1

Client Sample ID: SS-2-0.5' Date Collected: 05/19/15 07:43 Date Received: 05/19/15 15:00

Lab Sample ID: 720-64901-3 Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		45 - 132				05/26/15 13:18	05/26/15 22:55	1
DCB Decachlorobiphenyl	69		42 - 146				05/26/15 13:18	05/26/15 22:55	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.6		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Arsenic	5.0		3.3		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Barium	77		1,6		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Beryllium	ND		0.33		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Cadmium	ND		0.41		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Chromium	37		1.6		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Cobalt	8.3		0.66		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Copper	120		4.9		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Lead	140		1.6		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Volybdenum	1.9		1.6		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Nickel	59		1.6		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Selenium	ND		3.3		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Silver	NĎ		0.82		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Fhallium	ND		1.6		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Vanadium	25		1.6		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Zinc	730		4.9		mg/Kg		05/26/15 17:30	05/27/15 12:42	4
Method: 7471A - Mercury (CVA	A)				×				
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.49		0.0088		mg/Kg	-	05/26/15 16:15	05/27/15 19:14	1

Client Sample ID: SS-2-1' Date Collected: 05/19/15 07:47 Date Received: 05/19/15 15:00

Lab Sample ID: 720-64901-4 Matrix: Solid

lid

lethod: 8270C - Semivolatile		Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
laphthalene	ND		0,67			mg/Kg		· · · · · · · · · · · · · · · · · · ·	05/28/15 16:59	5
Acenaphthylene	ND		0_67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Acenaphthene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Fluorene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Phenanthrene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Anthracene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Iuoranthene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Pyrene	0.73		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Benzo[a]anthracene	ND		3.3			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Chrysene	ND		0,67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Benzo[b]fluoranthene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Benzo[k]fluoranthene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Benzo[a]pyrene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
ndeno[1,2,3-cd]pyrene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Benzo[g,h,i]perylene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
2-Methylnaphthalene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Dibenz(a,h)anthracene	ND		0.67			mg/Kg		05/26/15 23:13	05/28/15 16:59	5
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
litrobenzene-d5	64		21 - 98					05/26/15 23:13	05/28/15 16:59	5
2-Fluorobiphenyl	56		30 - 112					05/26/15 23:13	05/28/15 16:59	5
Terphenyl-d14	84		32 - 117					05/26/15 23:13	05/28/15 16:59	5
Method: Organotins - Organo	tins, PSEP ((GC/MS)								
Analyte		Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	83		0.95			ug/Kg		05/23/15 15:17	05/27/15 02:20	1
MonobutyItin	ND	^	0.95			ug/Kg		05/23/15 15:17	05/27/15 02:20	1
Tetra-n-butyltin	ND	*	2.6	UT		ug/Kg		05/23/15 15:17	05/27/15 02:20	1
TributyItin	110		0.95			ug/Kg		05/23/15 15:17	05/27/15 02:20	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Tripentyltin	68		20 - 151					05/23/15 15:17	05/27/15 02:20	1
Method: 8015B - Diesel Range	Organics ((DRO) (GC)								
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	360		9.9			mg/Kg		05/22/15 12:51	05/24/15 01:27	10
Motor Oil Range Organics [C24-C36]	800		490			mg/Kg		05/22/15 12:51	05/24/15 01:27	10
Surrogate	%Recovery		Limits					Prepared	Analyzed	Dil Fac
p-Terphenyl	0	XD	40 - 130					05/22/15 12:51	05/24/15 01:27	10

Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac PCB-1016 ND 50 05/26/15 13:18 05/26/15 23:12 1 ug/Kg PCB-1221 ND 50 05/26/15 13:18 05/26/15 23:12 ug/Kg 1 PCB-1232 ND 05/26/15 13:18 05/26/15 23:12 50 ug/Kg 1 PCB-1242 ND 50 ug/Kg 05/26/15 13:18 05/26/15 23:12 1 PCB-1248 ND 50 ug/Kg 05/26/15 13:18 05/26/15 23:12 1 50 ug/Kg 05/26/15 13:18 05/26/15 23:12 PCB-1254 180 1 PCB-1260 ND ug/Kg 05/26/15 13:18 05/26/15 23:12 1 50

TestAmerica Pleasanton

Lab Sample ID: 720-64901-4

Matrix: Solid

Client Sample ID: SS-2-1' Date Collected: 05/19/15 07:47 Date Received: 05/19/15 15:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	i
Tetrachloro-m-xylene	71		45-132				05/26/15 13:18	05/26/15 23:12	1	
DCB Decachlorobiphenyl	74		42 - 146				05/26/15 13:18	05/26/15 23:12	1	
Method: 6010B - Metals (ICP)										
Analyte		Qualifier	RL	MDL		0	Prepared	Analyzed	Dil Fac	
Antimony	3.0		1.8		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Arsenic	16		3.7		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Barium	97		1.8		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Beryllium	ND		0.37		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Cadmium	2.3		0.46	88	mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Chromium	130		1.8		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Cobalt	18		0.73		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Соррег	650		5.5		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Lead	410		1.8		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Molybdenum	17		1.8		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Nickel	230		1.8		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Selenium	ND		3.7		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Silver	ND		0.92		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Thallium	ND		1.8		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Vanadium	28		1.8		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Zinc	2400		5.5		mg/Kg		05/26/15 17:30	05/27/15 12:47	4	
Method: 7471A - Mercury (CVA)	A)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	1.8		0.045		mg/Kg	-	05/26/15 16:15	05/27/15 20:10	5	

Client Sample ID: SS-3-0.5' Date Collected: 05/19/15 07:55

Date Received: 05/19/15 15:00

Motor Oil Range Organics

Lab Sample	ID:	720-64901-5
		Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0,13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Acenaphthylene	ND		0,13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Acenaphthene	0.17		0_13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Fluorene	0.20		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Phenanthrene	1.0		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Anthracene	0.62		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Fluoranthene	2.0		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Pyrene	2.0		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Benzo[a]anthracene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Chrysene	0.94		0,13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Benzo[b]fluoranthene	0.63		0,13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Benzo[k]fluoranthene	0.23		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Benzo[a]pyrene	0.44		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Indeno[1,2,3-cd]pyrene	0.22		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Benzo[g,h,i]perylene	0.20		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
2-Methylnaphthalene	ND		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Dibenz(a,h)anthracene	ND		0.13		mg/Kg		05/26/15 23:13	05/28/15 17:21	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	59		21 - 98				05/26/15 23:13	05/28/15 17:21	2
2-Fluorobiphenyl	61		30 - 112				05/26/15 23:13	05/28/15 17:21	2
Terphenyl-d14	100		32-117				05/26/15 23:13	05/28/15 17:21	2
Method: Organotins - Org	anotins, PSEP	(GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	31		0.92		ug/Kg		05/23/15 15:17	05/27/15 02:43	1
Monobutyltin	ND	٨	0.92		ug/Kg		05/23/15 15:17	05/27/15 02:43	1
Tetra-n-butyltin	ND	*	2.5 CJ		ug/Kg		05/23/15 15:17	05/27/15 02:43	1
Tributyltin	25		0.92		ug/Kg		05/23/15 15:17	05/27/15 02:43	1

Surrogate Tripentyltin	%Recovery 60	Qualifier	Limits 20 - 151				Prepared 05/23/15 15:17	Analyzed 05/27/15 02:43	Dil Fac
Method: 8015B - Diesel Range	Organics ((DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
							05/22/15 12:51	05/24/15 01:56	
Diesel Range Organics [C10-C28]	110		2.0		mg/Kg		05/22/15 12:51	05/24/15 01:56	2

[C24-C36]					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	57	40 - 130	05/22/15 12:51	05/24/15 01:56	2

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

	Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
	PCB-1016	ND	49	ug/Kg	05/26/15 13:18	05/26/15 23:29	1
	PCB-1221	ND	49	ug/Kg	05/26/15 13:18	05/26/15 23:29	1
	PCB-1232	ND	49	ug/Kg	05/26/15 13:18	05/26/15 23:29	1
ł	PCB-1242	ND	49	ug/Kg	05/26/15 13:18	05/26/15 23:29	1
	PCB-1248	ND	49	ug/Kg	05/26/15 13:18	05/26/15 23:29	1
	PCB-1254	ND	49	ug/Kg	05/26/15 13:18	05/26/15 23:29	1
	PCB-1260	ND	49	ug/Kg	05/26/15 13:18	05/26/15 23:29	1

TestAmerica Pleasanton

5/29/2015

Client Sample ID: SS-3-0.5' Date Collected: 05/19/15 07:55 Date Received: 05/19/15 15:00

Lab Sample	ID:	720-64901-5
		Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	67		45 - 132				05/26/15 13:18	05/26/15 23:29	1
DCB Decachlorobiphenyl	71		42 - 146				05/26/15 13:18	05/26/15 23:29	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.41		mg/Kg		05/26/15 17:30	05/27/15 22:41	1
Arsenic	4.6		3.3		mg/Kg		05/26/15 17:30	05/27/15 12:52	4
Barium	28		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:52	4
Beryllium	ND		0.083		mg/Kg		05/26/15 17:30	05/28/15 18:15	1
Cadmium	ND		0.10		mg/Kg		05/26/15 17:30	05/27/15 22:41	1
Chromium	41		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:52	4
Cobalt	6.2		0.66		mg/Kg		05/26/15 17:30	05/27/15 12:52	4
Copper	80		5.0		mg/Kg		05/26/15 17:30	05/27/15 12:52	4
Lead	28		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:52	4
Molybdenum	ND		0.41		mg/Kg		05/26/15 17:30	05/28/15 18:15	1
Nickel	41		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:52	4
Selenium	ND		0.83		mg/Kg		05/26/15 17:30	05/27/15 22:41	1
Silver	ND		0.21		mg/Kg		05/26/15 17:30	05/27/15 22:41	1
Thallium	ND		0.41		mg/Kg		05/26/15 17:30	05/28/15 18:15	1
Vanadium	29		1.7		mg/Kg		05/26/15 17:30	05/27/15 12:52	4
Zinc	80		5.0		mg/Kg		05/26/15 17:30	05/27/15 12:52	4
Method: 7471A - Mercury (CVA)	A)					5			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.49		. 0.0090		mg/Kg		05/26/15 16:15	05/27/15 19:19	1

Lab Sample ID: 720-64901-6 Matrix: Solid

Client Sample ID: SS-3-1' Date Collected: 05/19/15 07:59 Date Received: 05/19/15 15:00

Method: 8270C - Semivolatile			GC/MS)						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
laphthalene	ND		0.27		mg/Kg		05/26/15 23:13		2
cenaphthylene	ND		0.27		mg/Kg		05/26/15 23:13		2
cenaphthene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
luorene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
Phenanthrene	0.44		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
Anthracene	0.33		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
Fluoranthene	3.6		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
yrene	7.6		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
Benzo[a]anthracene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
Chrysene	0.93		0,27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
Benzo[b]fluoranthene	1.8		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
Benzo[k]fluoranthene	0.73		0,27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
Benzo[a]pyrene	1.1		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
ndeno[1,2,3-cd]pyrene	0.62		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
Benzo[g,h,i]perylene	0.62		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
2-Methylnaphthalene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
bibenz(a,h)anthracene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 17:42	2
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
litrobenzene-d5	65	· · · · · ·	21-98				05/26/15 23:13	05/28/15 17:42	2
-Fluorobiphenyl	62		30-112				05/26/15 23:13	05/28/15 17:42	2
erphenyl-d14	99		32-117				05/26/15 23:13	05/28/15 17:42	2
nalyte Ionobutyltin	92	Qualifier		MDL	ug/Kg	D	Prepared 05/23/15 15:17	Analyzed 05/27/15 21:58	Dil Fac 5
Fetra-n-butyltin	61	* T	13		ug/Kg		05/23/15 15:17	05/27/15 21:58	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fripentyltin	70		20-151				05/23/15 15:17	05/27/15 21:58	5
Method: Organotins - Organot	tins, PSEP ((GC/MS) - E	DL						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	990		24		ug/Kg		05/23/15 15:17	05/28/15 12:01	25
			24		ug/Kg		05/23/15 15:17	05/28/15 12:01	25
TributyItin	2200		24		- 3 3				
Surrogate	%Recovery	Qualifier	Limits		-3		Prepared	Analyzed	Dil Fac
Surrogate		Qualifier					Prepared 05/23/15 15:17	Analyzed	Dil Fac 25
Surrogate Tripentyltin Method: 8015B - Diesel Range	%Recovery 74 Organics ((DRO) (GC)	Limits 20 - 151				05/23/15 15:17	Analyzed 05/28/15 12:01	25
Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte	%Recovery 74 Organics Result		<i>Limits</i> 20 - 151 RL	MDL	Unit	D	05/23/15 15:17 Prepared	Analyzed 05/28/15 12:01 Analyzed	25 Dil Fac
eurrogate ripentyltin Nethod: 8015B - Diesel Range nalyte Diesel Range Organics [C10-C28]	%Recovery 74 Organics Result 340	(DRO) (GC)	Limits 20 - 151 RL 5.0	MDL	Unit mg/Kg	D	05/23/15 15:17 Prepared 05/22/15 12:51	Analyzed 05/28/15 12:01 Analyzed 05/27/15 02:18	25 Dil Fac 5
Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics	%Recovery 74 Organics Result	(DRO) (GC)	<i>Limits</i> 20 - 151 RL	MDL	Unit	D	05/23/15 15:17 Prepared 05/22/15 12:51	Analyzed 05/28/15 12:01 Analyzed	25 Dil Fac
Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics C24-C36]	%Recovery 74 Organics Result 340	(DRO) (GC) Qualifier	Limits 20 - 151 RL 5.0	MDL	Unit mg/Kg	D	05/23/15 15:17 Prepared 05/22/15 12:51	Analyzed 05/28/15 12:01 Analyzed 05/27/15 02:18	25 Dil Fac 5
Surrogate Fripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics (C24-C36] Surrogate	%Recovery 74 Organics Result 340 570 %Recovery	(DRO) (GC) Qualifier	Limits 20 - 151 RL 5.0 250	MDL	Unit mg/Kg	D	05/23/15 15:17 Prepared 05/22/15 12:51 05/22/15 12:51 Prepared	Analyzed 05/28/15 12:01 Analyzed 05/27/15 02:18 05/27/15 02:18	25 Dil Fac 5 5
Surrogate Tripentyltin Method: 8015B - Diesel Range Malyte Diesel Range Organics [C10-C28] Motor Oil Range Organics C24-C36] Surrogate - Terphenyl	%Recovery 74 Organics Result 340 570 %Recovery 0	(DRO) (GC) Qualifier Qualifier	Limits 20 - 151 RL 5.0 250 Limits 40 - 130		Unit mg/Kg mg/Kg	D	05/23/15 15:17 Prepared 05/22/15 12:51 05/22/15 12:51 Prepared	Analyzed 05/28/15 12:01 Analyzed 05/27/15 02:18 05/27/15 02:18 Analyzed	25 Dil Fac 5 Dil Fac
Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate p-Terphenyl Method: 8082 - Polychlorinate Analyte	%Recovery 74 e Organics (Result 340 570 %Recovery 0 d Biphenyls	(DRO) (GC) Qualifier Qualifier	Limits 20 - 151 RL 5.0 250 Limits 40 - 130		Unit mg/Kg mg/Kg Dhy	D	05/23/15 15:17 Prepared 05/22/15 12:51 05/22/15 12:51 Prepared	Analyzed 05/28/15 12:01 Analyzed 05/27/15 02:18 05/27/15 02:18 Analyzed	Dil Fac

Client Sample ID: SS-3-1' Date Collected: 05/19/15 07:59 Date Received: 05/19/15 15:00

Lab Sample ID: 720-64901-6 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1221	ND		250		ug/Kg		05/26/15 13:18	05/27/15 10:49	
PCB-1232	ND		250		ug/Kg		05/26/15 13:18	05/27/15 10:49	
PCB-1242	ND		250		ug/Kg		05/26/15 13:18	05/27/15 10:49	:
PCB-1248	ND		250		ug/Kg		05/26/15 13:18	05/27/15 10:49	:
PCB-1254	980		250		ug/Kg		05/26/15 13:18	05/27/15 10:49	:
PCB-1260	ND		250		ug/Kg		05/26/15 13:18	05/27/15 10:49	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	72		45 - 132				05/26/15 13:18	05/27/15 10:49	
DCB Decachlorobiphenyl	93		42 - 146				05/26/15 13:18	05/27/15 10:49	
Method: 6010B - Metals (I	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		1.9		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Arsenic	16		3.8		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Barium	130		1.9		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Beryllium	ND		0.38		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Cadmium	0.49	AL.	0.47		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Chromium	82		1.9		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Cobalt	19		0.75		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Copper	1100		5.7		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Lead	150		1,9		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Molybdenum	20		1.9		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Nickel	81		1.9		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Selenium	ND		3.8		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Silver	ND		0.94		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Thallium	ND		1.9		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Vanadium	44		1.9		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Zinc	440		5.7		mg/Kg		05/26/15 17:30	05/27/15 13:07	
Method: 7471A - Mercury									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client Sample ID: SS-4-0.5' Date Collected: 05/19/15 08:19

Date Received: 05/19/15 15:00

Lab Sample I	D: 720-64901-7
	Matrix: Solid

Method: 8270C - Semivolatile (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
laphthalene	ND		0.27	_	mg/Kg		05/26/15 23:13	05/28/15 18:27	2
cenaphthylene	NÐ		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
cenaphthene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Fluorene	ND		0_27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Phenanthrene	1.5		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Anthracene	0.58		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
luoranthene	2.6		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Pyrene	3.1		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Benzo[a]anthracene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Chrysene	1.5		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Benzo[b]fluoranthene	1.6		0,27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Benzo[k]fluoranthene	0.56		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Benzo[a]pyrene	1.1		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
ndeno[1,2,3-cd]pyrene	0.61		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Benzo[g,h,i]perylene	0.72		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
2-Methyinaphthalene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
Dibenz(a,h)anthracene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 18:27	2
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
litrobenzene-d5	67		21-98				05/26/15 23:13	05/28/15 18:27	2
2-Fluorobiphenyl	73		30 - 112				05/26/15 23:13	05/28/15 18:27	2
Terphenyl-d14	108		32 - 117				05/26/15 23:13	05/28/15 18:27	2
Method: Organotins - Organot	tins, PSEP	(GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	130		1.1		ug/Kg		05/24/15 18:29	05/28/15 00:15	1
lonobutyltin	57	* J	1.1		ug/Kg		05/24/15 18:29	05/28/15 00:15	1
Fetra-n-butyltin	26	-	2,9		ug/Kg		05/24/15 18:29	05/28/15 00:15	1
FributyItin	160		1:1		ug/Kg		05/24/15 18:29	05/28/15 00:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	48		20 - 151				05/24/15 18:29	05/28/15 00:15	1
Method: 8015B - Diesel Range	Organics		1						
nalyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	370		5.0		mg/Kg		05/22/15 12:51	05/27/15 02:42	5

Surrogate	%Recovery Qualifi	ier Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	0 X	40 - 130	05/22/15 12:51	05/27/15 02:42	5

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		250		ug/Kg		05/26/15 13:18	05/27/15 09:59	5
PCB-1221	ND		250		ug/Kg		05/26/15 13:18	05/27/15 09:59	5
PCB-1232	ND		250		ug/Kg		05/26/15 13:18	05/27/15 09:59	5
PCB-1242	ND		250		ug/Kg		05/26/15 13:18	05/27/15 09:59	5
PCB-1248	ND		250		ug/Kg		05/26/15 13:18	05/27/15 09:59	5
PCB-1254	920		250		ug/Kg		05/26/15 13:18	05/27/15 09:59	5
PCB-1260	ND		250		ug/Kg		05/26/15 13:18	05/27/15 09:59	5

Client Sample Results

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Client Sample ID: SS-4-0.5' Date Collected: 05/19/15 08:19 Date Received: 05/19/15 15:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	70		45 - 132				05/26/15 13:18	05/27/15 09:59	5
DCB Decachlorobiphenyl	77		42 - 146				05/26/15 13:18	05/27/15 09:59	5
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	3.5		1.7		mg/Kg	_	05/26/15 17:30	05/27/15 13:12	4
Arsenic	20		3.4		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Barium	180		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Beryllium	ND		0.34		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Cadmium	0.47		0.43		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Chromium	94		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Cobalt	10		0.69		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Copper	700		5,2		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Lead	350		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Molybdenum	2.0		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Nickel	74		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Selenium	ND		3.4		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Silver	ND		0.86		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Thallium	ND		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Vanadium	29		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Zinc	660		5.2		mg/Kg		05/26/15 17:30	05/27/15 13:12	4
Method: 7471A - Mercury (CVA	A)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	88		0.91		mg/Kg		05/26/15 16:15	05/27/15 20:14	100

5/29/2015

Lab Sample ID: 720-64901-7 Matrix: Solid

Lab Sample ID: 720-64901-8 Matrix: Solid

5

Dil Fac

Dil Fac

1

1

1

1

1

Client Sample ID: SS-4-1' Date Collected: 05/19/15 08:28

Date Received: 05/19/15 15:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.4	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Acenaphthylene	ND	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Acenaphthene	1.8	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Fluorene	2.3	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Phenanthrene	7.6	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Anthracene	2.3	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Fluoranthene	2.6	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Pyrene	3.7	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Benzo[a]anthracene	ND	6.6	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Chrysene	ND	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Benzo[b]fluoranthene	ND	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Benzo[k]fluoranthene	ND	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Benzo[a]pyrene	ND	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Indeno[1,2,3-cd]pyrene	ND	1,3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Benzo[g,h,i]perylene	ND	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
2-Methylnaphthalene	4.8	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	<u> 10 </u>
Dibenz(a,h)anthracene	ND	1.3	mg/Kg		05/26/15 23:13	05/28/15 18:52	10
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	64	21 - 98			05/26/15 23:13	05/28/15 18:52	10
2-Fluorobiphenyl	64	30 - 112			05/26/15 23:13	05/28/15 18:52	10
Terphenyl-d14	77	32-117			05/26/15 23:13	05/28/15 18:52	10

Method: Organotins - Organotins, PSEP (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 05/24/15 18:29 05/28/15 00:38 Dibutyltin 76 1.1 ug/Kg ND 1.1 (1) ug/Kg 05/24/15 18:29 05/28/15 00:38 MonobutyItin * ND 2.9 ug/Kg 05/24/15 18:29 05/28/15 00:38 Tetra-n-butyltin 05/24/15 18:29 05/28/15 00:38 Tributyltin 150 1.1 ug/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Tripentyltin 100 20 - 151 05/24/15 18:29 05/28/15 00:38 Method: 8015B - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	5500		50		mg/Kg		05/22/15 12:51	05/27/15 13:12	50
Motor Oil Range Organics [C24-C36]	2900		2500		mg/Kg		05/22/15 12:51	05/27/15 13:12	50

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	0	XD	40 - 130	05/22/15 12:51	05/27/15 13:12	50

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
PCB-1016	ND	240	ug/Kg	05/26/15 13:18	05/27/15 10:16	5
PCB-1221	ND	240	ug/Kg	05/26/15 13:18	05/27/15 10:16	5
PCB-1232	ND	240	ug/Kg	05/26/15 13:18	05/27/15 10:16	5
PCB-1242	ND	240	ug/Kg	05/26/15 13:18	05/27/15 10:16	5
PCB-1248	ND	240	ug/Kg	05/26/15 13:18	05/27/15 10:16	5
PCB-1254	1100	240	ug/Kg	05/26/15 13:18	05/27/15 10:16	5
PCB-1260	ND	240	ug/Kg	05/26/15 13:18	05/27/15 10:16	5

Client Sample ID: SS-4-1' Date Collected: 05/19/15 08:28 Date Received: 05/19/15 15:00

Lab Sample	ID:	720-64901-8
		Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	58		45 - 132				05/26/15 13:18	05/27/15 10:16	5	
DCB Decachlorobiphenyl	90		42 - 146				05/26/15 13:18	05/27/15 10:16	5	
Method: 6010B - Metals (ICP)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Antimony	3.6		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Arsenic	20		3.4		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Barium	250		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Beryllium	ND		0.34		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Cadmium	33		0.43		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Chromium	100		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Cobalt	26		0.68		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Copper	850		5.1		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Lead	1600		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Molybdenum	9.7		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Nickel	94		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Selenium	ND		3.4		mg/Kg		05/26/15 17:30	05/27/15 13:13	4	
Silver	ND		0.85		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Thallium	ND		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Vanadium	31		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Zinc	1900		5.1		mg/Kg		05/26/15 17:30	05/27/15 13:17	4	
Method: 7471A - Mercury (CV/										
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	9.1		0.94		mg/Kg		05/26/15 16:15	05/27/15 20:22	100	

Client Sample ID: SS-5-0.5'

Lab Sample	ID:	720-64901-9
		Matrix: Solid

Mathadi 9270C Samiualatila		mnoundo							
Method: 8270C - Semivolatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Acenaphthylene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Acenaphthene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Fluorene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Phenanthrene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Anthracene	0.46		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Fluoranthene	0.76		0,33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Pyrene	1.0		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Benzo[a]anthracene	ND		1.6		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Chrysene	1.1		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Benzo[b]fluoranthene	1.3		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Benzo[k]fluoranthene	0.53		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Benzo[a]pyrene	0.87		0,33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Indeno[1,2,3-cd]pyrene	0.48		0,33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Benzo[g,h,i]perylene	0.45		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
2-Methylnaphthalene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Dibenz(a,h)anthracene	ND		0_33		mg/Kg		05/26/15 23:13	05/28/15 04:32	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	60		21 - 98				05/26/15 23:13	05/28/15 04:32	5
2-Fluorobiphenyl	52		30-112				05/26/15 23:13	05/28/15 04:32	5
Terphenyl-d14	90		32 - 117				05/26/15 23:13	05/28/15 04:32	5
Method: Organotins - Organo	tins, PSEP	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	ND		1,0		ug/Kg	-	05/24/15 18:29	05/28/15 01:01	1
MonobutyItin	ND		1.0 🗁		ug/Kg		05/24/15 18:29	05/28/15 01:01	1
Tetra-n-butyltin	ND		2.8		ug/Kg		05/24/15 18:29	05/28/15 01:01	1
Tributyltin	ND		1.0		ug/Kg		05/24/15 18:29	05/28/15 01:01	1

Tripentyltin	37		20 - 151				05/24/15 18:29	05/28/15 01:01	1
Method: 8015B - Diesel Range	e Organics ((DRO) (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	39		1.0		mg/Kg		05/22/15 12:51	05/27/15 01:53	1
Motor Oil Range Organics [C24-C36]	74		50		mg/Kg		05/22/15 12:51	05/27/15 01:53	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	111	40 - 130	05/22/15 12:51 0	5/27/15 01:53	1

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	49	ug/Kg		05/26/15 13:18	05/27/15 10:32	1
PCB-1221	ND	49	ug/Kg		05/26/15 13:18	05/27/15 10:32	1
PCB-1232	ND	49	ug/Kg		05/26/15 13:18	05/27/15 10:32	1
PCB-1242	ND	49	ug/Kg		05/26/15 13:18	05/27/15 10:32	1
PCB-1248	ND	49	ug/Kg		05/26/15 13:18	05/27/15 10:32	1
PCB-1254	59	49	ug/Kg		05/26/15 13:18	05/27/15 10:32	1
PCB-1260	ND	49	ug/Kg		05/26/15 13:18	05/27/15 10:32	1

TestAmerica Pleasanton

5/29/2015

Client Sample Results

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

TestAmerica Job ID: 720-64901-1

Client Sample ID: SS-5-0.5' Date Collected: 05/19/15 08:40 Date Received: 05/19/15 15:00

Lab Sample	ID:	720-64901-9
		Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69		45 - 132				05/26/15 13:18	05/27/15 10:32	
DCB Decachlorobiphenyl	75		42 - 146				05/26/15 13:18	05/27/15 10:32	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	Ð	Prepared	Analyzed	Dil Fac
Antimony	ND		0.37		mg/Kg		05/26/15 17:30	05/27/15 22:46	1
Arsenic	4.8		3.0		mg/Kg		05/26/15 17:30	05/27/15 13:22	4
Barium	27		1,5		mg/Kg		05/26/15 17:30	05/27/15 13:22	4
Beryllium	0.16		0.075		mg/Kg		05/26/15 17:30	05/27/15 22:46	1
Cadmium	ND		0.093		mg/Kg		05/26/15 17:30	05/27/15 22:46	1
Chromium	39		1.5		mg/Kg		05/26/15 17:30	05/27/15 13:22	4
Cobalt	5.7		0,60		mg/Kg		05/26/15 17:30	05/27/15 13:22	4
Copper	75		4.5		mg/Kg		05/26/15 17:30	05/27/15 13:22	4
Lead	46		1.5		mg/Kg		05/26/15 17:30	05/27/15 13:22	4
Molybdenum	0.39		0.37		mg/Kg		05/26/15 17:30	05/28/15 18:20	1
Nickel	38		1.5		mg/Kg		05/26/15 17:30	05/27/15 13:22	4
Selenium	ND		0.75		mg/Kg		05/26/15 17:30	05/27/15 22:46	1
Silver	ND		0.19		mg/Kg		05/26/15 17:30	05/27/15 22:46	1
Thallium	ND		0.37		mg/Kg		05/26/15 17:30	05/28/15 18:20	1
Vanadium	26		1.5		mg/Kg		05/26/15 17:30	05/27/15 13:22	4
Zinc	80		4.5		mg/Kg		05/26/15 17:30	05/27/15 13:22	4
Method: 7471A - Mercury (CV	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	1.2		0,0085		mg/Kg		05/26/15 16:15	05/27/15 19:55	1

TestAmerica Job ID: 720-64901-1

Client Sample ID: SS-5-1' Date Collected: 05/19/15 08:47 Date Received: 05/19/15 15:00

Lab	Sample	ID:	720-64901-10
			Matrix: Solid

Method: 8270C - Semivola Analyte	• • • • • • • • • • • • • • • • • • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Acenaphthylene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Acenaphthene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Fluorene	ND		0,33		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Phenanthrene	0.45		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Anthracene	0.34		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Fluoranthene	0.67		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Pyrene	1.7		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Benzo[a]anthracene	ND		1.6		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Chrysene	1.2		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	5
Benzo[b]fluoranthene	1.8		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	Ę
Benzo[k]fluoranthene	0.74		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	(
Benzo[a]pyrene	1.2		0,33		mg/Kg		05/26/15 23:13	05/28/15 04:53	!
Indeno[1,2,3-cd]pyrene	0.68		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	Ę
Benzo[g,h,i]perylene	0.65		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	
2-Methylnaphthalene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	
Dibenz(a,h)anthracene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 04:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	69	() 	21-98				05/26/15 23:13	05/28/15 04:53	-
2-Fluorobiphenyl	58		30-112				05/26/15 23:13	05/28/15 04:53	
Terphenyl-d14	82		32 - 117				05/26/15 23:13	05/28/15 04:53	
Method: Organotins - Org	anotins, PSEP	(GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibutyltin	38		1.0		ug/Kg		05/24/15 18:29	05/28/15 01:23	-
VionobutyItin	ND	*	1.0 U J		ug/Kg		05/24/15 18:29	05/28/15 01:23	
Tetra-n-butyltin	ND		2.8		ug/Kg		05/24/15 18:29	05/28/15 01:23	
Taile set altim	74		1.0		ualla		00/146 10:00	05/20/15 01.22	

Tributyltin	74	1.0	ug/Kg	05/24/15 18:29	05/28/15 01:23	1		
Surrogate Tripentyltin	%Recovery Qualifier 52	<i>Limits</i> 20 - 151		Prepared 05/24/15 18:29	Analyzed 05/28/15 01:23	Dil Fac		
Method: 8015B - Diesel Range Organics (DRO) (GC)								
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac		
Diesel Range Organics [C10-C28]	120	2.0	mg/Kg	05/26/15 18:29	05/27/15 21:53	2		

Motor Oil Range Organics [C24-C36]	210	100	mg/Kg	05/26/15 18:29	05/27/15 21:53	2
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
p-Terphenyl	55	40 - 130		05/26/15 18:29	05/27/15 21:53	2

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

moundar over 1 orgen			inco graping				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	50	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1221	ND	50	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1232	ND	50	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1242	ND	50	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1248	ND	50	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1254	79	50	ug/Kg		05/26/15 13:18	05/26/15 22:22	1
PCB-1260	ND	50	ug/Kg		05/26/15 13:18	05/26/15 22:22	1

Lab Sample ID: 720-64901-10 Matrix: Solid

4

Client Sample ID: SS-5-1' Date Collected: 05/19/15 08:47 Date Received: 05/19/15 15:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	70		45 - 132				05/26/15 13:18	05/26/15 22:22	
DCB Decachlorobiphenyl	75		42 - 146		8		05/26/15 13:18	05/26/15 22:22	
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		0.42		mg/Kg	_	05/26/15 17:30	05/27/15 22:51	
Arsenic	7.2		3.3		mg/Kg		05/26/15 17:30	05/27/15 13:27	4
Barium	49		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:27	4
Beryllium	0.18		0.083		mg/Kg		05/26/15 17:30	05/27/15 22:51	
Cadmium	0.10		0.10		mg/Kg		05/26/15 17:30	05/27/15 22:51	
Chromium	48		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:27	4
Cobalt	7.4		0.67		mg/Kg		05/26/15 17:30	05/27/15 13:27	4
Copper	200		5.0		mg/Kg		05/26/15 17:30	05/27/15 13:27	4
Lead	54		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:27	4
Molybdenum	3.8		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:27	4
Nickel	56		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:27	4
Selenium	ND		0,83		mg/Kg		05/26/15 17:30	05/27/15 22:51	
Silver	ND		0.21		mg/Kg		05/26/15 17:30	05/27/15 22:51	
Thallium	ND		0.42		mg/Kg		05/26/15 17:30	05/28/15 20:10	
Vanadium	30		1.7		mg/Kg		05/26/15 17:30	05/27/15 13:27	2 4
Zinc	130		5.0		mg/Kg		05/26/15 17:30	05/27/15 13:27	4
Method: 7471A - Mercury (CVA	A)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	1.4		0.0085		mg/Kg		05/26/15 16:15	05/27/15 19:57	

Client Sample ID: SS-6-0.5' Date Collected: 05/19/15 09:01 Date Received: 05/19/15 15:00

Lab Sample ID: 720-64901-11 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.27		mg/Kg	-	05/26/15 23:13	05/28/15 05:15	2
Acenaphthylene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Acenaphthene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Fluorene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Phenanthrene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Anthracene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Fluoranthene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Pyrene	0.28		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Benzo[a]anthracene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Chrysene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Benzo[b]fluoranthene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Benzo[k]fluoranthene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Benzo[a]pyrene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
ndeno[1,2,3-cd]pyrene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
3enzo[g,h,i]perylene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
2-Methylnaphthalene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	2
Dibenz(a,h)anthracene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:15	-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Vitrobenzene-d5	66		21_98				05/26/15 23:13	05/28/15 05:15	~
2-Fluorobiphenyl	57		30-112				05/26/15 23:13	05/28/15 05:15	:
Terphenyl-d14	118	X	32 - 117				05/26/15 23:13	05/28/15 05:15	
Method: Organotins - Organot	tins, PSEP	(GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	12		1.0		ug/Kg	_	05/24/15 18:29	05/28/15 01:46	
		+	A DOLE STORES		ug/Kg		05/24/15 18:29	05/28/15 01:46	
MonobutyItin	ND	•	10 05						
•	ND ND		1.0 (<i>)</i> 2.8		ug/Kg		05/24/15 18:29	05/28/15 01:46	
etra-n-butyltin		•			ug/Kg ug/Kg		05/24/15 18:29 05/24/15 18:29	05/28/15 01:46 05/28/15 01:46	
Fetra-n-butyltin Fributyltin	ND		2.8						Dil Fa
Fetra-n-butyltin Fributyltin Surrogate	ND 32		2.8 1.0				05/24/15 18:29	05/28/15 01:46 Analyzed	Dil Fa
Fetra-n-butyltin Fributyltin Surrogate Tripentyltin	ND 32 %Recovery 61	Qualifier	2.8 1.0 <i>Limits</i>				05/24/15 18:29 Prepared	05/28/15 01:46 Analyzed	Dil Fa
Tetra-n-butyltin Fributyltin Surrogate Fripentyltin Method: 8015B - Diesel Range Analyte	ND 32 %Recovery 61 e Organics	Qualifier	2.8 1.0 <i>Limits</i> 20 - 151 RL	MDL		D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared	05/28/15 01:46 Analyzed 05/28/15 01:46 Analyzed	Dil Fa
Tetra-n-butyltin Fributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte	ND 32 %Recovery 61 e Organics	Qualifier (DRO) (GC)	2.8 1.0 <i>Limits</i> 20 - 151	MDL	ug/Kg	D	05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 01:46 Analyzed 05/28/15 01:46	Dil Fa
Tetra-n-butyltin Fributyltin Surrogate Fripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics	ND 32 %Recovery 61 e Organics Result	Qualifier (DRO) (GC)	2.8 1.0 <i>Limits</i> 20 - 151 RL	MDL	ug/Kg Unit	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared	05/28/15 01:46 Analyzed 05/28/15 01:46 Analyzed 05/24/15 02:55	Dil Fa
Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate	ND 32 %Recovery 61 e Organics Result 59	Qualifier (DRO) (GC) Qualifier	2.8 1.0 <i>Limits</i> 20 - 151 RL 1.0	MDL	ug/Kg Unit mg/Kg	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/22/15 12:51	05/28/15 01:46 Analyzed 05/28/15 01:46 Analyzed 05/24/15 02:55	

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte Res	It Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016 N	D	49		ug/Kg		05/26/15 13:18	05/26/15 22:39	1
PCB-1221 N	D	49		ug/Kg		05/26/15 13:18	05/26/15 22:39	1
PCB-1232 N	D	49		ug/Kg		05/26/15 13:18	05/26/15 22:39	1
PCB-1242 N	D	49		ug/Kg		05/26/15 13:18	05/26/15 22:39	1
PCB-1248	0	49		ug/Kg		05/26/15 13:18	05/26/15 22:39	1
PCB-1254 N	D	49		ug/Kg		05/26/15 13:18	05/26/15 22:39	1
PCB-1260	D	49		ug/Kg		05/26/15 13:18	05/26/15 22:39	1

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

TestAmerica Job ID: 720-64901-1

Client Sample ID: SS-6-0.5' Date Collected: 05/19/15 09:01 Date Received: 05/19/15 15:00

Lab Sample	ID:	720-64901-11
		Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	64		45 - 132				05/26/15 13:18	05/26/15 22:39	1
DCB Decachlorobiphenyl	71		42 - 146				05/26/15 13:18	05/26/15 22:39	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.44		mg/Kg		05/26/15 17:30	05/27/15 22:55	1
Arsenic	6.0		3.5		mg/Kg		05/26/15 17:30	05/27/15 13:32	4
Barium	35		1.8		mg/Kg		05/26/15 17:30	05/27/15 13:32	4
Beryllium	0.17		0.088		mg/Kg		05/26/15 17:30	05/27/15 22:55	1
Cadmium	ND		0.11		mg/Kg		05/26/15 17:30	05/27/15 22:55	1
Chromium	46		1.8		mg/Kg		05/26/15 17:30	05/27/15 13:32	4
Cobalt	6.7		0.70		mg/Kg		05/26/15 17:30	05/27/15 13:32	4
Соррег	120		5.3		mg/Kg		05/26/15 17:30	05/27/15 13:32	4
Lead	37		1.8		mg/Kg		05/26/15 17:30	05/27/15 13:32	4
Molybdenum	0.87		0_44		mg/Kg		05/26/15 17:30	05/28/15 18:29	1
Nickel	40		1,8		mg/Kg		05/26/15 17:30	05/27/15 13:32	4
Selenium	ND		0.88		mg/Kg		05/26/15 17:30	05/27/15 22:55	1
Silver	ND		0.22		mg/Kg		05/26/15 17:30	05/27/15 22:55	1
Thallium	ND		0.44		mg/Kg		05/26/15 17:30	05/28/15 18:29	1
Vanadium	29		1.8		mg/Kg		05/26/15 17:30	05/27/15 13:32	4
Zinc	94		5.3		mg/Kg		05/26/15 17:30	05/27/15 13:32	4
Method: 7471A - Mercury (CV/									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.99		0.0087		mg/Kg	-	05/26/15 20:56	05/27/15 16:44	1

Client Sample ID: SS-6-1' Date Collected: 05/19/15 09:10 Date Received: 05/19/15 15:00

PCB-1242

PCB-1248

PCB-1254

PCB-1260

Lab Sample ID:	720-64901-12
	Matrix: Solid

alyte		mpounds (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
aphthalene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:36	2
cenaphthylene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:36	2
cenaphthene	ND		0.27		mg/Kg			05/28/15 05:36	2
luorene	ND		0.27		mg/Kg			05/28/15 05:36	2
henanthrene	ND		0.27		mg/Kg			05/28/15 05:36	2
Anthracene	ND		0,27		mg/Kg			05/28/15 05:36	2
Fluoranthene	0.32		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:36	2
Pyrene	0.99		0.27		mg/Kg			05/28/15 05:36	2
Senzo[a]anthracene	ND		1.3		mg/Kg			05/28/15 05:36	2
• •			0.27		mg/Kg		05/26/15 23:13	05/28/15 05:36	2
Chrysene	0.47							05/28/15 05:36	2
Benzo[b]fluoranthene	0.63		0.27		mg/Kg				
Benzo[k]fluoranthene	ND		0.27		mg/Kg			05/28/15 05:36	2
Benzo[a]pyrene	0.40		0.27		mg/Kg			05/28/15 05:36	2
ndeno[1,2,3-cd]pyrene	ND		0.27		mg/Kg			05/28/15 05:36	2
Benzo[g,h,i]perylene	0.27		0.27		mg/Kg			05/28/15 05:36	2
2-Methylnaphthalene	ND		0_27		mg/Kg			05/28/15 05:36	2
Dibenz(a,h)anthracene	ND		0.27		mg/Kg		05/26/15 23:13	05/28/15 05:36	2
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
litrobenzene-d5	68		21-98				05/26/15 23:13	05/28/15 05:36	2
P-Fluorobiphenyl	59		30 - 112				05/26/15 23:13	05/28/15 05:36	2
Terphenyl-d14	113		32 - 117				05/26/15 23:13	05/28/15 05:36	2
Method: Organotins - Organot	-								
Inalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	26		1.0		ug/Kg		05/24/15 18:29	05/28/15 02:09	1
Ionobutyltin	ND	*	1.0	V J	ug/Kg		05/24/15 18:29	05/28/15 02:09	1
fetra-n-butyltin	ND		2.8		ug/Kg		05/24/15 18:29	05/28/15 02:09	1
ributyltin	62		1.0		ug/Kg		05/24/15 18:29	05/28/15 02:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	45		20 - 151				05/24/15 18:29	05/28/15 02:09	1
Method: 8015B - Diesel Range Analyte		(DRO) (GC) Qualifier	RL	MD	Unit	D	Proparad	Analyzod	Dil Fac
		quaimer					Prepared	Analyzed	
Diesel Range Organics [C10-C28]	150		2.0		mg/Kg		05/26/15 16:23		2
Notor Oil Range Organics C24-C36]	160		99		mg/Kg		05/26/15 16:23	05/27/15 18:28	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Terphenyl	88		40 - 130				05/26/15 16:23	05/27/15 18:28	2
Method: 8082 - Polychlorinate			-			_	_		
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		49		ug/Kg			05/26/15 22:55	1
PCB-1221	ND		49		ug/Kg		05/26/15 13:18		8
PCB-1221 PCB-1232	ND ND		49 49		ug/Kg ug/Kg			05/26/15 22:55 05/26/15 22:55	1

05/26/15 13:18 05/26/15 22:55

05/26/15 13:18 05/26/15 22:55

05/26/15 13:18 05/26/15 22:55

Page 41 of 106

49

49

49

49

ND

ND

210

ND

ug/Kg

ug/Kg

ug/Kg

ug/Kg

1

1

1

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Matrix: Solid

Lab Sample ID: 720-64901-12

Client Sample ID: SS-6-1' Date Collected: 05/19/15 09:10 Date Received: 05/19/15 15:00

/unccovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
71		45 - 132				05/26/15 13:18	05/26/15 22:55	1
79	ž	42 - 146				05/26/15 13:18	05/26/15 22:55	1
	<i>*</i>							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.6		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
11		3.3		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
44		1,6		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
ND		0.33		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
ND		0.41		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
78		1.6		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
10		0.65		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
380		4.9		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
100		1.6		mg/Kg		05/26/15 20:54	05/28/15 17:10	4
10		1.6		mg/Kg		05/26/15 20:54	05/28/15 17:10	4
100		1.6		mg/Kg		05/26/15 20:54	05/28/15 17:10	4
ND		3,3		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
ND		0.81		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
ND		1.6		mg/Kg		05/26/15 20:54	05/28/15 17:10	4
39		1.6		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
180		4.9		mg/Kg		05/26/15 20:54	05/28/15 02:18	4
	o							
Result	Qualifier	RL	MDL	unit	D	Prepared	Analyzed	Dil Fac
	79 Result ND 11 44 ND ND 78 10 380 100 100 100 ND ND ND 39 180 NA)	79 Result Qualifier ND 11 44 ND ND 78 10 380 100 380 100 100 100 ND ND ND ND ND 39 180	79 42.146 Result Qualifier RL ND 1.6 11 3.3 44 1.6 ND 0.33 ND 0.41 78 1.6 10 0.65 380 4.9 100 1.6 10 1.6 10 1.6 10 1.6 10 1.6 100 1.6 100 1.6 100 1.6 100 1.6 100 1.6 100 1.6 100 1.6 100 1.6 100 1.6 39 1.6 180 4.9	Result Qualifier RL MDL ND 1.6 1.6 11 3.3 44 1.6 ND 0.33 0.41 78 1.6 10 10 0.65 380 49 100 1.6 10 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 1.6 10 100 <td< td=""><td>79 42-146 Result Qualifier RL MDL Unit ND 1.6 mg/Kg 11 3.3 mg/Kg 44 1.6 mg/Kg ND 0.33 mg/Kg ND 0.41 mg/Kg 78 1.6 mg/Kg 10 0.65 mg/Kg 10 1.6 mg/Kg 10 1.6 mg/Kg 10 1.6 mg/Kg 10 1.6 mg/Kg 100 1.6 mg/Kg ND 3.3 mg/Kg ND 0.81 mg/Kg ND 1.6 mg/Kg</td><td>79 42-146 Result Qualifier RL MDL Unit D ND 1.6 mg/Kg mg/Kg D 11 3.3 mg/Kg D 0.33 mg/Kg ND 0.33 mg/Kg ND 0.41 mg/Kg ND 0.41 mg/Kg 10 0.65 mg/Kg 10 0.65 mg/Kg 10 0.65 mg/Kg 100 1.6 mg/Kg 10 1.6 mg/Kg 100 1.6 mg/Kg ND 0.81 mg/Kg ND 0.81 mg/Kg ND 0.81 mg/Kg ND 1.6 mg/Kg 39 1.6 mg/Kg ND 1.6 mg/Kg 180 4.9 mg/Kg</td><td>79 42.146 05/26/15 13:18 Result Qualifier RL MDL Unit D Prepared ND 1.6 mg/Kg 05/26/15 20:54 05/26/15 20:54 11 3.3 mg/Kg 05/26/15 20:54 44 1.6 mg/Kg 05/26/15 20:54 ND 0.33 mg/Kg 05/26/15 20:54 ND 0.33 mg/Kg 05/26/15 20:54 ND 0.41 mg/Kg 05/26/15 20:54 ND 0.41 mg/Kg 05/26/15 20:54 10 0.65 mg/Kg 05/26/15 20:54 10 0.65 mg/Kg 05/26/15 20:54 10 1.6 mg/Kg 05/26/15 20:54 100 1.6 mg/Kg 05/26/15 20:54 ND 3.3 mg/Kg 05/26/15 20:54 ND 3.3 mg/Kg 05/26/15 20:54 ND 0.81 mg/Kg 05/26/15 20:54 ND 0.81 mg/Kg 05/26/15 20:54 <</td><td>79 42.146 05/26/15 13:18 05/26/15 22:55 Result Qualifier RL MDL Unit D Prepared Analyzed 11 3.3 mg/Kg 05/26/15 20:54 05/28/15 02:18 05/28/15 02:18 44 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 ND 0.33 mg/Kg 05/26/15 20:54 05/28/15 02:18 ND 0.33 mg/Kg 05/26/15 20:54 05/28/15 02:18 ND 0.41 mg/Kg 05/26/15 20:54 05/28/15 02:18 78 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 78 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 10 0.65 mg/Kg 05/26/15 20:54 05/28/15 02:18 100 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 100 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 100 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 ND 0.81</td></td<>	79 42-146 Result Qualifier RL MDL Unit ND 1.6 mg/Kg 11 3.3 mg/Kg 44 1.6 mg/Kg ND 0.33 mg/Kg ND 0.41 mg/Kg 78 1.6 mg/Kg 10 0.65 mg/Kg 10 1.6 mg/Kg 10 1.6 mg/Kg 10 1.6 mg/Kg 10 1.6 mg/Kg 100 1.6 mg/Kg ND 3.3 mg/Kg ND 0.81 mg/Kg ND 1.6 mg/Kg	79 42-146 Result Qualifier RL MDL Unit D ND 1.6 mg/Kg mg/Kg D 11 3.3 mg/Kg D 0.33 mg/Kg ND 0.33 mg/Kg ND 0.41 mg/Kg ND 0.41 mg/Kg 10 0.65 mg/Kg 10 0.65 mg/Kg 10 0.65 mg/Kg 100 1.6 mg/Kg 10 1.6 mg/Kg 100 1.6 mg/Kg ND 0.81 mg/Kg ND 0.81 mg/Kg ND 0.81 mg/Kg ND 1.6 mg/Kg 39 1.6 mg/Kg ND 1.6 mg/Kg 180 4.9 mg/Kg	79 42.146 05/26/15 13:18 Result Qualifier RL MDL Unit D Prepared ND 1.6 mg/Kg 05/26/15 20:54 05/26/15 20:54 11 3.3 mg/Kg 05/26/15 20:54 44 1.6 mg/Kg 05/26/15 20:54 ND 0.33 mg/Kg 05/26/15 20:54 ND 0.33 mg/Kg 05/26/15 20:54 ND 0.41 mg/Kg 05/26/15 20:54 ND 0.41 mg/Kg 05/26/15 20:54 10 0.65 mg/Kg 05/26/15 20:54 10 0.65 mg/Kg 05/26/15 20:54 10 1.6 mg/Kg 05/26/15 20:54 100 1.6 mg/Kg 05/26/15 20:54 ND 3.3 mg/Kg 05/26/15 20:54 ND 3.3 mg/Kg 05/26/15 20:54 ND 0.81 mg/Kg 05/26/15 20:54 ND 0.81 mg/Kg 05/26/15 20:54 <	79 42.146 05/26/15 13:18 05/26/15 22:55 Result Qualifier RL MDL Unit D Prepared Analyzed 11 3.3 mg/Kg 05/26/15 20:54 05/28/15 02:18 05/28/15 02:18 44 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 ND 0.33 mg/Kg 05/26/15 20:54 05/28/15 02:18 ND 0.33 mg/Kg 05/26/15 20:54 05/28/15 02:18 ND 0.41 mg/Kg 05/26/15 20:54 05/28/15 02:18 78 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 78 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 10 0.65 mg/Kg 05/26/15 20:54 05/28/15 02:18 100 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 100 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 100 1.6 mg/Kg 05/26/15 20:54 05/28/15 02:18 ND 0.81

Client Sample ID: SS-7-0.5'

Date Collected: 05/19/15 09:18 Date Received: 05/19/15 15:00

Lab Sample	ID:	720-64901-13
		Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
laphthalene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
Acenaphthylene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
cenaphthene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
luorene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
Phenanthrene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
Anthracene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
luoranthene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
Pyrene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
8enzo[a]anthracene	ND		6.6		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
Chrysene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
Benzo[b]fluoranthene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
Benzo[k]fluoranthene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
3enzo[a]pyrene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
ndeno[1,2,3-cd]pyrene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
8enzo[g,h,i]perylene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
2-Methylnaphthalene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
Dibenz(a,h)anthracene	ND		1.3		mg/Kg		05/26/15 23:13	05/28/15 05:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Vitrobenzene-d5	76		21_98				05/26/15 23:13	05/28/15 05:58	1
2-Fluorobiphenyl	66		30 - 112				05/26/15 23:13	05/28/15 05:58	1
Ferphenyl-d14	106		32 - 117				05/26/15 23:13	05/28/15 05:58	1
Method: Organotins - Org	anotins, PSEP	(GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibutyltin	120	F2 F1	1.1		ug/Kg		05/24/15 18:29	05/28/15 02:32	
lonobutyltin	76	F2 F1 * 🧃	1.1	-	ug/Kg		05/24/15 18:29	05/28/15 02:32	
etra-n-butyltin	ND	F1	2.9 🕻	15	ug/Kg		05/24/15 18:29	05/28/15 02:32	
Fributyltin	650	F2E J	1,1		ug/Kg		05/24/15 18:29	05/28/15 02:32	
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Surrogate			00 151				05/24/15 18:29	05/28/15 02:32	
-	50		20 - 151						
ripentyltin		(GC/MS) - D							
-							Prepared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	240		5.0		mg/Kg		05/26/15 16:23	05/27/15 18:57	5
Motor Oil Range Organics [C24-C36]	560		250		mg/Kg		05/26/15 16:23	05/27/15 18:57	5
Surrogate p-Terphenyl	%Recovery 0	Qualifier X D	Limits 40 - 130				Prepared 05/26/15 16:23	Analyzed 05/27/15 18:57	Dil Fac 5

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	PCB-1016	ND		97		ug/Kg		05/26/15 13:18	05/27/15 09:59	2
	PCB-1221	ND		97		ug/Kg		05/26/15 13:18	05/27/15 09:59	2
	PCB-1232	ND		97		ug/Kg		05/26/15 13:18	05/27/15 09:59	2

TestAmerica Job ID: 720-64901-1

Client Sample ID: SS-7 Pate Collected: 05/19/15 09 Pate Received: 05/19/15 15	9:18			Lab Sample ID: 720-6490 Matrix: ۶					
Method: 8082 - Polychlor Analyte		s (PCBs) b Qualifier	y Gas Chron RL		o <mark>hy (Con</mark> Unit	tinue D	d) Prepared	Analyzed	Dil Fa
PCB-1242	ND		97		ug/Kg		05/26/15 13:18	05/27/15 09:59	
PCB-1248	410		97		ug/Kg		05/26/15 13:18	05/27/15 09:59	
PCB-1254	ND		97		ug/Kg		05/26/15 13:18	05/27/15 09:59	
PCB-1260	ND		97		ug/Kg		05/26/15 13:18	05/27/15 09:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene			45 - 132				05/26/15 13:18	05/27/15 09:59	
DCB Decachlorobiphenyl	77		42 - 146				05/26/15 13:18	05/27/15 09:59	
Method: 6010B - Metals (I	ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	3.0		1.4		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Arsenic	11		2.8		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Barium	170		1.4		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Beryllium	ND		0.28		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Cadmium	ND		0.35		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Chromium	76		1.4		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Cobalt	9.6		0.56		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Copper	390		4,2		mg/Kg		05/26/15 20:54	05/28/15 02:22	
_ead	580		1.4		mg/Kg		05/26/15 20:54	05/28/15 17:14	
Vlolybdenum	13		1.4		mg/Kg		05/26/15 20:54	05/28/15 17:14	
Nickel	66		1_4		mg/Kg		05/26/15 20:54	05/28/15 17:14	
Selenium	ND		2.8		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Silver	ND		0.69		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Thallium	ND		1.4		mg/Kg		05/26/15 20:54	05/28/15 17:14	
/anadium	28		1.4		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Zinc	2000		4.2		mg/Kg		05/26/15 20:54	05/28/15 02:22	
Method: 7471A - Mercury	(CVAA)								
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	2.3		0.045		mg/Kg		05/26/15 20:56	05/27/15 17:38	

TestAmerica Pleasanton

5/29/2015

Lab Sample ID: 720-64901-14 Matrix: Solid

Client Sample ID: SS-7-1' Date Collected: 05/19/15 09:31 Date Received: 05/19/15 15:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Acenaphthylene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Acenaphthene	ND		0,66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Fluorene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Phenanthrene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Anthracene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Fluoranthene	0.86		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Pyrene	1.5		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Benzo[a]anthracene	ND		3.3		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Chrysene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Benzo[b]fluoranthene	1.0		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Benzo[k]fluoranthene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Benzo[a]pyrene	0.78		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Indeno[1,2,3-cd]pyrene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Benzo[g,h,i]perylene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
2-Methylnaphthalene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Dibenz(a,h)anthracene	ND		0.66		mg/Kg		05/26/15 23:13	05/28/15 06:19	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	82		21_98				05/26/15 23:13	05/28/15 06:19	5
2-Fluorobiphenyl	72		30-112				05/26/15 23:13	05/28/15 06:19	5
Terphenyl-d14	111		32 - 117				05/26/15 23:13	05/28/15 06:19	5

Analyte	Result	Qualifier	RL	MDL	Unit		D Prepared	Analyzed	Dil Fac
Dibutyltin	110		1.0	149	ug/Kg		05/24/15 18:29	05/28/15 03:41	1
Monobutyltin	ND	*	1.0 🔱	J	ug/Kg	ā.	05/24/15 18:29	05/28/15 03:41	1
Tetra-n-butyltin	42		2,8		ug/Kg		05/24/15 18:29	05/28/15 03:41	1
Tributyltin	180		1.0		ug/Kg		05/24/15 18:29	05/28/15 03:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	33		20 - 151				05/24/15 18:29	05/28/15 03:41	1
mpentynin	00		20-101				00/2 // /0 /0.20	00/20/10 00:17	
Method: 8015B - Diesel Range		(DRO) (GC)	20-101				00/2 1/10 10:20		
	Organics (DRO) (GC) Qualifier	RL	MDL	Unit	ļ	D Prepared	Analyzed	Dil Fac
Method: 8015B - Diesel Range	Organics (MDL	Unit mg/Kg				Dil Fac
Method: 8015B - Diesel Range Analyte	Organics (Result		RL	MDL			D Prepared	Analyzed	
Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics	e Organics Result 220 460 %Recovery	Qualifier	RL 5.0	MDL	mg/Kg		D Prepared	Analyzed 05/27/15 19:26 05/27/15 19:26 Analyzed	5

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

method. 0002 - r oryemorn	nated Dipricity is (1 003) by	ous onion	latography				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	480	ug/Kg		05/26/15 13:18	05/27/15 10:16	10
PCB-1221	ND	480	ug/Kg		05/26/15 13:18	05/27/15 10:16	10
PCB-1232	ND	480	ug/Kg		05/26/15 13:18	05/27/15 10:16	10
PCB-1242	1900	480	ug/Kg		05/26/15 13:18	05/27/15 10:16	10
PCB-1248	ND	480	ug/Kg		05/26/15 13:18	05/27/15 10:16	10
PCB-1254	ND	480	ug/Kg		05/26/15 13:18	05/27/15 10:16	10
PCB-1260	ND	480	ug/Kg		05/26/15 13:18	05/27/15 10:16	10

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Lab Sample ID: 720-64901-14 Matrix: Solid

05/26/15 20:54 05/28/15 02:27 05/26/15 20:54 05/28/15 02:27

05/26/15 20:54 05/28/15 17:19

05/26/15 20:54 05/28/15 17:19

05/26/15 20:54 05/28/15 17:19

05/26/15 20:54 05/28/15 02:27

05/26/15 20:54 05/28/15 02:27

05/26/15 20:54 05/28/15 17:19

05/26/15 20:54 05/28/15 02:27

05/26/15 20:54 05/28/15 02:27

6

4

4

4

4

4

4

4

4

4

4

Client Sample ID: SS-7-1' Date Collected: 05/19/15 09:31 Date Received: 05/19/15 15:00

Cobalt

Copper

Molybdenum

Lead

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	0	XD	45 - 132				05/26/15 13:18	05/27/15 10:16	10
DCB Decachlorobiphenyl	0	XD	42 - 146				05/26/15 13:18	05/27/15 10:16	10
Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	4.2		1,9		mg/Kg		05/26/15 20:54	05/28/15 02:27	
Arsenic	11		3,8		mg/Kg		05/26/15 20:54	05/28/15 02:27	4
Barium	90		1,9		mg/Kg		05/26/15 20:54	05/28/15 02:27	4
Beryllium	ND		0.38		mg/Kg		05/26/15 20:54	05/28/15 02:27	4
Cadmium	ND		0.48		mg/Kg		05/26/15 20:54	05/28/15 02:27	4
Chromium	120		1.9		mg/Kg		05/26/15 20:54	05/28/15 02:27	4

0.76

5.7

1.9

1.9

1.9

3.8

0.95

1.9

1.9

5.7

10

650

300

7.9

77

ND

ND

ND

28

450

mg/Kg

Method: 7471A - Mercury (CVAA)						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	3.1		0.049		mg/Kg		05/26/15 20:56	05/27/15 17:40	5

Lab Sample ID: 720-64901-15 Matrix: Solid

Client Sample ID: SS-8-0.5' Date Collected: 05/19/15 09:36 Date Received: 05/19/15 15:00

Method: 8270C - Semivol	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.67	mg/Kg	J	05/26/15 23:13	05/28/15 06:41	5
Acenaphthylene	ND		0.67	mg/Kg	9	05/26/15 23:13	05/28/15 06:41	5
Acenaphthene	ND		0.67	mg/Kg	g	05/26/15 23:13	05/28/15 06:41	5
Fluorene	ND		0.67	mg/Kg	g	05/26/15 23:13	05/28/15 06:41	5
Phenanthrene	0.96		0.67	mg/Kg	g	05/26/15 23:13	05/28/15 06:41	5
Anthracene	ND		0.67	mg/Kg	g	05/26/15 23:13	05/28/15 06:41	5
Fluoranthene	1.4		0_67	mg/Kg	g	05/26/15 23:13	05/28/15 06:41	5
Pyrene	1.9		0.67	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
Benzo[a]anthracene	ND		3.3	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
Chrysene	0.90		0.67	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
Benzo[b]fluoranthene	1.4		0.67	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
Benzo[k]fluoranthene	0.70		0.67	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
Benzo[a]pyrene	1.1		0.67	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
ndeno[1,2,3-cd]pyrene	ND		0.67	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
Benzo[g,h,i]perylene	ND		0.67	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
2-Methylnaphthalene	ND		0,67	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
Dibenz(a,h)anthracene	ND		0,67	mg/K	g	05/26/15 23:13	05/28/15 06:41	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72		21 - 98			05/26/15 23:13	05/28/15 06:41	5
2-Fluorobiphenyl	63		30-112			05/26/15 23:13	05/28/15 06:41	5
Terphenyl-d14	100		32 - 117			05/26/15 23:13	05/28/15 06:41	5
Method: Organotins - Org	ganotins, PSEP	(GC/MS)						
Analyte		Qualifier	RL	MDL Unit	C	Prepared	Analyzed	Dil Fac
Dibutyltin	79	1	1.1	ug/Kg] – –	05/24/15 18:29	05/28/15 04:03	1
MonobutyItin	ND	• •	1115	ug/Kg	3	05/24/15 18:29	05/28/15 04:03	1
Tetra-n-butyltin	ND		3.0	ug/Kg	3	05/24/15 18:29	05/28/15 04:03	1

Tributyltin	130	1.1	ug/Kg	05/24/15 18:29	05/28/15 04:03	1
Surrogate Tripentyltin	<u>%Recovery</u> Qualifier 41	Limits		Prepared 05/24/15 18:29	Analyzed 05/28/15 04:03	Dil Fac
Method: 8015B - Diese	Range Organics (DRO) (GC)				

moulour corres stores thange								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	260	3.0		mg/Kg		05/26/15 16:23	05/27/15 19:56	3
Motor Oil Range Organics [C24-C36]	480	150		mg/Kg		05/26/15 16:23	05/27/15 19:56	3

Surrogate	%Recovery Q	ualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	45		40 - 130	05/26/15 16:23	05/27/15 19:56	3

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
PCB-1016	ND	250	ug/Kg	05/26/15 13:18	05/27/15 10:32	5
PCB-1221	ND	250	ug/Kg	05/26/15 13:18	05/27/15 10:32	5
PCB-1232	ND	250	ug/Kg	05/26/15 13:18	05/27/15 10:32	5
PCB-1242	ND	250	ug/Kg	05/26/15 13:18	05/27/15 10:32	5
PCB-1248	ND	250	ug/Kg	05/26/15 13:18	05/27/15 10:32	5
PCB-1254	ND	250	ug/Kg	05/26/15 13:18	05/27/15 10:32	5
PCB-1260	710 🤳	250	ug/Kg	05/26/15 13:18	05/27/15 10:32	5

Client Sample Results

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Lab Sample ID: 720-64901-15 **Matrix: Solid**

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		45 - 132				05/26/15 13:18	05/27/15 10:32	5
DCB Decachlorobiphenyl	91		42 - 146				05/26/15 13:18	05/27/15 10:32	5
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.5		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Arsenic	9.5		3.0		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Barium	120		1.5		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Beryllium	ND		0.30		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Cadmium	ND		0.37		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Chromium	82		1.5		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Cobalt	11		0.60		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Copper	620		4.5		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Lead	190		1.5		mg/Kg		05/26/15 20:54	05/28/15 17:24	4
Molybdenum	2.7		1.5		mg/Kg		05/26/15 20:54	05/28/15 17:24	4
Nickel	67		1.5		mg/Kg		05/26/15 20:54	05/28/15 17:24	4
Selenium	ND		3.0		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Silver	ND		0.75		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Thallium	ND		1.5		mg/Kg		05/26/15 20:54	05/28/15 17:24	4
Vanadium	35		1.5		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Zinc	370		4.5		mg/Kg		05/26/15 20:54	05/28/15 02:32	4
Method: 7471A - Mercury (CVA	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	4.7		0.097		mg/Kg		05/26/15 20:56	05/27/15 17:42	10

Client Sample ID: SS-8-1'

Date Collected: 05/19/15 09:51 Date Received: 05/19/15 15:00

Lab Sample	ID:	720-64901-16
-		Matrix: Solid

Method: 8270C - Semivolatile Organi	c Co	mpounds ((GC/MS)						
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Acenaphthylene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Acenaphthene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Fluorene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Phenanthrene	1.1		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Anthracene	0.70		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Fluoranthene	1.4		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Pyrene	3.5		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Benzo[a]anthracene	ND		1.6		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Chrysene	0.88		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Benzo[b]fluoranthene	3.1		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Benzo[k]fluoranthene	3.0		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Benzo[a]pyrene	1.7		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Indeno[1,2,3-cd]pyrene	0.77		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Benzo[g,h,i]perylene	0.81		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
2-Methylnaphthalene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Dibenz(a,h)anthracene	ND		0.33		mg/Kg		05/26/15 23:13	05/28/15 07:02	5
Surrogate %Reco	overy	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	81	·	21_98				05/26/15 23:13	05/28/15 07:02	5
2-Fluorobiphenyl	71		30 - 112				05/26/15 23:13	05/28/15 07:02	5
Terphenyl-d14	89		32 - 117				05/26/15 23:13	05/28/15 07:02	5
T	SEP	(GC/MS)							
Method: Organotins - Organotins, PS									
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	quanner	RL.	NUDE	Unit		Flepaleu	Analyzeu	Dirrac
Dibutyltin	66		1.0		ug/Kg		05/24/15 18:29	05/28/15 04:26	1
Monobutyltin	ND	*	1.0 UJ		ug/Kg		05/24/15 18:29	05/28/15 04:26	1
Tetra-n-butyltin	ND		2.7		ug/Kg		05/24/15 18:29	05/28/15 04:26	1
Tributyltin	130		1.0		ug/Kg		05/24/15 18:29	05/28/15 04:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	67		20 - 151				05/24/15 18:29	05/28/15 04:26	1
Method: 8015B - Diesel Range	• Organics ((DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	300		5.0		mg/Kg		05/26/15 16:23	05/28/15 11:23	5
Motor Oil Range Organics [C24-C36]	630		250		mg/Kg		05/26/15 16:23	05/28/15 11:23	5
		0 117	1				0	Antological	01 5.4

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	0	XD	40 - 130	05/26/15 16:23	05/28/15 11:23	5

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	500	ug/Kg		05/26/15 13:18	05/27/15 10:49	10
PCB-1221	ND	500	ug/Kg		05/26/15 13:18	05/27/15 10:49	10
PCB-1232	ND	500	ug/Kg		05/26/15 13:18	05/27/15 10:49	10
PCB-1242	ND	500	ug/Kg		05/26/15 13:18	05/27/15 10:49	10
PCB-1248	1600	500	ug/Kg		05/26/15 13:18	05/27/15 10:49	10
PCB-1254	ND	500	ug/Kg		05/26/15 13:18	05/27/15 10:49	10
PCB-1260	ND	500	ug/Kg		05/26/15 13:18	05/27/15 10:49	10

Lab Sample ID: 720-64901-16 Matrix: Solid

Client Sample ID: SS-8-1' Date Collected: 05/19/15 09:51 Date Received: 05/19/15 15:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	89		45 - 132				05/26/15 13:18	05/27/15 10:49	10
DCB Decachlorobiphenyl	123		42_146				05/26/15 13:18	05/27/15 10:49	10
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MÐL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.6		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Arsenic	24		3,2		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Barium	96		1.6		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Beryllium	ND		0.32		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Cadmium	0.43		0.40		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Chromium	85		1.6		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Cobalt	10		0.64		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Соррег	1200		4.8		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Lead	600		1.6		mg/Kg		05/26/15 20:54	05/28/15 17:28	4
Molybdenum	3.4		1.6		mg/Kg		05/26/15 20:54	05/28/15 17:28	4
Nickel	62		1,6		mg/Kg		05/26/15 20:54	05/28/15 17:28	4
Selenium	ND		3.2		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Silver	ND		0.80		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Thallium	NĎ		1.6		mg/Kg		05/26/15 20:54	05/28/15 17:28	4
Vanadium	30		1.6		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Zinc	440		4.8		mg/Kg		05/26/15 20:54	05/28/15 02:36	4
Method: 7471A - Mercury (CVA	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	10		0.85		mg/Kg	- 7	05/26/15 20:56	05/27/15 17:45	100

Client Sample ID: SS-9-0.5' Date Collected: 05/19/15 10:26

Date Received: 05/19/15 15:00

Lab	Sample	ID:	720-64901-17
	-		Matrix: Solid

nalyte		mpounds (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
laphthalene	ND	0	0.67		mg/Kg	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	05/26/15 23:13	05/28/15 07:24	5
Acenaphthylene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
cenaphthene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
luorene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Phenanthrene	0.72		0,67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Anthracene	ND		0,67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Fluoranthene	1.4		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
^o yrene	1.3		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Benzo[a]anthracene	ND		3.3		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Chrysene	0.75		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Benzo[b]fluoranthene	0.88		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Benzo[k]fluoranthene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Benzo[a]pyrene	ND		0,67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
ndeno[1,2,3-cd]pyrene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Benzo[g,h,i]perylene	ND		0_67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
2-Methylnaphthalene	ND		0.67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Dibenz(a,h)anthracene	ND		0_67		mg/Kg		05/26/15 23:13	05/28/15 07:24	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
litrobenzene-d5	71		21-98				•	05/28/15 07:24	5
2-Fluorobiphenyl	59		30 - 112					05/28/15 07:24	5
Terphenyl-d14	78		32 - 117					05/28/15 07:24	5
etra-n-butyltin	150		2.7		ug/Kg		05/24/15 18:29	05/28/15 04:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	60	3 <u></u>	20 - 151				05/24/15 18:29	05/28/15 04:49	1
							December of	An obvious d	0// 5
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Surrogate Tripentyltin Method: Organotins - Organot	%Recovery 45 tins, PSEP	Qualifier	Limits 20 - 151	MDL	Unit	D	Prepared 05/24/15 18:29 Prepared	Analyzed 05/28/15 12:47 Analyzed	Dil Fac 5 Dil Fac
Surrogate Tripentyltin Method: Organotins - Organot Analyte	%Recovery 45 tins, PSEP	Qualifier (GC/MS) - [Limits 20 - 151	MDL	Unit ug/Kg	D	05/24/15 18:29	05/28/15 12:47	5
Surrogate Tripentyltin Method: Organotins - Organot Analyte Monobutyltin	%Recovery 45 tins, PSEP Result 3900	Qualifier (GC/MS) - [Qualifier	Limits 20-151 DL2 RL 50	MDL		D	05/24/15 18:29 Prepared	05/28/15 12:47 Analyzed	5 Dil Fac
Surrogate Tripentyltin Method: Organotins - Organot Analyte Monobutyltin Method: Organotins - Organot	%Recovery 45 tins, PSEP Result 3900 tins, PSEP	Qualifier (GC/MS) - [Qualifier	Limits 20-151 DL2 RL 50	MDL	ug/Kg	D	05/24/15 18:29 Prepared	05/28/15 12:47 Analyzed	5 Dil Fac
Surrogate Tripentyltin Method: Organotins - Organot Analyte Monobutyltin Method: Organotins - Organot Analyte	%Recovery 45 tins, PSEP Result 3900 tins, PSEP	Qualifier (GC/MS) - [Qualifier * (GC/MS) - [Limits 20-151 DL2 RL 50 DL3	2	ug/Kg		05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 12:47 Analyzed 05/28/15 13:10	5 Dil Fac 50
Surrogate Tripentyltin Method: Organotins - Organot Analyte Monobutyltin Method: Organotins - Organot Analyte Dibutyltin	%Recovery 45 tins, PSEP Result 3900 tins, PSEP Result	Qualifier (GC/MS) - [Qualifier * (GC/MS) - [Limits 20-151 DL2 RL 50 DL3 RL	2	ug/Kg Unit		05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 12:47 Analyzed 05/28/15 13:10 Analyzed	Dil Fac 50 Dil Fac
Surrogate Tripentyltin Method: Organotins - Organot Analyte Monobutyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Method: 8015B - Diesel Range	%Recovery 45 tins, PSEP Result 3900 tins, PSEP Result 16000 13000 e Organics	Qualifier (GC/MS) - I Qualifier * (GC/MS) - I Qualifier	Limits 20-151 DL2 RL 50 DL3 RL 250 250	2	ug/Kg Unit ug/Kg ug/Kg		05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 12:47 Analyzed 05/28/15 13:10 Analyzed 05/28/15 15:05	5 Dil Fac 50 Dil Fac 250
Surrogate Tripentyltin Method: Organotins - Organot Analyte Monobutyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Method: 8015B - Diesel Range Analyte	%Recovery 45 tins, PSEP Result 3900 tins, PSEP Result 16000 13000 e Organics	Qualifier (GC/MS) - [Qualifier * (GC/MS) - [Qualifier (DRO) (GC)	Limits 20-151 DL2 RL 50 DL3 RL 250 250	MDL	ug/Kg Unit ug/Kg ug/Kg	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29	05/28/15 12:47 Analyzed 05/28/15 13:10 Analyzed 05/28/15 15:05 05/28/15 15:05 Analyzed	5 Dil Fac 50 Dil Fac 250 250
Surrogate Tripentyltin Method: Organotins - Organot Analyte Monobutyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics	%Recovery 45 tins, PSEP Result 3900 tins, PSEP Result 16000 13000 e Organics Result	Qualifier (GC/MS) - [Qualifier * (GC/MS) - [Qualifier (DRO) (GC)	Limits 20-151 DL2 RL 50 DL3 RL 250 250 RL	MDL	ug/Kg Unit ug/Kg ug/Kg Unit	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared 05/26/15 16:23	05/28/15 12:47 Analyzed 05/28/15 13:10 Analyzed 05/28/15 15:05 05/28/15 15:05 Analyzed	5 Dil Fac 50 Dil Fac 250 250 Dil Fac
Method: Organotins - Organot Surrogate Tripentyltin Method: Organotins - Organot Analyte Monobutyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate	%Recovery 45 tins, PSEP Result 3900 tins, PSEP Result 16000 13000 e Organics Result 600 1100 %Recovery	Qualifier (GC/MS) - [Qualifier * (GC/MS) - [Qualifier (DRO) (GC) Qualifier	Limits 20-151 DL2 RL 50 DL3 RL 250 250 250 0 RL 9.9	MDL	Unit ug/Kg ug/Kg Unit mg/Kg	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared 05/26/15 16:23	05/28/15 12:47 Analyzed 05/28/15 13:10 Analyzed 05/28/15 15:05 05/28/15 15:05 Analyzed 05/28/15 11:47	5 Dil Fac 250 250 Dil Fac 10

Client Sample Results

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
CB-1016	ND		490		ug/Kg		05/26/15 13:18	05/27/15 11:06	10
CB-1221	ND		490		ug/Kg		05/26/15 13:18	05/27/15 11:06	10
PCB-1232	ND		490		ug/Kg		05/26/15 13:18	05/27/15 11:06	10
PCB-1242	ND		490		ug/Kg		05/26/15 13:18	05/27/15 11:06	10
PCB-1248	2500		490		ug/Kg		05/26/15 13:18	05/27/15 11:06	10
PCB-1254	ND		490		ug/Kg		05/26/15 13:18	05/27/15 11:06	10
PCB-1260	ND		490		ug/Kg		05/26/15 13:18	05/27/15 11:06	10
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
etrachloro-m-xylene	0	XD	45 - 132				05/26/15 13:18	05/27/15 11:06	10
CB Decachlorobiphenyl	0	ХD	42 - 146				05/26/15 13:18	05/27/15 11:06	10
Method: 6010B - Metals (ICP)									
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ntimony	ND		2.8		mg/Kg		05/26/15 20:54	05/28/15 17:47	10
Arsenic	38		2.2		mg/Kg		05/26/15 20:54	05/28/15 02:41	4
Barium	120		1,1		mg/Kg		05/26/15 20:54	05/28/15 02:41	4
Beryllium	ND		0.22		mg/Kg		05/26/15 20:54	05/28/15 02:41	4
Cadmium	1.4		0.28		mg/Kg		05/26/15 20:54	05/28/15 02:41	4
Chromium	110		1.1		mg/Kg		05/26/15 20:54	05/28/15 02:41	4
Cobalt	14		0.45		mg/Kg		05/26/15 20:54	05/28/15 02:41	4
Copper	27000		42		mg/Kg		05/26/15 20:54	05/28/15 17:52	50
_ead	480		2.8		mg/Kg		05/26/15 20:54	05/28/15 17:47	10
Molybdenum	10		2,8		mg/Kg		05/26/15 20:54	05/28/15 17:47	10
Nickel	93		2,8		mg/Kg		05/26/15 20:54	05/28/15 17:47	10
Selenium	ND		2.2		mg/Kg		05/26/15 20:54	05/28/15 02:41	4
Silver	0.94		0.56		mg/Kg		05/26/15 20:54	05/28/15 02:41	4
hallium	ND		2.8		mg/Kg		05/26/15 20:54	05/28/15 17:47	10
/anadium	24		1.1		mg/Kg		05/26/15 20:54	05/28/15 02:41	4
Zinc	4000		42		mg/Kg		05/26/15 20:54	05/28/15 17:52	50
Method: 7471A - Mercury (CV	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	10	3	0.91		mg/Kg		05/26/15 20:56	05/27/15 17:48	100

Lab Sample ID: 720-64901-18 Matrix: Solid

Method: 8270C - Semivolatile C			•			_	B	Annals and	D11 5
Analyte		Qualifier		MDL		D	Prepared	Analyzed	Dil Fac
laphthalene	ND		0.66		mg/Kg			05/28/15 14:50	10
Acenaphthylene	ND		0.66		mg/Kg		05/27/15 09:39		10
Acenaphthene	ND		0.66		mg/Kg		05/27/15 09:39		10
Fluorene	ND		0.66		mg/Kg		05/27/15 09:39		10
Phenanthrene	1.1		0.66		mg/Kg		05/27/15 09:39		10
Anthracene	ND		0.66		mg/Kg		05/27/15 09:39		10
Fluoranthene	3.0		0.66		mg/Kg		05/27/15 09:39		10
Pyrene	3.2		0,66		mg/Kg		05/27/15 09:39		10
Benzo[a]anthracene	ND		3.3		mg/Kg		05/27/15 09:39	05/28/15 14:50	10
Chrysene	1.1		0.66		mg/Kg		05/27/15 09:39	05/28/15 14:50	10
Benzo[b]fluoranthene	1.1		0.66		mg/Kg		05/27/15 09:39	05/28/15 14:50	10
Benzo[k]fluoranthene	ND		0.66		mg/Kg		05/27/15 09:39	05/28/15 14:50	10
Benzo[a]pyrene	0.80		0.66		mg/Kg		05/27/15 09:39	05/28/15 14:50	10
ndeno[1,2,3-cd]pyrene	ND		0,66		mg/Kg		05/27/15 09:39	05/28/15 14:50	10
Benzo[g,h,i]perylene	ND		0.66		mg/Kg		05/27/15 09:39	05/28/15 14:50	10
2-Methylnaphthalene	ND		0_66		mg/Kg		05/27/15 09:39	05/28/15 14:50	10
Dibenz(a,h)anthracene	ND		0.66		mg/Kg		05/27/15 09:39	05/28/15 14:50	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Vitrobenzene-d5	48		21 - 98				05/27/15 09:39	05/28/15 14:50	10
2-Fluorobiphenyl	51		30-112				05/27/15 09:39	05/28/15 14:50	10
Terphenyl-d14	71		32 - 117				05/27/15 09:39	05/28/15 14:50	10
Method: Organotins - Organoti	ns, PSEP ((GC/MS)							
Analyte		Qualifier	RL	MDL.	Unit	D	Prepared	Analyzed	Dil Fac
MonobutyItin	94	· J	1.0		ug/Kg		05/24/15 18:29	05/28/15 05:11	1
Tetra-n-butyltin	27		2.7		ug/Kg		05/24/15 18:29	05/28/15 05:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	62		20 - 151				05/24/15 18:29	05/28/15 05:11	1
Method: Organotins - Organoti	ns, PSEP	(GC/MS) -	DL						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	670		10		ug/Kg		05/24/15 18:29	05/28/15 13:33	10
TributyItin	980		10		ug/Kg		05/24/15 18:29	05/28/15 13:33	10
			10		0 0				
Surrogate	%Recovery	Qualifier	Limits		0 0		Prepared	Analyzed	Dil Fac
Surrogate Tripentyltin		Qualifier			0 0			Analyzed 05/28/15 13:33	Dil Fac 10
Tripentyltin	%Recovery 69		Limits 20 - 151						
Tripentyltin Method: 8015B - Diesel Range	%Recovery 69 Organics		Limits 20 - 151	MDL	Unit	D			
Tripentyltin Method: 8015B - Diesel Range Analyte	%Recovery 69 Organics Result	(DRO) (GC	Limits 20 - 151	MDL		D	05/24/15 18:29	05/28/15 13:33 Analyzed	10
Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28]	%Recovery 69 Organics Result 780	(DRO) (GC	Limits 20 - 151) RL	MDL	Unit mg/Kg	D	05/24/15 18:29 Prepared 05/26/15 16:23	05/28/15 13:33 Analyzed	10 Dil Fac
Tripentyltin Method: 8015B - Diesel Range Analyte	%Recovery 69 Organics Result	(DRO) (GC	Limits 20-151) RL 20	MDL	Unit	D	05/24/15 18:29 Prepared 05/26/15 16:23	05/28/15 13:33 Analyzed 05/28/15 12:11	10 Dil Fac 20
Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate	%Recovery 69 Organics Result 780 1800 %Recovery	(DRO) (GC Qualifier Qualifier	Limits 20 - 151) RL 20 990 Limits	MDL	Unit mg/Kg	D	05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23 Prepared	05/28/15 13:33 Analyzed 05/28/15 12:11 05/28/15 12:11 Analyzed	10 Dil Fac 20 20 Dil Fac
Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics	%Recovery 69 Organics Result 780 1800 %Recovery	(DRO) (GC Qualifier	Limits 20-151) RL 20 990	MDL	Unit mg/Kg	D	05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23 Prepared	05/28/15 13:33 Analyzed 05/28/15 12:11 05/28/15 12:11	10 Dil Fac 20 20
Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate	%Recovery 69 Organics Result 780 1800 %Recovery 0	(DRO) (GC Qualifier Qualifier	<u>Limits</u> 20 - 151) <u>RL</u> 20 990 <u>Limits</u> 40 - 130		Unit mg/Kg mg/Kg	D	05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23 Prepared	05/28/15 13:33 Analyzed 05/28/15 12:11 05/28/15 12:11 Analyzed	10 Dil Fac 20 20 Dil Fac

TestAmerica Pleasanton

5/29/2015

TestAmerica Job ID: 720-64901-1

Client Sample ID: SS-9-1' Date Collected: 05/19/15 10:20 Date Received: 05/19/15 15:00

Lab Sample I	D:	720-64901-18
		Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	ND	-	2500		ug/Kg		05/26/15 13:18	05/27/15 11:22	50
PCB-1232	ND		2500		ug/Kg		05/26/15 13:18	05/27/15 11:22	50
PCB-1242	ND		2500		ug/Kg		05/26/15 13:18	05/27/15 11:22	50
PCB-1248	8900		2500		ug/Kg		05/26/15 13:18	05/27/15 11:22	50
PCB-1254	ND		2500		ug/Kg		05/26/15 13:18	05/27/15 11:22	50
PCB-1260	ND		2500		ug/Kg		05/26/15 13:18	05/27/15 11:22	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	0	XD	45 - 132				05/26/15 13:18	05/27/15 11:22	50
DCB Decachlorobiphenyl	0	ХD	42 - 146				05/26/15 13:18	05/27/15 11:22	50
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1,1		mg/Kg		05/26/15 20:54	05/28/15 02:46	4
			0.0				05/00/45 00.54	05/00/45 00:40	

Antimony	ND	1,1		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Arsenic	75	2.3		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Barium	110	1.1		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Beryllium	ND	0.23		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Cadmium	0.86	0.29		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Chromium	140	1.1		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Cobalt	21	0.46		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Copper	2400	3.4		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Lead	540	1.1		mg/Kg	05/26/15 20:54	05/28/15 17:33	4
Molybdenum	1.4	1.1		mg/Kg	05/26/15 20:54	05/28/15 17:33	4
Nickel	360	1.1		mg/Kg	05/26/15 20:54	05/28/15 17:33	4
Selenium	ND	2.3		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Silver	ND	0.57		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Thallium	NĎ	1.1		mg/Kg	05/26/15 20:54	05/28/15 17:33	4
Vanadium	26	1,1		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Zinc	540	3.4		mg/Kg	05/26/15 20:54	05/28/15 02:46	4
Method: 7471A - Mercur	V (CVAA)						
Analyte	Result	Qualifier RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Mercury	23	0.91		mg/Kg	05/26/15 20:56	05/27/15 17:50	100

Lab Sample ID: 720-64901-19 Matrix: Solid

Client Sample ID: SS-10-0.5' Date Collected: 05/19/15 10:10 Date Received: 05/19/15 15:00

Method: 8270C - Semivolatile Analyte		mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Acenaphthylene	ND		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Acenaphthene	ND		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Fluorene	ND		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Phenanthrene	0.066		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Anthracene	ND		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Fluoranthene	0.10		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Pyrene	0.16		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Benzo[a]anthracene	ND		0.33		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Chrysene	0.069		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Benzo[b]fluoranthene	0.093		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Benzo[k]fluoranthene	ND		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Benzo[a]pyrene	0.072		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Indeno[1,2,3-cd]pyrene	ND		0,066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Benzo[g,h,i]perylene	ND		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
2-Methylnaphthalene	ND		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	- 1
Dibenz(a,h)anthracene	ND		0.066		mg/Kg		05/27/15 09:39	05/28/15 15:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	57		21 - 98				05/27/15 09:39	05/28/15 15:11	1
2-Fluorobiphenyl	66		30 - 112					05/28/15 15:11	1
Terphenyl-d14	134	Х	32 - 117				05/27/15 09:39	05/28/15 15:11	1
Method: Organotins - Organot									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DibutyItin	110		1.1		ug/Kg		05/24/15 18:29		1
Monobutyltin	29	* T	1,1		ug/Kg			05/28/15 05:34	1
Tetra-n-butyltin	ND		2,9		ug/Kg			05/28/15 05:34	1
Tributyltin	130		1.1		ug/Kg		05/24/15 18:29	05/28/15 05:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	63		20 - 151				05/24/15 18:29	05/28/15 05:34	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	39	0.99		mg/Kg		05/26/15 16:23	05/28/15 10:59	1
Motor Oil Range Organics [C24-C36]	78	49		mg/Kg		05/26/15 16:23	05/28/15 10:59	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	79	40 - 130	05/26/15 16:23	05/28/15 10:59	1

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
PCB-1016	ND	99	ug/Kg	05/26/15 13:18	05/27/15 11:06	2
PCB-1221	ND	99	ug/Kg	05/26/15 13:18	05/27/15 11:06	2
PCB-1232	ND	- 99	ug/Kg	05/26/15 13:18	05/27/15 11:06	2
PCB-1242	ND	99	ug/Kg	05/26/15 13:18	05/27/15 11:06	2
PCB-1248	ND	99	ug/Kg	05/26/15 13:18	05/27/15 11:06	2
PCB-1254	ND	99	ug/Kg	05/26/15 13:18	05/27/15 11:06	2
PCB-1260	360 🚽	99	ug/Kg	05/26/15 13:18	05/27/15 11:06	2

Matrix: Solid

Lab Sample ID: 720-64901-19

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Client Sample ID: SS-10-0.5' Date Collected: 05/19/15 10:10 Date Received: 05/19/15 15:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69		45 - 132				05/26/15 13:18	05/27/15 11:06	2
DCB Decachlorobiphenyl	83		42 - 146				05/26/15 13:18	05/27/15 11:06	2
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.45		mg/Kg		05/26/15 20:54	05/28/15 17:57	1
Arsenic	8.2		3,6		mg/Kg		05/26/15 20:54	05/28/15 02:50	4
Barium	36		1.8		mg/Kg		05/26/15 20:54	05/28/15 02:50	4
Beryllium	ND		0.090		mg/Kg		05/26/15 20:54	05/28/15 17:57	1
Cadmium	0.20		0.11		mg/Kg		05/26/15 20:54	05/28/15 17:57	1
Chromium	56		1.8		mg/Kg		05/26/15 20:54	05/28/15 02:50	4
Cobalt	6.4		0.72		mg/Kg		05/26/15 20:54	05/28/15 02:50	4
Copper	310		5.4		mg/Kg		05/26/15 20:54	05/28/15 02:50	4
_ead	41		0.45		mg/Kg		05/26/15 20:54	05/28/15 17:57	1
Molybdenum	0.78		0.45		mg/Kg		05/26/15 20:54	05/28/15 17:57	1
Nickel	42		0.45		mg/Kg		05/26/15 20:54	05/28/15 17:57	1
Selenium	ND		0,90		mg/Kg		05/26/15 20:54	05/28/15 17:57	1
Silver	ND		0.23		mg/Kg		05/26/15 20:54	05/28/15 17:57	1 1
Fhallium	ND		0.45		mg/Kg		05/26/15 20:54	05/28/15 17:57	1
Vanadium	32		1.8		mg/Kg		05/26/15 20:54	05/28/15 02:50	4
Zinc	170		5.4		mg/Kg		05/26/15 20:54	05/28/15 02:50	4
Method: 7471A - Mercury (CV/	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	2.4		0.087		mg/Kg		05/26/15 20:56	05/27/15 17:52	10

Lab Sample ID: 720-64901-20 Matrix: Solid

Client Sample ID: SS-10-1' Date Collected: 05/19/15 10:14 Date Received: 05/19/15 15:00

		mpounds Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Naphthalene	ND	Quanner	0.13	MIDL	mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Acenaphthylene	ND		0.13		mg/Kg		05/27/15 09:39		2
Acenaphthene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Fluorene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Phenanthrene	ND		0.13				05/27/15 09:39	05/28/15 15:33	2
					mg/Kg mg/Kg		05/27/15 09:39	05/28/15 15:33	2
	ND		0.13		mg/Kg				2
Fluoranthene	0.20		0.13		mg/Kg		05/27/15 09:39		
Pyrene	0.43		0.13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Benzo[a]anthracene	ND		0.65		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Chrysene	0.13		0.13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Benzo[b]fluoranthene	0.21		0,13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Benzo[k]fluoranthene	ND		0,13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Benzo[a]pyrene	0.16		0.13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Indeno[1,2,3-cd]pyrene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Benzo[g,h,i]perylene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
2-Methylnaphthalene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Dibenz(a,h)anthracene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 15:33	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	66		21 - 98				05/27/15 09:39	05/28/15 15:33	2
2-Fluorobiphenyl	68		30 - 112				05/27/15 09:39	05/28/15 15:33	2
Terphenyl-d14	121	X	32 - 117				05/27/15 09:39	05/28/15 15:33	2
Method: Organotins - Organot Analyte		Qualifier	RL	MDL	Linit	D	Prepared	Analyzed	Dil Fac
	50	. 5	1.0		ug/Kg		05/24/15 18:29	05/28/15 05:57	1
Monobutyltin	50 40	· J							1
Monobutyltin Tetra-n-butyltin Surrogate		·J	1.0		ug/Kg		05/24/15 18:29	05/28/15 05:57	Dil Fac
Monobutyltin Tetra-n-butyltin S <i>urrogat</i> e	40	·J	1.0 2.7		ug/Kg		05/24/15 18:29 05/24/15 18:29	05/28/15 05:57 05/28/15 05:57	1 1 Dil Fac
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin	40 %Recovery 42	Gualifier	1.0 2.7 <u>Limits</u> 20 - 151		ug/Kg		05/24/15 18:29 05/24/15 18:29 Prepared	05/28/15 05:57 05/28/15 05:57 Analyzed	1 1 Dil Fac
Monobutyltin Tetra-n-butyltin <i>Surrogate Tripentyltin</i> Method: Organotins - Organot	40 %Recovery 42 tins, PSEP	Gualifier	1.0 2.7 <u>Limits</u> 20 - 151		ug/Kg	D	05/24/15 18:29 05/24/15 18:29 Prepared	05/28/15 05:57 05/28/15 05:57 Analyzed	1 1 Dil Fac
Monobutyltin Tetra-n-butyltin <i>Surrogate Tripentyltin</i> Method: Organotins - Organot Analyte	40 %Recovery 42 tins, PSEP	Qualifier (GC/MS) -	1.0 2.7 <u>Limits</u> 20 - 151 DL		ug/Kg ug/Kg		05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57	
Monobutyltin Tetra-n-butyltin <i>Surrogate Tripentyltin</i> Method: Organotins - Organot Analyte Dibutyltin	40 %Recovery 42 tins, PSEP Result	Qualifier (GC/MS) - Qualifier	1.0 2.7 <u>Limits</u> 20 - 151 DL RL		ug/Kg ug/Kg Unit		05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed	1 Dil Fac Dil Fac
Monobutyltin Tetra-n-butyltin	40 %Recovery 42 tins, PSEP Result 260	Qualifier (GC/MS) - Qualifier	1.0 2.7 <u>Limits</u> 20 - 151 DL <u>RL</u> 10		ug/Kg ug/Kg Unit ug/Kg		05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56	1 Dil Fac 1 Dil Fac 10 10
Monobutyltin Tetra-n-butyltin <i>Surrogate Tripentyltin</i> Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate	40 %Recovery 42 tins, PSEP Result 260 780	Qualifier (GC/MS) - Qualifier	1.0 2.7 <u>Limits</u> 20-151 DL RL 10 10		ug/Kg ug/Kg Unit ug/Kg		05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 05/28/15 13:56	1 Dil Fac Dil Fac 10 10 Dil Fac
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate Tripentyltin	40 %Recovery 42 tins, PSEP Result 260 780 %Recovery 33	Qualifier (GC/MS) - Qualifier Qualifier	1.0 2.7 <u>Limits</u> 20-151 DL 10 10 Limits 20-151		ug/Kg ug/Kg Unit ug/Kg		05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 05/28/15 13:56 Analyzed	1 Dil Fac
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range	40 %Recovery 42 tins, PSEP Result 260 780 %Recovery 33 e Organics	Qualifier (GC/MS) - Qualifier Qualifier (DRO) (GC	$ \begin{array}{r} 1.0 \\ 2.7 \\ \underline{Limits} \\ 20 - 151 \\ \hline DL \\ \underline{RL} \\ 10 \\ 10 \\ 10 \\ \underline{Limits} \\ 20 - 151 \\ \hline $	MDL	ug/Kg ug/Kg Unit ug/Kg		05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 05/28/15 13:56 Analyzed 05/28/15 13:56	1 Dil Fac
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte	40 %Recovery 42 tins, PSEP Result 260 780 %Recovery 33 e Organics Result	Qualifier (GC/MS) - Qualifier Qualifier	1.0 2.7 <u>Limits</u> 20-151 DL 10 10 Limits 20-151	MDL	ug/Kg ug/Kg Unit ug/Kg ug/Kg	D	05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 Analyzed 05/28/15 13:56 Analyzed	1 Dil Fac 10 Dil Fac 10 10 Dil Fac 10 Dil Fac
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28]	40 %Recovery 42 tins, PSEP Result 260 780 %Recovery 33 e Organics Result 120	Qualifier (GC/MS) - Qualifier Qualifier (DRO) (GC	1.0 2.7 <u>Limits</u> 20-151 DL 10 10 <u>Limits</u> 20-151) RL 3.0	MDL	ug/Kg ug/Kg Unit ug/Kg ug/Kg Unit mg/Kg	D	05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 05/28/15 13:56 Analyzed 05/28/15 13:56	1 Dil Fac 10 Dil Fac 10 10 Dil Fac 10 Dil Fac 3
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics	40 %Recovery 42 tins, PSEP Result 260 780 %Recovery 33 e Organics Result	Qualifier (GC/MS) - Qualifier Qualifier (DRO) (GC	1.0 2.7 20-151 DL RL 10 10 10 <i>Limits</i> 20-151	MDL	ug/Kg ug/Kg Unit ug/Kg ug/Kg Unit	D	05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 Analyzed 05/28/15 13:56 Analyzed 05/28/15 13:56	1 Dil Fac 10 Dil Fac Dil Fac Dil Fac Dil Fac
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]	40 %Recovery 42 tins, PSEP Result 260 780 %Recovery 33 e Organics Result 120 230 %Recovery	Qualifier (GC/MS) - Qualifier <i>Qualifier</i> (DRO) (GC Qualifier	1.0 2.7 Limits 20-151 DL RL 10 10 Limits 20-151 C) RL 3.0 150 Limits	MDL	ug/Kg ug/Kg Unit ug/Kg ug/Kg Unit mg/Kg	D	05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 05/28/15 13:56 05/28/15 13:56 Analyzed 05/28/15 13:52 Analyzed 05/27/15 22:22 05/27/15 22:22	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate	40 %Recovery 42 tins, PSEP Result 260 780 %Recovery 33 e Organics Result 120 230	Qualifier (GC/MS) - Qualifier <i>Qualifier</i> (DRO) (GC Qualifier	1.0 2.7 Limits 20-151 DL RL 10 10 10 Limits 20-151	MDL	ug/Kg ug/Kg Unit ug/Kg ug/Kg Unit mg/Kg	D	05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 05/28/15 13:56 Analyzed 05/28/15 13:56 Analyzed 05/27/15 22:22 05/27/15 22:22	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate p-Terphenyl	40 %Recovery 42 tins, PSEP Result 260 780 %Recovery 33 c Organics Result 120 230 %Recovery 67	Qualifier (GC/MS) - Qualifier <i>Qualifier</i> (DRO) (GC Qualifier	$ \begin{array}{r} 1.0 \\ 2.7 \\ \hline Limits \\ 20 - 151 \\ \hline DL \\ RL \\ 10 \\ 10 \\ \hline Limits \\ 20 - 151 \\ \hline \end{array} $ $ \begin{array}{r} RL \\ 3.0 \\ 150 \\ \hline Limits \\ 40 - 130 \\ \hline \end{array} $	MDL	ug/Kg ug/Kg Unit ug/Kg ug/Kg Mg/Kg mg/Kg	D	05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 05/28/15 13:56 05/28/15 13:56 Analyzed 05/28/15 13:52 Analyzed 05/27/15 22:22 05/27/15 22:22	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Monobutyltin Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organot Analyte Dibutyltin Tributyltin Surrogate Tripentyltin	40 %Recovery 42 tins, PSEP Result 260 780 %Recovery 33 e Organics Result 120 230 %Recovery 67 ed Biphenyl	Qualifier (GC/MS) - Qualifier <i>Qualifier</i> (DRO) (GC Qualifier	$ \begin{array}{r} 1.0 \\ 2.7 \\ \hline Limits \\ 20 - 151 \\ \hline DL \\ RL \\ 10 \\ 10 \\ \hline Limits \\ 20 - 151 \\ \hline \end{array} $ $ \begin{array}{r} RL \\ 3.0 \\ 150 \\ \hline Limits \\ 40 - 130 \\ \hline \end{array} $	MDL	ug/Kg ug/Kg Unit ug/Kg ug/Kg Mg/Kg mg/Kg	D	05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23	05/28/15 05:57 05/28/15 05:57 Analyzed 05/28/15 05:57 Analyzed 05/28/15 13:56 05/28/15 13:56 05/28/15 13:56 Analyzed 05/28/15 13:52 Analyzed 05/27/15 22:22 05/27/15 22:22	1 <i>Dil Fac</i> 10 10 10 10 10 10 10 10 10

Project/Site: Blue Greenway 900 Innes Client Sample ID: SS-10-1'

Client: URS Corporation

Date Collected: 05/19/15 10:14 Date Received: 05/19/15 15:00

Lab Sample ID: 720-64901-20 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	ND		490		ug/Kg		05/26/15 13:18	05/27/15 11:22	10
PCB-1232	ND		490		ug/Kg		05/26/15 13:18	05/27/15 11:22	10
PCB-1242	ND		490		ug/Kg		05/26/15 13:18	05/27/15 11:22	10
PCB-1248	1500	す	490		ug/Kg		05/26/15 13:18	05/27/15 11:22	10
PCB-1254	ND		490	_	ug/Kg		05/26/15 13:18	05/27/15 11:22	10
PCB-1260	ND		490 U C		ug/Kg		05/26/15 13:18	05/27/15 11:22	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	0	XD	45 - 132				05/26/15 13:18	05/27/15 11:22	10
DCB Decachlorobiphenyl	0	ХD	42_146				05/26/15 13:18	05/27/15 11:22	10
Method: 6010B - Metals (I	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.3		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Arsenic	12		2,7		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Barium	35		1.3		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Beryllium	ND		0.27		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Cadmium	ND		0.33		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Chromium	62		1.3		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Cobalt	6.7		0.53		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Copper	840		4_0		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Lead	63		1.3		mg/Kg		05/26/15 20:54	05/28/15 18:02	4
Molybdenum	1.6		1_3		mg/Kg		05/26/15 20:54	05/28/15 18:02	4
Nickel	53		1.3		mg/Kg		05/26/15 20:54	05/28/15 18:02	4
Selenium	ND		2.7		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Silver	ND		0.67		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Thallium	ND		1.3		mg/Kg		05/26/15 20:54	05/28/15 18:02	4
Vanadium	29		1.3		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Zinc	240		4.0		mg/Kg		05/26/15 20:54	05/28/15 02:55	4
Method: 7471A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Lab Sample ID: 720-64901-21 Matrix: Solid

Client Sample ID: FD-1 Date Collected: 05/19/15 00:00 Date Received: 05/19/15 15:00

PCB-1254

PCB-1260

lethod: 8270C - Semivolatile						_			
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
laphthalene	ND)).	0.33	52	mg/Kg		05/27/15 09:39	05/28/15 15:54	5
cenaphthylene	ND		0.33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
cenaphthene	ND		0.33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
uorene	ND		0.33		mg/Kg			05/28/15 15:54	5
henanthrene	0.58		0.33		mg/Kg			05/28/15 15:54	5
nthracene	ND		0,33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
luoranthene	0.99		0.33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
yrene	1.2		0.33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
enzo[a]anthracene	ND		1.6		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
hrysene	0.80		0.33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
enzo[b]fluoranthene	1.1		0:33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
enzo[k]fluoranthene	0.47		0.33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
enzo[a]pyrene	0.83		0,33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
deno[1,2,3-cd]pyrene	0.49		0.33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
enzo[g,h,i]perylene	0.49		0,33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
Methylnaphthalene	ND		0,33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
benz(a,h)anthracene	ND		0,33		mg/Kg		05/27/15 09:39	05/28/15 15:54	5
irrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
							05/27/15 09:39	05/28/15 15:54	5
trobenzene-d5	65		21 - 98				00/2///000.00	00/20/10 /0.04	
	65 64		21 - 98 30 - 112				05/27/15 09:39	05/28/15 15:54	5
litrobenzene-d5 -Fluorobiphenyl erphenyl-d14		5					05/27/15 09:39		-
Fluorobiphenyl erphenyl-d14	64 90	(GC/MS)	30-112				05/27/15 09:39	05/28/15 15:54	5
Fluorobiphenyl erphenyl-d14 lethod: Organotins - Organo	64 90 tins, PSEP	(GC/MS) Qualifier	30-112	MDL	Unit	D	05/27/15 09:39	05/28/15 15:54	5
Fluorobiphenyl erphenyl-d14 lethod: Organotins - Organo nalyte	64 90 tins, PSEP		30 - 112 32 - 117	MDL	Unit ug/Kg	D	05/27/15 09:39 05/27/15 09:39	05/28/15 15:54 05/28/15 15:54	5
Fluorobiphenyl erphenyl-d14 lethod: Organotins - Organo nalyte ibutyltin	64 90 tins, PSEP Result	Qualifier	30 - 112 32 - 117 RL	MDL		D	05/27/15 09:39 05/27/15 09:39 Prepared	05/28/15 15:54 05/28/15 15:54 Analyzed	5 5 Dil Fac
Fluorobiphenyl	64 90 tins, PSEP Result 37	Qualifier	30 - 112 32 - 117 RL 1.0	MDL	ug/Kg	D	05/27/15 09:39 05/27/15 09:39 Prepared 05/24/15 18:29	05/28/15 15:54 05/28/15 15:54 Analyzed 05/28/15 10:53	5 5 Dil Fac 1
Fluorobiphenyl erphenyl-d14 lethod: Organotins - Organo nalyte ibutyltin onobutyltin etra-n-butyltin	64 90 tins, PSEP Result 37 12	Qualifier	30 - 112 32 - 117 RL 1.0 1.0	MDL	ug/Kg ug/Kg	D	05/27/15 09:39 05/27/15 09:39 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29	05/28/15 15:54 05/28/15 15:54 Analyzed 05/28/15 10:53 05/28/15 10:53	5 5 Dil Fac 1
Fluorobiphenyl erphenyl-d14 lethod: Organotins - Organo nalyte ibutyltin lonobutyltin	64 90 tins, PSEP Result 37 12 ND	Qualifier	30 - 112 32 - 117 RL 1.0 1.0 2.8	MDL	ug/Kg ug/Kg ug/Kg	D	05/27/15 09:39 05/27/15 09:39 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29	05/28/15 15:54 05/28/15 15:54 Analyzed 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53	5 5 Dil Fac 1 1
Fluorobiphenyl erphenyl-d14 lethod: Organotins - Organo nalyte ibutyltin onobutyltin etra-n-butyltin ributyltin	64 90 tins, PSEP Result 37 12 ND 89	Qualifier	30 - 112 32 - 117 RL 1.0 1.0 2.8 1.0	MDL	ug/Kg ug/Kg ug/Kg	D	05/27/15 09:39 05/27/15 09:39 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29	05/28/15 15:54 05/28/15 15:54 Analyzed 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53	5 5 Dil Fac 1 1 1 1
Fluorobiphenyl erphenyl-d14 lethod: Organotins - Organo nalyte ibutyltin onobutyltin etra-n-butyltin ributyltin urrogate ipentyltin	64 90 tins, PSEP Result 37 12 ND 89 %Recovery 29	Qualifier Gualifier	30 - 112 32 - 117 RL 1.0 1.0 2.8 1.0 Limits 20 - 151	MDL	ug/Kg ug/Kg ug/Kg	<u>D</u>	05/27/15 09:39 05/27/15 09:39 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared	05/28/15 15:54 05/28/15 15:54 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53	5 5 Dil Fac 1 1 1 1 0 <i>Il Fac</i>
Fluorobiphenyl erphenyl-d14 ethod: Organotins - Organo nalyte ibutyltin onobutyltin etra-n-butyltin ibutyltin urrogate ipentyltin ethod: 8015B - Diesel Range	64 90 tins, PSEP Result 37 12 ND 89 %Recovery 29 e Organics	Qualifier Gualifier	30 - 112 32 - 117 RL 1.0 1.0 2.8 1.0 Limits 20 - 151		ug/Kg ug/Kg ug/Kg	D	05/27/15 09:39 05/27/15 09:39 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared	05/28/15 15:54 05/28/15 15:54 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53	5 5 Dil Fac 1 1 1 1 0 <i>Il Fac</i>
Fluorobiphenyl erphenyl-d14 ethod: Organotins - Organo halyte butyltin onobutyltin etra-n-butyltin ibutyltin irrogate ipentyltin ethod: 8015B - Diesel Range halyte	64 90 tins, PSEP Result 37 12 ND 89 %Recovery 29 e Organics	Qualifier Qualifier (DRO) (GC)	30 - 112 32 - 117 RL 1.0 1.0 2.8 1.0 Limits 20 - 151		ug/Kg ug/Kg ug/Kg ug/Kg		05/27/15 09:39 05/27/15 09:39 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 15:54 05/28/15 15:54 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53	5 5 Dil Fac 1 1 1 1 1 1 <i>Dil Fac</i> 7
Fluorobiphenyl erphenyl-d14 lethod: Organotins - Organo nalyte ibutyltin lonobutyltin etra-n-butyltin ributyltin	64 90 tins, PSEP Result 37 12 ND 89 %Recovery 29 e Organics Result	Qualifier Qualifier (DRO) (GC)	30 - 112 32 - 117 RL 1.0 2.8 1.0 Limits 20 - 151 RL		ug/Kg ug/Kg ug/Kg ug/Kg Unit		05/27/15 09:39 05/27/15 09:39 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 15:54 05/28/15 15:54 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 Analyzed Analyzed	5 5 Dil Fac 1 1 1 1 1 <i>Dil Fac</i> 7 Dil Fac
Fluorobiphenyl erphenyl-d14 lethod: Organotins - Organo nalyte ibutyltin etra-n-butyltin etra-n-butyltin ributyltin urrogate ipentyltin lethod: 8015B - Diesel Range nalyte iesel Range Organics [C10-C28] otor Oil Range Organics	64 90 tins, PSEP Result 37 12 ND 89 %Recovery 29 e Organics Result 210	Qualifier Qualifier (DRO) (GC) Qualifier	30 - 112 32 - 117 RL 1.0 1.0 2.8 1.0 Limits 20 - 151 RL 3.0		ug/Kg ug/Kg ug/Kg ug/Kg Unit mg/Kg		05/27/15 09:39 05/27/15 09:39 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23	05/28/15 15:54 05/28/15 15:54 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 05/28/15 10:53 Analyzed 05/28/15 10:53	5 5 Dil Fac 1 1 1 1 1 <i>Dil Fac</i> 7 <i>Dil Fac</i> 3

TestAmerica Pleasanton

05/26/15 19:49 05/27/15 15:46

05/26/15 19:49 05/27/15 15:46

ug/Kg

ug/Kg

2500

2500

ND

7800 🥡

5/29/2015

50

Client Sample Results

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Client Sample ID: FD-1 Date Collected: 05/19/15 00:00 Date Received: 05/19/15 15:00

TestAmerica Pleasanton

Lab Sample ID: 720-64901-21 Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	0	XD	45 - 132				05/26/15 19:49	05/27/15 15:46	50
DCB Decachlorobiphenyl	0	ХD	42 - 146				05/26/15 19:49	05/27/15 15:46	50
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.7		mg/Kg		05/26/15 20:54	05/28/15 03:00	- 4
Arsenic	9.7		3.4		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Barium	140		1.7		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Beryllium	ND		0.34		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Cadmium	ND		0.42		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Chromium	82		1.7		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Cobalt	10		0.67		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Copper	540		5.0		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Lead	220		1.7		mg/Kg		05/26/15 20:54	05/28/15 20:05	4
Molybdenum	3.2		1.7		mg/Kg		05/26/15 20:54	05/28/15 20:05	4
Nickel	59		1.7		mg/Kg		05/26/15 20:54	05/28/15 20:05	4
Selenium	ND		3.4		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Silver	ND		0.84		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Thallium	ND		1.7		mg/Kg		05/26/15 20:54	05/28/15 20:05	4
Vanadium	34		1.7		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Zinc	350		5.0		mg/Kg		05/26/15 20:54	05/28/15 03:00	4
Method: 7471A - Mercury (CVA/	A)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	5.1		0.090		mg/Kg	_	05/26/15 20:56	05/27/15 17:57	10

Client Sample ID: FD-2 Date Collected: 05/19/15 00:00

Date Received: 05/19/15 15:00

Lab Sample ID: 720-64901-22 Matrix: Solid

Analyte	Organic Co Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Acenaphthylene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Acenaphthene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Fluorene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Phenanthrene	0.43		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Anthracene	0.13		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Fluoranthene	0.45		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Pyrene	0.75		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Benzo[a]anthracene	ND		0.65		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Chrysene	0.24		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	:
Benzo[b]fluoranthene	0.31		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Benzo[k]fluoranthene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Benzo[a]pyrene	0.21		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	:
Indeno[1,2,3-cd]pyrene	0.13		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Benzo[g,h,i]perylene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	2
2-Methylnaphthalene	ND		0.13		mg/Kg		05/27/15 09:39	05/28/15 16:16	:
Dibenz(a,h)anthracene	ND		0.13	2	mg/Kg		05/27/15 09:39	05/28/15 16:16	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	68		21-98				05/27/15 09:39	05/28/15 16:16	
2-Fluorobiphenyl	69		30-112				05/27/15 09:39	05/28/15 16:16	
Terphenyl-d14	113		32 - 117				05/27/15 09:39	05/28/15 16:16	
Analyte Monobutyltin	Result 78	Qualifier	RL	MDL	Unit	D	Prepared 05/24/15 18:29	Analyzed	Dil Fa
		4			ug/Kg			05/28/15 11:15	
Tetra-n-butyltin	19	Ť	2.7		ug/Kg ug/Kg			05/28/15 11:15	
	19 %Recovery						05/24/15 18:29 Prepared	05/28/15 11:15 Analyzed	Dil Fa
Surrogate			2.7				05/24/15 18:29	05/28/15 11:15 Analyzed	Dil Fa
Surrogate Tripentyltin	%Recovery 61	Qualifier	2.7 Limits 20 - 151				05/24/15 18:29 Prepared	05/28/15 11:15 Analyzed	Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte	%Recovery 61 tins, PSEP Result	Qualifier	2.7 <u>Limits</u> 20 - 151 DL RL	MDL	ug/Kg Unit	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared	05/28/15 11:15 <u>Analyzed</u> 05/28/15 11:15 Analyzed	Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte	%Recovery 61 tins, PSEP Result 330	Qualifier (GC/MS) - Qualifier	2.7 <u>Limits</u> <u>20 - 151</u> DL <u>RL</u> <u>5.0</u>	MDL	ug/Kg Unit ug/Kg	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38	Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin	%Recovery 61 tins, PSEP Result	Qualifier (GC/MS) - Qualifier	2.7 <u>Limits</u> 20 - 151 DL RL	MDL	ug/Kg Unit	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 11:15 <u>Analyzed</u> 05/28/15 11:15 Analyzed	Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Tributyltin	%Recovery 61 tins, PSEP Result 330 360 %Recovery	Qualifier (GC/MS) - Qualifier J	2.7 <u>Limits</u> <u>20 - 151</u> DL <u>RL</u> <u>5.0</u> <u>5.0</u> Limits	MDL	ug/Kg Unit ug/Kg	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed	Dil Fa Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Tributyltin Surrogate	%Recovery 61 tins, PSEP Result 330 360	Qualifier (GC/MS) - Qualifier J	2.7 <u>Limits</u> <u>20 - 151</u> DL <u>RL</u> <u>5.0</u> 5.0	MDL	ug/Kg Unit ug/Kg	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed	Dil Fa Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Tributyltin Surrogate Tripentyltin	%Recovery 61 tins, PSEP Result 330 360 %Recovery 51	Qualifier (GC/MS) - Qualifier J Qualifier	2.7 <u>Limits</u> 20 - 151 DL <u>RL</u> 5.0 5.0 <u>Limits</u> 20 - 151		ug/Kg Unit ug/Kg ug/Kg		05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed 05/28/15 11:38	Dil Fa Dil Fa Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte	%Recovery 61 tins, PSEP Result 330 360 %Recovery 51 e Organics Result	Qualifier (GC/MS) - Qualifier J Qualifier	2.7 <u>Limits</u> 20 - 151 DL RL 5.0 5.0 <u>Limits</u> 20 - 151) RL		ug/Kg Unit ug/Kg ug/Kg Unit	D	05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed 05/28/15 11:38	Dil Fa Dil Fa Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Fributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte	%Recovery 61 tins, PSEP Result 330 360 %Recovery 51 e Organics	Qualifier (GC/MS) - Qualifier J Qualifier (DRO) (GC	2.7 <u>Limits</u> 20 - 151 DL <u>RL</u> 5.0 5.0 <u>Limits</u> 20 - 151		ug/Kg Unit ug/Kg ug/Kg		05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed 05/28/15 11:38	Dil Fa Dil Fa Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Fributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics	%Recovery 61 tins, PSEP Result 330 360 %Recovery 51 e Organics Result	Qualifier (GC/MS) - Qualifier J Qualifier (DRO) (GC	2.7 <u>Limits</u> 20 - 151 DL RL 5.0 5.0 <u>Limits</u> 20 - 151) RL		ug/Kg Unit ug/Kg ug/Kg Unit		05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed 05/28/15 11:38	Dil Fa Dil Fa Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]	%Recovery 61 tins, PSEP Result 330 360 %Recovery 51 e Organics (Result 100	Qualifier (GC/MS) - Qualifier Qualifier (DRO) (GC Qualifier	2.7 <u>Limits</u> 20 - 151 DL <u>RL</u> 5.0 5.0 <u>Limits</u> 20 - 151 () <u>RL</u> 2.0		ug/Kg Unit ug/Kg ug/Kg Unit mg/Kg		05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed 05/28/15 11:38 Analyzed 05/28/15 11:38	Dil Fa Dil Fa Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate	%Recovery 61 tins, PSEP Result 330 360 %Recovery 51 Organics (Result 100 190	Qualifier (GC/MS) - Qualifier Qualifier (DRO) (GC Qualifier	2.7 <u>Limits</u> 20-151 DL RL 5.0 5.0 <u>Limits</u> 20-151) RL 2.0 99		ug/Kg Unit ug/Kg ug/Kg Unit mg/Kg		05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23 05/26/15 16:23	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed 05/28/15 11:38 Analyzed 05/28/15 11:56 05/27/15 19:56	Dil Fa Dil Fa Dil Fa
Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate p-Terphenyl	%Recovery 61 tins, PSEP Result 330 360 %Recovery 51 Organics (Result 100 190 %Recovery 51	Qualifier (GC/MS) - Qualifier Qualifier (DRO) (GC Qualifier Qualifier	2.7 Limits 20-151 DL RL 5.0 5.0 Limits 20-151 20 99 Limits 40-130	MDL	ug/Kg Unit ug/Kg ug/Kg Unit mg/Kg mg/Kg		05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23 05/26/15 16:23	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed 05/28/15 11:38 Analyzed 05/27/15 19:56 05/27/15 19:56	Dil Fa Dil Fa Dil Fa Dil Fa
Tetra-n-butyltin Surrogate Tripentyltin Method: Organotins - Organo Analyte Dibutyltin Tributyltin Surrogate Tripentyltin Method: 8015B - Diesel Range Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate o-Terphenyl Method: 8082 - Polychlorinate Analyte	%Recovery 61 tins, PSEP Result 330 360 %Recovery 51 Organics (Result 100 190 %Recovery 51	Qualifier (GC/MS) - Qualifier Qualifier (DRO) (GC Qualifier Qualifier	2.7 Limits 20-151 DL RL 5.0 5.0 Limits 20-151 20 99 Limits 40-130	MDL	ug/Kg Unit ug/Kg ug/Kg Unit mg/Kg mg/Kg		05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/24/15 18:29 05/24/15 18:29 Prepared 05/24/15 18:29 Prepared 05/26/15 16:23 05/26/15 16:23 05/26/15 16:23	05/28/15 11:15 Analyzed 05/28/15 11:15 Analyzed 05/28/15 11:38 05/28/15 11:38 Analyzed 05/28/15 11:38 Analyzed 05/27/15 19:56 05/27/15 19:56	Dil Fa Dil Fa Dil Fa Dil Fa

Client Sample ID: FD-2 Date Collected: 05/19/15 00:00 Date Received: 05/19/15 15:00

Project/Site: Blue Greenway 900 Innes

Client: URS Corporation

Lab Sample ID: 720-64901-22 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	ND		250		ug/Kg		05/26/15 19:49	05/27/15 16:20	ŧ
PCB-1232	ND		250		ug/Kg		05/26/15 19:49	05/27/15 16:20	ŧ
PCB-1242	ND		250		ug/Kg		05/26/15 19:49	05/27/15 16:20	ŧ
PCB-1248	ND		250 UJ		ug/Kg		05/26/15 19:49	05/27/15 16:20	5
PCB-1254	ND		250		ug/Kg		05/26/15 19:49	05/27/15 16:20	5
PCB-1260	870	J	250		ug/Kg		05/26/15 19:49	05/27/15 16:20	ŧ
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	98		45 - 132				05/26/15 19:49	05/27/15 16:20	
DCB Decachlorobiphenyl	120		42 - 146				05/26/15 19:49	05/27/15 16:20	ł
Method: 6010B - Metals (I	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.41		mg/Kg		05/26/15 20:54	05/28/15 18:11	
Arsenic	9.5		3.3		mg/Kg		05/26/15 20:54	05/28/15 03:14	4
Barium	38		1.6		mg/Kg		05/26/15 20:54	05/28/15 03:14	4
Beryllium	ND		0.082		mg/Kg		05/26/15 20:54	05/28/15 18:11	
Cadmium	0.28		0.10		mg/Kg		05/26/15 20:54	05/28/15 18:11	
Chromium	63		1.6		mg/Kg		05/26/15 20:54	05/28/15 03:14	4
Cobalt	7.2		0,66		mg/Kg		05/26/15 20:54	05/28/15 03:14	4
Copper	670		4.9		mg/Kg		05/26/15 20:54	05/28/15 03:14	4
Lead	60		0.41		mg/Kg		05/26/15 20:54	05/28/15 18:11	
Molybdenum	1.6		1.6		mg/Kg		05/26/15 20:54	05/28/15 03:14	4
Nickel	49		0_41		mg/Kg		05/26/15 20:54	05/28/15 18:11	
Selenium	ND		0.82		mg/Kg		05/26/15 20:54	05/28/15 18:11	
Silver	ND		0.20		mg/Kg		05/26/15 20:54	05/28/15 18:11	
Thallium	ND		0.41		mg/Kg		05/26/15 20:54	05/28/15 18:11	
Vanadium	29		1.6		mg/Kg		05/26/15 20:54	05/28/15 03:14	4
Zinc	260		4.9		mg/Kg		05/26/15 20:54	05/28/15 03:14	4
Method: 7471A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

FBP

(30-112)

71

69

52

56

61

62

73

64

52

58

57

59

66

72

63

71

59

51

66

68

64

69

85

74

71

89

88

76

135 X

NBZ

(21-98)

64

59

56

64

59

65

67

64

60

69

66

68

76

82

72

81

71

48

57

66

65

68

77

75

64

96

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Client Sample ID

SS-1-0.5'

SS-2-0.5'

SS-3-0.5'

SS-4-0.5'

SS-3-1'

SS-4-1'

SS-5-0.5'

SS-6-0.5'

SS-6-1'

SS-7-0.5'

SS-8-0.5

SS-9-0.5'

SS-10-0.5'

Lab Control Sample

Lab Control Sample

Method Blank

Method Blank

SS-10-1'

FD-1

FD-2

SS-9-1'

SS-8-1'

SS-7-1'

SS-5-1'

SS-2-1'

SS-1-1'

	A	0 -	12.41
ма	trix:	20	IIC.

Lab Sample ID

720-64901-1

720-64901-2

720-64901-3

720-64901-4

720-64901-5

720-64901-6

720-64901-7

720-64901-8

720-64901-9

720-64901-10

720-64901-11

720-64901-12

720-64901-13

720-64901-14 720-64901-15

720-64901-16

720-64901-17

720-64901-18

720-64901-19

720-64901-20

720-64901-21

720-64901-22

LCS 720-182401/2-A

LCS 720-182427/2-A

MB 720-182401/1-A

MB 720-182427/1-A

		TestAmerica Job ID: 720-64901-1	
iC.	/MS)	Prep Type: Total/NA	
Pe	ercent Surrogate Rec	covery (Acceptance Limits)	
	TPH		100
2)	(32-117)		5
-	70		
	70		
	76		-
	84		
	100		
	99		- Ci -
	108		
	77		
	90		
	82		
	(118 X) 113		
	106		
	111		
	100		
	89		
	78		
	71		
	134 X >		
	121 X		
	90		
	113		
	129 X		
	88		

Surr	nnat	<u>e e</u>	пеп	d

NBZ = Nitrobenzene-d5

FBP = 2-Fluorobiphenyl

TPH = Terphenyl-d14

Method: Organotins - Organotins, PSEP (GC/MS) Matrix: Solid

Prep Type: Total/NA

			Percent Surrogate Recov	very (Acceptance Limits)
		ТРТ		
Lab Sample ID	Client Sample ID	(20-151)		
720-64901-1	SS-1-0.5'	56		
720-64901-2	SS-1-1'	74		
720-64901-2 - DL	SS-1-1'	124		
720-64901-3	SS-2-0.5'	79		
720-64901-4	SS-2-1'	68		
720-64901-5	SS-3-0.5'	60		
720-64901-6	SS-3-1'	70		
720-64901-6 - DL	SS-3-1'	74		
720-64901-7	SS-4-0.5'	48		
720-64901-8	SS-4-1'	100		
720-64901-9	SS-5-0.5'	37		

Method: Organotins - Organotins, PSEP (GC/MS) (Continued) Matrix: Solid

Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		TPT	
Lab Sample ID	Client Sample ID	(20-151)	
720-64901-10	SS-5-1'	52	
720-64901-11	SS-6-0,5'	61	
720-64901-12	SS-6-1'	45	
720-64901-13	SS-7-0.5'	50	
720-64901-13 - DL	SS-7-0,5'	70	
720-64901-13 MS	SS-7-0.5'	65	
720-64901-13 MSD	SS-7-0.5'	58	
720-64901-14	SS-7-1'	33	
720-64901-15	SS-8-0.5'	41	
720-64901-16	SS-8-1'	67	
720-64901-17	SS-9-0.5'	60	
720-64901-17 - DL	SS-9-0.5'	45	
720-64901-18	SS-9-1'	62	
720-64901-18 - DL	SS-9-1'	69	
720-64901-19	SS-10-0.5'	63	
720-64901-20	SS-10-1'	42	
720-64901-20 - DL	SS-10-1'	33	
720-64901-21	FD-1	29	
720-64901-22	FD-2	61	
720-64901-22 - DL	FD-2	51	
LCS 580-190241/2-A	Lab Control Sample	70	
LCS 580-190247/2-A	Lab Control Sample	71	
LCSD 580-190241/3-A	Lab Control Sample Dup	88	
LCSD 580-190247/3-A	Lab Control Sample Dup	83	
MB 580-190241/1-A	Method Blank	71	
MB 580-190247/1-A	Method Blank	73	
Surrogate Legend			

TPT = Tripentyltin

Method: 8015B - Diesel Range Organics (DRO) (GC) Matrix: Solid

			Percent Surrogate Recovery (Acceptance Limits)
		PTP1	
_ab Sample ID	Client Sample ID	(40-130)	
20-64901-1	SS-1-0.5'	0 X D	
20-64901-2	SS-1-1'	0 X D	
20-64901-3	SS-2-0,5'	0 X D	
20-64901-4	SS-2-1'	0 X D	
20-64901-5	SS-3-0.5'	57	
20-64901-6	SS-3-1'	0 X	
20-64901-7	SS-4-0.5'	0 X	
20-64901-8	SS-4-1'	0 X D	
20-64901-9	SS-5-0.5'	111	
20-64901-10	SS-5-1'	55	
720-64901-11	SS-6-0,5'	57	
20-64901-12	SS-6-1'	88	
720-64901-13	SS-7-0.5'	0 X D	

TestAmerica Pleasanton

Prep Type: Total/NA

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid

Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		PTP1	
Lab Sample ID	Client Sample ID	(40-130)	
720-64901-14	SS-7-1'	0 X D	
720-64901-15	SS-8-0.5'	45	
720-64901-16	SS-8-1'	0 X D	
720-64901-17	SS-9-0.5'	0 X D	
720-64901-18	SS-9-1'	0 X D	
720-64901-19	SS-10-0.5'	79	
720-64901-20	SS-10-1'	67	
720-64901-21	FD-1	50	
720-64901-22	FD-2	51	
LCS 720-182263/2-A	Lab Control Sample	93	
LCS 720-182368/2-A	Lab Control Sample	111	
MB 720-182263/1-A	Method Blank	103	
MB 720-182368/1-A	Method Blank	103	
Surrogate Legend			
PTP = p-Terphenyl			

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) TCX1 DCB1 (45-132) (42-146) Lab Sample ID **Client Sample ID** 720-64901-1 SS-1-0.5' 70 70 720-64901-1 MS SS-1-0.5' 73 70 720-64901-1 MSD SS-1-0,5' 72 69 720-64901-2 SS-1-1' 69 70 SS-2-0.5' 720-64901-3 73 69 71 74 720-64901-4 SS-2-1' 71 720-64901-5 SS-3-0.5' 67 720-64901-6 SS-3-1' 72 93 70 77 720-64901-7 SS-4-0.5' 58 90 720-64901-8 SS-4-1' 75 69 720-64901-9 SS-5-0.5' 720-64901-10 SS-5-1' 70 75 720-64901-11 SS-6-0.5' 64 71 720-64901-12 SS-6-1' 71 79 77 71 720-64901-13 SS-7-0,5' 720-64901-14 SS-7-1' 0 X D 0 X D 720-64901-15 SS-8-0.5' 78 91 123 720-64901-16 SS-8-1' 89 720-64901-17 SS-9-0.5' 0 X D 0 X D 720-64901-18 0 X D 0 X D SS-9-1' 720-64901-19 SS-10-0.5 69 83 720-64901-20 SS-10-1' 0 X D 0 X D 720-64901-21 FD-1 0 X D 0 X D 720-64901-22 FD-2 98 120 LCS 720-182348/2-A Lab Control Sample 79 88 LCS 720-182388/2-A Lab Control Sample 95 106

TestAmerica Pleasanton

Prep Type: Total/NA

1

3 4

12

13

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued) Matrix: Solid Prep Type: Total/NA

			Per	cent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	TCX1 (45-132)	DCB1 (42-146)	
MB 720-182348/1-A	Method Blank	79	86	
MB 720-182388/1-A	Method Blank	87	102	
Surrogate Logand				

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

76

Lab Sample ID: MB 720-182401/1-A Matrix: Solid Analysis Batch: 182430

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 182401

Analysis Datch. 102450								гтер басси.	102401
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	0	0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Acenaphthylene	NÐ		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Acenaphthene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Fluorene	ND		0,067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Phenanthrene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Anthracene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Fluoranthene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Pyrene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Benzo[a]anthracene	ND		0.33		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Chrysene	ND		0.067		mg/Kġ		05/26/15 23:13	05/27/15 18:47	1
Benzo[b]fluoranthene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Benzo[k]fluoranthene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Benzo[a]pyrene	ND		0,067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Indeno[1,2,3-cd]pyrene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Benzo[g,h,i]perylene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
2-Methylnaphthalene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
Dibenz(a,h)anthracene	ND		0.067		mg/Kg		05/26/15 23:13	05/27/15 18:47	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	64		21 - 98				05/26/15 23:13	05/27/15 18:47	1
2-Fluorobiphenyl	71		30-112				05/26/15 23:13	05/27/15 18:47	1

32 - 117

Lab Sample ID: LCS 720-182401/2-A Matrix: Solid Analysis Batch: 182550

Terphenyl-d14

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 182401

05/26/15 23:13 05/27/15 18:47

Analysis Batch: 162550	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	1,33	1 10		mg/Kg		83	44 - 115
Acenaphthylene	1.33	1.09		mg/Kg		82	61 - 129
Acenaphthene	1.33	1,07		mg/Kg		80	50 - 115
Fluorene	1,33	1.19		mg/Kg		90	54 - 115
Phenanthrene	1.33	1.25		mg/Kg		94	54 ₋ 115
Anthracene	1.33	1.28		mg/Kg		96	55 - 115
Fluoranthene	1.33	1.23		mg/Kg		92	52 - 130
Pyrene	1,33	1.48		mg/Kg		111	48 - 115
Benzo[a]anthracene	1.33	1.16		mg/Kg		87	55 - 115
Chrysene	1.33	1.09		mg/Kg		82	58 - 115
Benzo[b]fluoranthene	1,33	1.24		mg/Kg		93	50 - 119
Benzo[k]fluoranthene	1.33	1.24		mg/Kg		93	55 - 120
Benzo[a]pyrene	1,33	1.29		mg/Kg		97	57 - 122
Indeno[1,2,3-cd]pyrene	1.33	1.32		mg/Kg		99	56 - 115
Benzo[g,h,i]perylene	1.33	1.24		mg/Kg		93	56 ₋ 115
2-Methylnaphthalene	1.33	1.11		mg/Kg		83	49 ₋ 115
Dibenz(a,h)anthracene	1.33	1.33		mg/Kg		100	57 - 121

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-182401/2-A **Matrix: Solid** Analysis Batch: 182550

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	77		21 - 98
2-Fluorobiphenyl	85		30 - 112
Terphenyl-d14	129	X	32 - 117

Lab Sample ID: MB 720-182427/1-A Matrix: Solid Analysis Batch: 182478

_	MB	MB							
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Acenaphthylene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Acenaphthene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Fluorene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Phenanthrene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Anthracene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Fluoranthene	ND		0,067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Pyrene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Benzo[a]anthracene	NÐ		0.33	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Chrysene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Benzo[b]fluoranthene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Benzo[k]fluoranthene	ND		0,067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Benzo[a]pyrene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Indeno[1,2,3-cd]pyrene	ND		0,067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Benzo[g,h,i]perylene	ND		0,067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
2-Methylnaphthalene	ND		0,067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
Dibenz(a,h)anthracene	ND		0.067	m	ng/Kg		05/27/15 09:39	05/27/15 23:51	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	96		21-98				05/27/15 09:39	05/27/15 23:51	1
2-Fluorobiphenyl	89		30-112				05/27/15 09:39	05/27/15 23:51	1
Terphenyl-d14	135	X	32-117				05/27/15 09:39	05/27/15 23:51	1

Lab Sample ID: LCS 720-182427/2-A Matrix: Solid Analysis Batch: 182536

Analysis Batch: 182536	Spike	LCS	LCS				Prep Ba %Rec.	atch: 182427
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	1.33	1.17		mg/Kg		88	44 - 115	
Acenaphthylene	1.33	1.17		mg/Kg		88	61 - 129	
Acenaphthene	1.33	1.12		mg/Kg		85	50 - 115	
Fluorene	1,33	1.19		mg/Kg		89	54 - 115	
Phenanthrene	1.33	1.30		mg/Kg		98	54 - 115	
Anthracene	1.33	1.35		mg/Kg		101	55 - 115	
Fluoranthene	1.33	1.28		mg/Kg		97	52 - 130	
Pyrene	1.33	1.31		mg/Kg		99	48 - 115	
Benzo[a]anthracene	1.33	1.25		mg/Kg		94	55 - 115	
Chrysene	1.33	1.19		mg/Kg		90	58 - 115	
Benzo[b]fluoranthene	1,33	1.24		mg/Kg		93	50 - 119	

TestAmerica Pleasanton

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 182401

Prep Type: Total/NA

Prep Batch: 182427

Terphenyl-d14

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-1 Matrix: Solid Analysis Batch: 182536	82427/2-A					Clien	nt Sai	mple ID:	Lab Control Sample Prep Type: Total/NA Prep Batch: 182427
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzo[k]fluoranthene			1.33	1.24		mg/Kg		94	55 - 120
Benzo[a]pyrene			1.33	1.30		mg/Kg		98	57 - 122
Indeno[1,2,3-cd]pyrene			1.33	1,37		mg/Kg		103	56 - 115
Benzo[g,h,i]perylene			1,33	1.45		mg/Kg		109	56 - 115
2-Methylnaphthalene			1,33	1.21		mg/Kg		92	49 - 115
Dibenz(a,h)anthracene			1.33	1,35		mg/Kg		102	57 - 121
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Nitrobenzene-d5	75		21-98						
2-Fluorobiphenyl	74		30 - 112						

32 - 117

Method: Organotins - Organotins, PSEP (GC/MS)

88

Lab Sample ID: MB 580-190 Matrix: Solid Analysis Batch: 190365		МВ					le ID: Method Prep Type: To Prep Batch:	otal/NA
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	ND		1.0	ug/Kg		05/23/15 14:45	05/26/15 18:43	1
Monobutyltin	ND	٨	1.0	ug/Kg		05/23/15 14:45	05/26/15 18:43	1
Tetra-n-butyltin	ND		2.7	ug/Kg		05/23/15 14:45	05/26/15 18:43	1
TributyItin	ND		1.0	ug/Kg		05/23/15 14:45	05/26/15 18:43	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tripentyltin	71		20_151			05/23/15 14:45	05/26/15 18:43	1

Lab Sample ID: LCS 580-190241/2-A Matrix: Solid Analysis Batch: 190365

Analysis Batch: 190365	Spike	LCS	LCS				Prep Batch: 1 %Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dibutyltin	30.7	15.2		ug/Kg		49	25 - 142	
Monobutyltin	24,9	15.4	٨	ug/Kg		62	24 - 125	
Tetra-n-butyltin	40.0	30.0		ug/Kg		75	26 - 149	
Tributyltin	35.6	24,5		ug/Kg		69	20 - 146	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tripentyltin	70		20 - 151

Lab Sample ID: LCSD 580-190241/3-A Matrix: Solid

Analysis Batch: 190365							Prep Ba	tch: 19	90241
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibutyltin	30.7	16.9		ug/Kg		55	25 - 142	11	30
MonobutyItin	24.9	17.0	۸	ug/Kg		68	24 - 125	10	36

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Method: Organotins - Organotins, PSEP (GC/MS) (Continued) Lab Sample ID: LCSD 580-190241/3-A **Client Sample ID: Lab Control Sample Dup** Matrix: Solid Prep Type: Total/NA Analysis Batch: 190365 Prep Batch: 190241 Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 40.0 20.8 52 26 - 149 25 ug/Kg 36 Tetra-n-butyltin 35.6 80 20 - 146 15 28 Tributyltin 28.5 ug/Kg LCSD LCSD Surrogate %Recovery Qualifier Limits 88 20 - 151 Tripentyltin Lab Sample ID: MB 580-190247/1-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Analysis Batch: 190417 Prep Batch: 190247 MR MR RL MDL Unit Analyte Result Qualifier D Prepared Analyzed **Dil Fac** 1.0 05/24/15 18:29 05/27/15 22:21 Dibutyltin ND ug/Kg MonobutyItin ND 1.0 ug/Kg 05/24/15 18:29 05/27/15 22:21 1 Tetra-n-butyltin ND 2.7 ug/Kg 05/24/15 18:29 05/27/15 22:21 ND 1.0 05/24/15 18:29 05/27/15 22:21 Tributyltin ug/Kg MB MB Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac 20 - 151 05/24/15 18:29 05/27/15 22:21 Tripentyltin 73 Lab Sample ID: LCS 580-190247/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Matrix: Solid Analysis Batch: 190417 Prep Batch: 190247 Spike LCS LCS %Rec. Added **Result Qualifier** %Rec Limits Analyte Unit D Dibutyltin 30.7 20.9 ug/Kg 68 25 - 142 Monobutyltin 24.9 14.2 ug/Kg 57 24 - 125 Tetra-n-butyltin 40.0 20.9 ug/Kg 52 26 - 149 Tributyltin 35.6 25.7 ug/Kg 72 20 - 146 LCS LCS Surrogate %Recovery Qualifier Limits Tripentyltin 71 20 - 151 Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 580-190247/3-A Matrix: Solid Prep Type: Total/NA Analysis Batch: 190417 Prep Batch: 190247 LCSD LCSD %Rec. RPD Spike **Result Qualifier** %Rec Limits RPD Limit Added Unit D Analyte 21.5 70 25 - 142 3 30 Dibutyltin 30.7 ug/Kg 24 - 125 MonobutyItin 24.9 7.20 * ug/Kg 29 65 36 Tetra-n-butyltin 40.0 23.3 ug/Kg 58 26 - 149 11 25 Tributyltin 35.6 25.5 ug/Kg 71 20 - 146 28 1

QC Sample Results

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Tripentyltin	83		20_151

Surrogate

Tripentyltin

Method: Organotins - Organotins, PSEP (GC/MS) (Continued)

Lab Sample ID: 720-64901 Matrix: Solid	-13 MS							Client	Prep Ty	D: SS-7-0.5' be: Total/NA
Analysis Batch: 190417	Sample	Sample	Spike	MS	MS				Prep Ba %Rec.	itch: 190247
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Dibutyltin	120	F2 F1	30.7	94.2	F1	ug/Kg		-85	25 - 142	
MonobutyItin	76	F2 F1 *	24.9	55.0	F1	ug/Kg		-82	24 - 125	
Tetra-n-butyltin	ND	F1	40.0	ND	F1	ug/Kg		0	26 - 149	
Tributyltin	650	F2 E	35,6	75.7	4	ug/Kg		-1623	20 - 146	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Tripentyltin	65		20 - 151							
Lab Sample ID: 720-64901	-13 MSD							Client	Sample	D: SS-7-0.5'
Matrix: Solid										be: Total/NA
Analysis Batch: 190417										tch: 190247
	Sample	Sample	Spike	MSD	MSD				%Rec.	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD Limit
Dibutyltin	120	F2 F1	30.7	166	F1 F2	ug/Kg		149	25 - 142	55 30
MonobutyItin	76	F2 F1 *	24.9	92.7	F2	ug/Kg		69	24 - 125	(51) 36
Tetra-n-butyltin	ND	F1	40.0	47.7		ug/Kg		119	26 - 149	NO 25
Tributyltin	650	F2 E	35.6	102	4 F2	ug/Kg		-1550	20 - 146	29 28
	MSD	MSD								\smile

Limits

20-151

Method: 8015B - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

58

Lab Sample ID: MB 720-1822 Matrix: Solid Analysis Batch: 182306	263/1-A							bie ID: Metho Prep Type: T Prep Batch:	otal/NA
-	ME								
Analyte		t Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	NE		0.99		mg/Kg		05/22/15 12:51	05/23/15 16:40	1
Motor Oil Range Organics [C24-C36]	NE)	49		mg/Kg		05/22/15 12:51	05/23/15 16:40	1
	МЕ	B MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	10:	3	40 - 130				05/22/15 12:51	05/23/15 16:40	1
Analysis Batch: 182306 Analyte Diesel Range Organics	2263/2-A		Spike Added 83.0	LCS LCS Result 74.2	6			Lab Control Prep Type: T Prep Batch: %Rec. Limits 50 - 150	otal/NA
Matrix: Solid Analysis Batch: 182306 Analyte Diesel Range Organics	2263/2-A	s	Added	Result Qua	S alifier Unit		D %Rec	Prep Type: T Prep Batch: %Rec. Limits	otal/NA
Matrix: Solid Analysis Batch: 182306 Analyte Diesel Range Organics [C10-C28]			Added	Result Qua	S alifier Unit		D %Rec	Prep Type: T Prep Batch: %Rec. Limits	otal/NA

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 720-182: Matrix: Solid Analysis Batch: 182423		МВ МВ					Client		ble ID: Method Prep Type: To Prep Batch:	otal/NA
Analyte	Res	sult Qualifier	r RL	T	MDL Unit	D	Prep	bared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	-	ND	1.0	-	mg/K	g –	05/26/1	5 16:23	05/27/15 23:21	1
Motor Oil Range Organics [C24-C36]		ND	50		mg/K	g	05/26/1	15 16:23	05/27/15 23:21	1
		MB MB								
Surrogate	%Recov	ery Qualifier	r Limits				Prep	oared	Analyzed	Dil Fac
p-Terphenyl		103	40 - 130				05/26/1	15 16:23	05/27/15 23:21	1
Lab Sample ID: LCS 720-182 Matrix: Solid	2368/2-A					Clien	nt Samp		Lab Control S Prep Type: To Prep Batch:	otal/NA
			Spike	LCS	LCS				%Rec.	
Analysis Batch: 182423			Spike Added		LCS Qualifier	Unit	D %	Rec	%Rec. Limits	
Analysis Batch: 182423 Analyte Diesel Range Organics			•			Unit mg/Kg	D %	Rec 106		
Analysis Batch: 182423 Analyte Diesel Range Organics	LCS		Added	Result			<u></u>		Limits	
Analysis Batch: 182423 Analyte Diesel Range Organics [C10-C28]	LCS %Recovery		Added	Result			D %		Limits	

QC Sample Results

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 720-18 Matrix: Solid Analysis Batch: 182321	82348/1-A						Cli	ent Sam	ole ID: Method Prep Type: To Prep Batch:	otal/NA
,	MB	MB								
Analyte	Result	Qualifier	RL	1	MDL Unit) F	Prepared	Analyzed	Dil Fac
PCB-1016	ND		50		ug/K	g	05/	26/15 13:18	05/27/15 02:15	1
PCB-1221	ND		50		ug/K	g	05/	26/15 13:18	05/27/15 02:15	1
PCB-1232	ND		50		ug/K	g	05/	26/15 13:18	05/27/15 02:15	1
PCB-1242	ND		50		ug/K	g	05/	26/15 13:18	05/27/15 02:15	1
PCB-1248	ND		50		ug/K	g	05/	26/15 13:18	05/27/15 02:15	1
PCB-1254	ND		50		ug/K	g	05/	26/15 13:18	05/27/15 02:15	1
PCB-1260	ND		50		ug/K	g	05/	26/15 13:18	05/27/15 02:15	1
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits				1	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	79		45 - 132				05/	26/15 13:18	05/27/15 02:15	1
DCB Decachlorobiphenyl	86		42 - 146				05/	26/15 13:18	05/27/15 02:15	1
Lab Sample ID: LCS 720-7 Matrix: Solid Analysis Batch: 182321	182348/2-A		Spike	LCS	LCS	Clier	nt Sa	mple ID:	Lab Control S Prep Type: To Prep Batch: %Rec.	otal/NA
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016			131	105		ug/Kg		81	65 - 121	
PCB-1260			131	99.8		ug/Kg		76	68 - 127	
	LCS LC	s								
Surrogate	%Recovery Qu	alifier	Limits							
Tetrachloro-m-xylene	79		45-132							
DCB Decachlorobiphenyl	88		42 - 146							

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Matrix: Solid										Prep Type:	
Analysis Batch: 182321										Prep Batch	: 182348
	Sample			Spike		MS				%Rec.	
Analyte	Result	Quali	fier	Added		Qualifier		D	%Rec	Limits	_
PCB-1016	ND			131	109		ug/Kg		83	69 - 120	
PCB-1260	ND			131	118	I.	ug/Kg		90	73 - 114	
	MS	MS				×.					
Surrogate	%Recovery	Quali	ifier	Limits							
Tetrachloro-m-xylene	73			45-132							
DCB Decachlorobiphenyl	70			42 - 146							
Lab Sample ID: 720-64901 Matrix: Solid	1-1 MSD								Client	Sample ID: Prep Type:	
Analysis Batch: 182321										Prep Batch	
-	Sample	Samp	ole	Spike	MSD	MSD				%Rec.	RPD
Analyte	Result	Quali	ifier	Added	Resul	Qualifie	Unit	D			PD Limit
PCB-1016	ND			131	110		ug/Kg		84	69 - 120	1 20
PCB-1260	ND			131	118		ug/Kg		90	73 - 114	0 20
	MSD	MSD									
Surrogate	%Recovery		ifier	Limits							
Tetrachloro-m-xylene	72	- Jun		45 - 132							
DCB Decachlorobiphenyl	69			42 - 146							
Matrix: Solid	82388/1-A	MB I	MB					Cli	ent Sam	ple ID: Meth Prep Type: Prep Batch	Total/NA
Matrix: Solid Analysis Batch: 182412			MB Qualifier		RL	MDL Uni	t		ent Sam	Prep Type:	Total/NA
Lab Sample ID: MB 720-1 Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016					RL 50	MDL Uni		D P	Prepared	Prep Type: Prep Batch	Total/NA 1: 182388 Dil Fac
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016		sult ((g	D P 05/2	Prepared 26/15 19:45	Prep Type: Prep Batch Analyzed	Total/NA 182388 <u>Dil Fac</u> 3 1
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221		ND			50	ug/l	(g (g	D P 05/2 05/2	Prepared 26/15 19:45 26/15 19:45	Prep Type: Prep Batch Analyzed	Dil Fac 3 1 3 1
Matrix: Solid Analysis Batch: 182412 Analyte		ND ND			50 50	ug/l	(g (g (g	D P 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45	Prep Type: Prep Batch Analyzed 5 05/27/15 15:1 5 05/27/15 15:1	Dil Fac 3 1 3 1 3 1
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232		ND ND ND ND			50 50 50	ug/l ug/l ug/l	(g (g (g (g	D P 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45	Analyzed 05/27/15 05/27/15 15:11 05/27/15	Dil Fac 3 1 3 1 3 1 3 1 3 1
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242		ND ND ND ND ND			50 50 50 50	ug/l ug/l ug/l ug/l	(g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45	Analyzed 05/27/15 05/27/15 15:11 05/27/15 05/27/15 05/27/15 05/27/15 05/27/15 05/27/15 05/27/15	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Matrix: Solid Analysis Batch: 182412 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248		ND ND ND ND ND ND ND			50 50 50 50 50	ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45	Analyzed 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Matrix: Solid Analysis Batch: 182412 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254		ND ND ND ND ND ND ND ND ND	Qualifier		50 50 50 50 50 50 50	ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45	Analyzed 05/27/15	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260	Re	ND ND ND ND ND ND ND ND ND ND	Qualifier MB	Limi	50 50 50 50 50 50 50 50	ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45	Analyzed 05/27/15 15:1	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Surrogate	Re	ND ND ND ND ND ND ND ND ND ND	Qualifier		50 50 50 50 50 50 50 50	ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 Prepared	Analyzed 05/27/15 05/27/15 05/27/15 </td <td>Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 J 1 Dill Fac Dill Fac</td>	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 J 1 Dill Fac Dill Fac
Matrix: Solid Analysis Batch: 182412 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Re	ND ND ND ND ND ND ND ND ND ND	Qualifier MB		50 50 50 50 50 50 50 50 50 50 50	ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2 05/2 05/2 F 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 Prepared 26/15 19:45	Analyzed 05/27/15 15:1	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Matrix: Solid Analysis Batch: 182412 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene	Re %Reco	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier MB	45 - 1	50 50 50 50 50 50 50 50 50 50 50 50 22 46	ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45	Analyzed 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 Dil Fac 3 1 1 Total/NA
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: LCS 720- Matrix: Solid	Re %Reco	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier MB	45 - ⁻ 42 - ⁻	50 50 50 50 50 50 50 50 50 50 50 50 50 5	ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45	Analyzed 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 05/27/15 15:11 Analyzed 05/27/15 05/27/15 15:11 Lab Controo Prep Type: Prep Batch 15:11	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 Dil Fac 3 1 1 Total/NA
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: LCS 720- Matrix: Solid Analysis Batch: 182412	Re %Reco	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier MB	45 42 Spike	50 50 50 50 50 50 50 50 50 50 50 50 50 5	ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45	Analyzed 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 15 05/27/15 15 05/27/15 15 05/27/15 15 15:1 15 05/27/15 16 05/27/15 17 Lab Contro Prep Batch %Rec.	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 Dil Fac 3 1 1 Total/NA
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: LCS 720- Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016	Re %Reco	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier MB	45 42 Spike Added	50 50 50 50 50 50 50 50 50 50 50 50 50 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g (g	D P 05/2 05/2 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45	Analyzed 05/27/15 15:0 05/27/15 05/27/15 15:0 05/27/15 05/27/15 15:0 05/27/15 15:0 05/27/15 15:0 05/27/15 15:1 Lab Controo Prep Batch % Rec. Limits	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 Dil Fac 3 1 1 Total/NA
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: LCS 720- Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016	Re %Reco 182388/2-A	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier MB	45 42 Spike Added 131	50 50 50 50 50 50 50 50 50 50 50 50 50 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g (g Unit ug/Kg	D P 05/2 05/2 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 ample ID: %Rec 97	Analyzed 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 15 05/27/15 15 05/27/15 15 15:1 16 05/27/15 15 15:1 16 05/27/15 17 Lab Controo Prep Batch % Rec. 1 Limits 65 - 121	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 Dil Fac 3 1 1 Total/NA
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: LCS 720- Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1260	Re %Reco 182388/2-A	LCS	Qualifier MB Qualifier	45 42 Spike Added 131 131	50 50 50 50 50 50 50 50 50 50 50 50 50 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g (g Unit ug/Kg	D P 05/2 05/2 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 ample ID: %Rec 97	Analyzed 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 15 05/27/15 15 05/27/15 15 15:1 15 05/27/15 15 15:1 16 05/27/15 17 Lab Controo Prep Batch % Rec. 1 Limits 65 - 121	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 Dil Fac 3 1 1 Total/NA
Matrix: Solid Analysis Batch: 182412 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: LCS 720- Matrix: Solid Analysis Batch: 182412 Analyte	Re %Reco 182388/2-A	LCS	Qualifier MB Qualifier	45 42 Spike Added 131	50 50 50 50 50 50 50 50 50 50 50 50 50 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	(g (g (g (g (g (g (g Unit ug/Kg	D P 05/2 05/2 05/2 05/2 05/2 05/2 05/2 05/2	Prepared 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 26/15 19:45 ample ID: %Rec 97	Analyzed 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 05/27/15 15:1 15 05/27/15 15 05/27/15 15 15:1 15 05/27/15 15 15:1 16 05/27/15 17 Lab Controo Prep Batch % Rec. 1 Limits 65 - 121	Dil Fac 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 Dil Fac 3 1 1 Total/NA

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-182381/1-A Matrix: Solid Analysis Batch: 182451

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 182381

MB	MB				
Analyte Result	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Antimony ND	0.50	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Arsenic ND	1.0	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Barium ND	0.50	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Beryllium ND	0.10	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Cadmium ND	0.13	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Chromium ND	0,50	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Cobait ND	0.20	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Copper ND	1.5	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Lead ND	0.50	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Molybdenum ND	0.50	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Nickel ND	0,50	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Selenium ND	1.0	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Silver ND	0,25	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Thallium ND	0.50	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Vanadium ND	0.50	mg/Kg	05/26/15 17:30	05/27/15 11:08	1
Zinc ND	1.5	mg/Kg	05/26/15 17:30	05/27/15 11:08	1

Lab Sample ID: LCS 720-182381/2-A Matrix: Solid

Analysis Batch: 182451

Analysis Batch: 182451	Spike	LCS I	LCS				Prep Batch: 182381 %Rec.
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	48.1		mg/Kg		96	80 - 120
Arsenic	50.0	47.5		mg/Kg		95	80 - 120
Barium	50.0	50.0		mg/Kg		100	80 - 120
Beryllium	50.0	48.3		mg/Kg		97	80 - 120
Cadmium	50.0	50,3		mg/Kg		101	80 - 120
Chromium	50.0	49.1		mg/Kg		98	80 - 120
Cobalt	50.0	51,9		mg/Kg		104	80 - 120
Copper	50.0	48.3		mg/Kg		97	80 - 120
Lead	50,0	50.0		mg/Kg		100	80 - 120
Molybdenum	50.0	50.4		mg/Kg		101	80 - 120
Nickel	50.0	50.2		mg/Kg		100	80 - 120
Selenium	50.0	46.8		mg/Kg		94	80 - 120
Silver	25.0	24.2		mg/Kg		97	80 - 120
Thallium	50,0	49.2		mg/Kg		98	80 - 120
Vanadium	50.0	46.7		mg/Kg		93	80 - 120
Zinc	50.0	51.4		mg/Kg		103	80 - 120

Lab Sample ID: LCSD 720-182381/3-A Matrix: Solid Analysis Ratch: 192451

Analysis Batch: 182451							Prep Ba	tch: 18	32381
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	50.0	50.4		mg/Kg		101	80 - 120	5	20
Arsenic	50.0	49.1		mg/Kg		98	80 - 120	3	20
Barium	50.0	52.1		mg/Kg		104	80 - 120	4	20
Beryllium	50.0	49.8		mg/Kg		100	80 - 120	3	20

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSD 720-182381/3-A **Client Sample ID: Lab Control Sample Dup** Matrix: Solid Prep Type: Total/NA Prep Batch: 182381 Analysis Batch: 182451 Spike LCSD LCSD %Rec. RPD Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Cadmium 50.0 52.3 mg/Kg 105 80 - 120 4 20 50.0 51.1 102 80 - 120 4 20 Chromium mg/Kg 50.0 54 2 108 80 - 120 4 20 Cobalt mg/Kg Copper 50.0 49.8 mg/Kg 100 80 - 120 3 20 Lead 50.0 51.7 mg/Kg 103 80 - 120 3 20 Molybdenum 50.0 52.2 mg/Kg 104 80 - 120 3 20 Nickel 50.0 52.1 104 80 - 120 4 20 mg/Kg Selenium 50.0 48.8 mg/Kg 98 80 - 120 4 20 Silver 25.0 25.3 mg/Kg 101 80 - 120 4 20 Thallium 50.0 50.8 102 80 - 120 3 20 mg/Kg mg/Kg Vanadium 50.0 48.1 96 80 - 120 3 20 80 - 120 Zinc 50,0 53.8 108 4 20 mg/Kg

Lab Sample ID: LCSSRM 720-182381/25-A Matrix: Solid Analysis Batch: 182451

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 182381

Analysis Datch. 102431	Spike	LCSSRM	LCSSRM				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	74.6	44.9		mg/Kg		60	11 - 101
Arsenic	45.5	43.1		mg/Kg		95	69 - 119
Barium	579	550		mg/Kg		95	61 ₋ 117
Beryllium	155	140		mg/Kg		90	56 - 102
Cadmium	201	193		mg/Kg		96	67 - 118
Chromium	106	101		mg/Kg		95	67 - 121
Cobalt	247	245		mg/Kg		99	64 - 133
Copper	130	119		mg/Kg		92	68 - 126
Lead	302	276		mg/Kg		91	62 - 113
Molybdenum	165	152		mg/Kg		92	62 - 128
Nickel	305	289		mg/Kg		95	65 - 117
Selenium	133	128		mg/Kg		96	63 - 126
Silver	33.5	32.0		mg/Kg		95	51 - 130
Thallium	191	173		mg/Kg		90	64 - 124
Vanadium	214	193		mg/Kg		90	67 - 123
Zinc	388	382		mg/Kg		98	62 - 110
Land.							

Lab Sample ID: MB 720-182392/1-A Matrix: Solid Analysis Batch: 182468

Prep Batch: 182392 MB MB **Result Qualifier** RL MDL Unit Dil Fac D Prepared Analyzed Analyte 0.50 05/26/15 20:54 05/27/15 13:49 Antimony ND mg/Kg 1 Arsenic ND 1.0 mg/Kg 05/26/15 20:54 05/27/15 13:49 1 ND 0.50 05/26/15 20:54 05/27/15 13:49 1 Barium mg/Kg Beryllium ND 0.10 mg/Kg 05/26/15 20:54 05/27/15 13:49 1 Cadmium ND 05/26/15 20:54 05/27/15 13:49 0.13 mg/Kg 1 Chromium ND 0.50 mg/Kg 05/26/15 20:54 05/27/15 13:49 1 Cobalt ND 0.20 mg/Kg 05/26/15 20:54 05/27/15 13:49 1 Copper ND 1.5 mg/Kg 05/26/15 20:54 05/27/15 13:49 1 ND 0.50 mg/Kg 05/26/15 20:54 05/27/15 13:49 1 Lead

TestAmerica Pleasanton

Client Sample ID: Method Blank

Prep Type: Total/NA

Page 75 of 106

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 720-1823 Matrix: Solid Analysis Batch: 182468		MB						le ID: Method Prep Type: To Prep Batch:	otal/NA
Analyte	Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Molybdenum	ND		0.50		mg/Kg	_	05/26/15 20:54	05/27/15 13:49	1
Nickel	ND		0.50		mg/Kg		05/26/15 20:54	05/27/15 13:49	1
Selenium	ND		1.0		mg/Kg		05/26/15 20:54	05/27/15 13:49	1
Silver	ND		0.25		mg/Kg		05/26/15 20:54	05/27/15 13:49	1
Thallium	ND		0.50		mg/Kg		05/26/15 20:54	05/27/15 13:49	1
Vanadium	ND		0.50		mg/Kg		05/26/15 20:54	05/27/15 13:49	1
Zinc	ND		1.5		mg/Kg		05/26/15 20:54	05/27/15 13:49	1

Lab Sample ID: LCS 720-182392/2-A

Matrix: Solid Analysis Batch: 182468

Analysis Batch: 182468	Spike	LCS	LCS				Prep Batch: 1823 %Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	50.2		mg/Kg	100	100	80 - 120	
Arsenic	50.0	47.8		mg/Kg		96	80 - 120	
Barium	50.0	52.2		mg/Kg		104	80 - 120	
Beryllium	50.0	48.4		mg/Kg		97	80 - 120	
Cadmium	50.0	51.7		mg/Kg		103	80 - 120	
Chromium	50,0	49,4		mg/Kg		99	80 - 120	
Cobalt	50.0	54.0		mg/Kg		108	80 - 120	
Соррег	50.0	48.1		mg/Kg		96	80 - 120	
Lead	50.0	50.3		mg/Kg		101	80 - 120	
Molybdenum	50.0	50.5		mg/Kg		101	80 - 120	
Nickel	50.0	51.3		mg/Kg		103	80 - 120	
Selenium	50.0	47.6		mg/Kg		95	80 - 120	
Silver	25.0	25.2		mg/Kg		101	80 - 120	
Thallium	50.0	49.9		mg/Kg		100	80 - 120	
Vanadium	50.0	46.2		mg/Kg		92	80 - 120	
Zinc	50.0	53,5		mg/Kg		107	80 - 120	

Lab Sample ID: LCSD 720-182392/3-A Matrix: Solid

Analysis Batch: 182468							Prep Ba	atch: 18	32392
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	50.0	52.8		mg/Kg		106	80 - 120	5	20
Arsenic	50.0	50.1		mg/Kg		100	80 - 120	5	20
Barium	50.0	54.1		mg/Kg		108	80 - 120	4	20
Beryllium	50.0	50.5		mg/Kg		101	80 - 120	4	20
Cadmium	50.0	53.9		mg/Kg		108	80 - 120	4	20
Chromium	50.0	51.8		mg/Kg		104	80 - 120	5	20
Cobalt	50.0	56.4		mg/Kg		113	80 - 120	4	20
Copper	50.0	50.4		mg/Kg		101	80 - 120	5	20
Lead	50.0	52.4		mg/Kg		105	80 - 120	4	20
Molybdenum	50.0	53.0		mg/Kg		106	80 - 120	5	20
Nickel	50.0	53.6		mg/Kg		107	80 - 120	4	20
Selenium	50.0	49.9		mg/Kg		100	80 - 120	5	20
Silver	25.0	26.2		mg/Kg		105	80 - 120	4	20
Thallium	50.0	52,1		mg/Kg		104	80 - 120	4	20

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSD 720-182392/3-A	Client Sample ID: Lab Control Sa						Sample	e Dup	
Matrix: Solid							Prep Ty	pe: Tot	al/NA
Analysis Batch: 182468							Prep Ba	atch: 18	32392
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Vanadium	50.0	48_4		mg/Kg		97	80 - 120	5	20
Zinc	50.0	55.9		mg/Kg		112	80 - 120	4	20

Lab Sample ID: LCSSRM 720-182392/25-A Matrix: Solid Analysis Batch: 182468

Analysis Batch: 182468	Spike	LCSSRM	LCSSRM				Prep Batch: 182392 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	74.6	49.0		mg/Kg		66	11 - 101
Arsenic	45,5	43,2		mg/Kg		95	69 - 119
Barium	579	575		mg/Kg		99	61 - 117
Beryllium	155	142		mg/Kg		92	56 - 102
Cadmium	201	196		mg/Kg		97	67 - 118
Chromium	106	99.9		mg/Kg		94	67 - 121
Cobalt	247	251		mg/Kg		102	64 - 133
Copper	130	122		mg/Kg		94	68 - 126
Lead	302	279		mg/Kg		92	62 - 113
Molybdenum	165	157		mg/Kg		95	62 - 128
Nickel	305	294		mg/Kg		96	65 ₋ 117
Selenium	133	127		mg/Kg		96	63 - 126
Silver	33_5	32.5		mg/Kg		97	51 - 130
Thallium	191	176		mg/Kg		92	64 - 124
Vanadium	214	194		mg/Kg		91	67 - 123
Zinc	388	389		mg/Kg		100	62 - 110

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 720-182367/1-A Matrix: Solid Analysis Batch: 182500									Clie	ent Sam	ple ID: M Prep Ty Prep Ba	pe: To	tal/NA
		MB					••	_	_				
Analyte	Result	Qualifier		RL		NDL U	nit	D		repared	Analy		Dil Fa
Mercury	ND			0.010		m	g/Kg		05/2	26/15 16:1	5 05/27/15	18:29	
Lab Sample ID: LCS 720-182367/2-A	.							Clien	t Sa	mple ID	: Lab Cor	ntrol S	ample
Matrix: Solid											Prep Ty	pe: To	tal/N/
Analysis Batch: 182500											Prep Ba	atch: 1	8236
			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qualifi	er	Unit	D	%Rec	Limits		
Mercury			0.833		0.900			mg/Kg	_	108	80 - 120		
Lab Sample ID: LCSD 720-182367/3	-A						CI	ient Saı	nple	ID: Lab	Control	Samp	le Duj
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 182500								,			Prep Ba	atch: 1	8236
· ······			Spike		LCSD	LCSD					%Rec.		RP
Analyte			Added		Result	Qualifi	ier	Unit	D	%Rec	Limits	RPD	Lim
Mercury			0.833		0.917	-		mg/Kg		110	80 - 120	2	2

TestAmerica Pleasanton

4 5 6

7 8 9

Method: 7471A - Mercury (CVAA) (Continued)

ab Sample ID: MB 720-182393/1-/ latrix: Solid							Clie	ent Sam	ple ID: M Prep Tyj		
nalysis Batch: 182486	мв	MR							Prep Ba	tch: 18	32393
nalyte		Qualifier	RL 0.010		MDL Unit	<u>D</u>		repared 6/15 20:56	Analyz 05/27/15		Dil Fac
lercury	ND		0.010		myrk	9	0012	0/13/20.00	00/21/10	10.01	
ab Sample ID: LCS 720-182393/2-	A					Client	: Sar	nple ID:	Lab Cor		-
Matrix: Solid									Prep Ty		
Analysis Batch: 182486			Spike	LCS	LCS				Prep Ba %Rec.		02333
nalyte			Added		Qualifier	Unit	D	%Rec	Limits		
lercury			0.833	0.950		mg/Kg	-	114	80 - 120		·
ab Sample ID: LCSD 720-182393/	3- A				c	lient San	nole	ID: Lab	Control	Sample	e Dup
Aatrix: Solid	• • •						1		Prep Ty	-	-
Analysis Batch: 182486									Prep Ba	atch: 18	
			Spike		LCSD		_		%Rec.		RPD
nalyte			Added		Qualifier	Unit	_ D		Limits	RPD	Limit
lercury			0.833	0.992		mg/Kg		119	80 - 120	4	20

QC Sample Results

TestAmerica Pleasanton

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

1 3 4 5 6 7 8 9 10

12

GC/MS Semi VOA

Drom	Datah	402404
Frep	Datcii.	182401

	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-1	SS-1-0.5'	Total/NA	Solid	3546	
720-64901-2	SS-1-1'	Total/NA	Solid	3546	
720-64901-3	SS-2-0.5'	Total/NA	Solid	3546	
720-64901-4	SS-2-1'	Total/NA	Solid	3546	
720-64901-5	SS-3-0.5'	Total/NA	Solid	3546	
720-64901-6	SS-3-1'	Total/NA	Solid	3546	
720-64901-7	SS-4-0.5'	Total/NA	Solid	3546	
720-64901-8	SS-4-1'	Total/NA	Solid	3546	
720-64901-9	SS-5-0.5'	Total/NA	Solid	3546	
720-64901-10	SS-5-1'	Total/NA	Solid	3546	
720-64901-11	SS-6-0.5'	Total/NA	Solid	3546	
720-64901-12	SS-6-1'	Total/NA	Solid	3546	
720-64901-13	SS-7-0.5'	Total/NA	Solid	3546	
720-64901-14	SS-7-1'	Total/NA	Solid	3546	
720-64901-15	SS-8-0.5'	Total/NA	Solid	3546	
720-64901-16	SS-8-1'	Total/NA	Solid	3546	
720-64901-17	SS-9-0.5'	Total/NA	Solid	3546	
LCS 720-182401/2-A	Lab Control Sample	Total/NA	Solid	3546	
MB 720-182401/1-A	Method Blank	Total/NA	Solid	3546	
			Solid	0010	
Prep Batch: 182427					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-18	SS-9-1'	Total/NA	Solid	3546	
720-64901-19	SS-10-0.5'	Total/NA	Solid	3546	
720-64901-20	SS-10-1'	Total/NA	Solid	3546	
720-64901-21	FD-1	Total/NA	Solid	3546	
720-64901-22	FD-2	Total/NA	Solid	3546	
LCS 720-182427/2-A	Lab Control Sample	Total/NA	Solid	3546	
MB 720-182427/1-A	Method Blank	Total/NA	Solid	3546	
-	430				
-	430 Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Analysis Batch: 182 Lab Sample ID		Prep Type Total/NA	Matrix Solid	Method 8270C	Prep Batch 182401
Analysis Batch: 182	Client Sample ID				
Lab Sample ID 720-64901-1 MB 720-182401/1-A	Client Sample ID SS-1-0.5' Method Blank	Total/NA	Solid	8270C	182401
nalysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A nalysis Batch: 182	Client Sample ID SS-1-0.5' Method Blank	Total/NA Total/NA	Solid	8270C	182401 182401
Analysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID	Client Sample ID SS-1-0.5' Method Blank	Total/NA	Solid Solid	8270C 8270C	182401 182401
Analysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9	Client Sample ID SS-1-0.5' Method Blank 4478 Client Sample ID	Total/NA Total/NA Prep Type	Solid Solid Matrix	8270C 8270C Method	182401 182401 Prep Batch
Analysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10	Client Sample ID SS-1-0.5' Method Blank 478 Client Sample ID SS-5-0.5'	Total/NA Total/NA Prep Type Total/NA Total/NA	Solid Solid Matrix Solid Solid	8270C 8270C Method 8270C 8270C	182401 182401 Prep Batch 182401 182401
Analysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10 720-64901-11	Client Sample ID SS-1-0.5' Method Blank Client Sample ID SS-5-0.5' SS-5-1' SS-6-0.5'	Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA	Solid Solid Matrix Solid Solid Solid	8270C 8270C 8270C 8270C 8270C 8270C 8270C	182401 182401 Prep Batch 182401 182401 182401 182401
Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10 720-64901-11 720-64901-12	Client Sample ID SS-1-0.5' Method Blank 2478 Client Sample ID SS-5-0.5' SS-5-1' SS-6-0.5' SS-6-1'	Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA	Solid Solid Matrix Solid Solid Solid Solid Solid	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C	182401 182401 Prep Batch 182401 182401 182401 182401 182401
Analysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10 720-64901-11 720-64901-12 720-64901-13	Client Sample ID SS-1-0.5' Method Blank 2478 Client Sample ID SS-5-0.5' SS-5-1' SS-6-0.5' SS-6-1' SS-7-0.5'	Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C	182401 182401 Prep Batch 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401
nalysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A nalysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10 720-64901-11 720-64901-12 720-64901-13 720-64901-14	Client Sample ID SS-1-0.5' Method Blank 2478 Client Sample ID SS-5-0.5' SS-5-1' SS-6-0.5' SS-6-1' SS-6-1' SS-7-0.5' SS-7-1'	Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C	182401 182401 Prep Batch 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401
Lab Sample ID 720-64901-1 MB 720-182401/1-A MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10 720-64901-11 720-64901-12 720-64901-13 720-64901-14 720-64901-15	Client Sample ID SS-1-0.5' Method Blank Client Sample ID SS-5-0.5' SS-5-1' SS-6-0.5' SS-6-1' SS-6-1' SS-7-0.5' SS-7-1' SS-7-0.5' SS-7-1' SS-8-0.5'	Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Matrix Solid Solid Solid Solid Solid Solid Solid	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C	182401 182401 Prep Batch 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401
Analysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10 720-64901-11 720-64901-12 720-64901-13 720-64901-14 720-64901-15 720-64901-16	Client Sample ID SS-1-0.5' Method Blank Client Sample ID SS-5-0.5' SS-5-1' SS-6-0.5' SS-6-0.5' SS-6-1' SS-7-0.5' SS-7-1' SS-8-0.5' SS-8-1'	Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C	182401 182401 Prep Batch 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401
Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10 720-64901-11 720-64901-12	Client Sample ID SS-1-0.5' Method Blank Client Sample ID SS-5-0.5' SS-5-1' SS-6-0.5' SS-6-1' SS-6-1' SS-7-0.5' SS-7-1' SS-7-0.5' SS-7-1' SS-8-0.5'	Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Matrix Solid Solid Solid Solid Solid Solid Solid	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C	182401 182401 Prep Batch 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401
Analysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10 720-64901-11 720-64901-12 720-64901-13 720-64901-15 720-64901-15 720-64901-16 720-64901-17 MB 720-182427/1-A	Client Sample ID SS-1-0.5' Method Blank 2478 Client Sample ID SS-5-0.5' SS-5-1' SS-6-0.5' SS-6-1' SS-7-0.5' SS-7-1' SS-8-0.5' SS-7-1' SS-8-0.5' SS-8-1' SS-8-0.5' SS-8-1' SS-9-0.5' Method Blank	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C	182401 182401 Prep Batch 182401 182401 182401 182401 182401 182401 182401 182401
Analysis Batch: 182 Lab Sample ID 720-64901-1 MB 720-182401/1-A Analysis Batch: 182 Lab Sample ID 720-64901-9 720-64901-10 720-64901-11 720-64901-12 720-64901-13 720-64901-15 720-64901-16 720-64901-17	Client Sample ID SS-1-0.5' Method Blank 2478 Client Sample ID SS-5-0.5' SS-5-1' SS-6-0.5' SS-6-1' SS-7-0.5' SS-7-1' SS-8-0.5' SS-7-1' SS-8-0.5' SS-8-1' SS-8-0.5' SS-8-1' SS-9-0.5' Method Blank	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C	182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401 182401

TestAmerica Pleasanton

14

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

1 2 3 4 5 6 7 8 9 10 11 12 13

GC/MS Semi VOA (Continued)

Analysis Batch: 182536 (Continued)

Lab Sample ID 720-64901-7	Client Sample ID SS-4-0.5'	Prep Type Total/NA	Matrix Solid	Method 8270C	Prep Batch 182401
720-64901-8	SS-4-1'	Total/NA	Solid	8270C	182401
LCS 720-182427/2-A	Lab Control Sample	Total/NA	Solid	8270C	182427

Analysis Batch: 182550

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-3	SS-2-0,5'	Total/NA	Solid	8270C	182401
720-64901-4	SS-2-1'	Total/NA	Solid	8270C	182401
720-64901-5	SS-3-0.5'	Total/NA	Solid	8270C	182401
720-64901-6	SS-3-1'	Total/NA	Solid	8270C	182401
720-64901-18	SS-9-1'	Total/NA	Solid	8270C	182427
720-64901-19	SS-10-0.5'	Total/NA	Solid	8270C	182427
20-64901-20	SS-10-1'	Total/NA	Solid	8270C	182427
720-64901-21	FD-1	Total/NA	Solid	8270C	182427
720-64901-22	FD-2	Total/NA	Solid	8270C	182427
_CS 720-182401/2-A	Lab Control Sample	Total/NA	Solid	8270C	182401

Prep Batch: 190241

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
720-64901-1	SS-1-0.5'	Total/NA	Solid	Organotin Prep
720-64901-2	SS-1-1'	Total/NA	Solid	Organotin Prep
720-64901-2 - DL	SS-1-1'	Total/NA	Solid	Organotin Prep
720-64901-3	SS-2-0.5'	Total/NA	Solid	Organotin Prep
720-64901-4	SS-2-1'	Total/NA	Solid	Organotin Prep
720-64901-5	SS-3-0,5'	Total/NA	Solid	Organotin Prep
720-64901-6 - DL	SS-3-1'	Total/NA	Solid	Organotin Prep
720-64901-6	SS-3-1'	Total/NA	Solid	Organotin Prep
LCS 580-190241/2-A	Lab Control Sample	Total/NA	Solid	Organotin Prep
LCSD 580-190241/3-A	Lab Control Sample Dup	Total/NA	Solid	Organotin Prep
MB 580-190241/1-A	Method Blank	Total/NA	Solid	Organotin Prep

4 4

Prep Batch: 190247

Lab Sample ID	Client Sample ID MONO	Ргер Туре	Matrix	Method Prep Batch
720-64901-7	SS-4-0.5'	Total/NA	Solid	Organotin Prep
720-64901-8	SS-4-1'	Total/NA	Solid	Organotin Prep
720-64901-9	SS-5-0.5'	Total/NA	Solid	Organotin Prep
720-64901-10	SS-5-1'	Total/NA	Solid	Organotin Prep
720-64901-11	SS-6-0.5'	Total/NA	Solid	Organotin Prep
720-64901-12	SS-6-1'	Total/NA	Solid	Organotin Prep
720-64901-13 - DL	SS-7-0.5'	Total/NA	Solid	Organotin Prep
720-64901-13	SS-7-0.5'	Total/NA	Solid	Organotin Prep
720-64901-13 MS	SS-7-0.5'	Total/NA	Solid	Organotin Prep
720-64901-13 MSD	SS-7-0.5'	Total/NA	Solid	Organotin Prep
720-64901-14	SS-7-1'	Total/NA	Solid	Organotin Prep
720-64901-15	SS-8-0.5'	Total/NA	Solid	Organotin Prep
720-64901-16	SS-8-1'	Total/NA	Solid	Organotin Prep
720-64901-17 - DL	SS-9-0.5'	Total/NA	Solid	Organotin Prep
720-64901-17	SS-9-0.5'	Total/NA	Solid	Organotin Prep
720-64901-17 - DL2	SS-9-0.5'	Total/NA	Solid	Organotin Prep
720-64901-17 - DL3	SS-9-0.5'	Total/NA	Solid	Organotin Prep
720-64901-18	SS-9-1'	Total/NA	Solid	Organotin Prep

TestAmerica Pleasanton

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

TestAmerica Job ID: 720-64901-1

GC/MS Semi VOA (Continued)

Prep Batch: 190247 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-18 - DL	SS-9-1'	Total/NA	Solid	Organotin Prep	
720-64901-19	SS-10-0 5'	Total/NA	Solid	Organotin Prep	
20-64901-20 - DL	SS-10-1'	Total/NA	Solid	Organotin Prep	
720-64901-20	SS-10-1'	Total/NA	Solid	Organotin Prep	
720-64901-21	FD-1	Total/NA	Solid	Organotin Prep	
720-64901-22 - DL	FD-2	Total/NA	Solid	Organotin Prep	
720-64901-22	FD-2	Total/NA	Solid	Organotin Prep	
_CS 580-190247/2-A	Lab Control Sample	Total/NA	Solid	Organotin Prep	
LCSD 580-190247/3-A	Lab Control Sample Dup	Total/NA	Solid	Organotin Prep	
MB 580-190247/1-A	Method Blank	Total/NA	Solid	Organotin Prep	
nalysis Batch: 1903	65				
_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-3	SS-2-0.5'	Total/NA	Solid	Organotins	190241
720-64901-4	SS-2-1'	Total/NA	Solid	Organotins	190241
720-64901-5	SS-3-0.5'	Total/NA	Solid	Organotins	190241
_CS 580-190241/2-A	Lab Control Sample	Total/NA	Solid	Organotins	190241
LCSD 580-190241/3-A	Lab Control Sample Dup	Total/NA	Solid	Organotins	190241
MB 580-190241/1-A	Method Blank	Total/NA	Solid	Organotins	190241
nalysis Batch: 1904	17				
ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
20-64901-1	SS-1-0.5'	Total/NA	Solid	Organotins	190241
720-64901-2	SS-1-1'	Total/NA	Solid	Organotins	190241
720-64901-2 - DL	SS-1-1'	Total/NA	Solid	Organotins	190241
720-64901-6	SS-3-1'	Total/NA	Solid	Organotins	190241
720-64901-7	SS-4-0.5'	Total/NA	Solid	Organotins	190247
720-64901-8	SS-4-1'	Total/NA	Solid	Organotins	190247
720-64901-9	SS-5-0.5'	Total/NA	Solid	Organotins	190247
720-64901-10	SS-5-1'	Total/NA	Solid	Organotins	190247
720-64901-11	SS-6-0,5'	Total/NA	Solid	Organotins	190247
720-64901-12	SS-6-1'	Total/NA	Solid	Organotins	190247
720-64901-13	SS-7-0.5'	Total/NA	Solid	Organotins	190247
720-64901-13 MS	SS-7-0,5'	Total/NA	Solid	Organotins	190247
720-64901-13 MSD	SS-7-0.5'	Total/NA	Solid	Organotins	190247
720-64901-14	SS-7-1'	Total/NA	Solid	Organotins	190247
720-64901-15	SS-8-0.5'	Total/NA	Solid	Organotins	190247
720-64901-16	SS-8-1'	Total/NA	Solid	Organotins	190247
720-64901-17	SS-9-0.5'	Total/NA	Solid	Organotins	190247
700 64001 19	SS-9-1'	Totai/NA	Solid	Organotins	190247
20-04901-10	SS-10-0.5'	Total/NA	Solid	Organotins	190247
			0.11.1	Organating	40024-
720-64901-19	SS-10-1'	Total/NA	Solid	Organotins	190247
720-64901-18 720-64901-19 720-64901-20 LCS 580-190247/2-A	SS-10-1' Lab Control Sample	Total/NA Total/NA	Solid Solid	Organotins	190247 190247
720-64901-19 720-64901-20				3	

Analysis Batch: 190539

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-6 - DL	SS-3-1'	Total/NA	Solid	Organotins	190241
720-64901-13 - DL	SS-7-0.5'	Total/NA	Solid	Organotins	190247
720-64901-17 - DL	SS-9-0.5'	Total/NA	Solid	Organotins	190247

TestAmerica Pleasanton

Page 81 of 106

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

TestAmerica Job ID: 720-64901-1

GC/MS	Semi VOA (Continue	d)
Analysis	Batch: 190539 (Continue	d)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-17 - DL2	SS-9-0.5'	Total/NA,	Solid	Organotins	190247
720-64901-17 - DL3	SS-9-0.5'	Total/NA	Solid	Organotins	190247
720-64901-18 - DL	SS-9-1'	Total/NA	Solid	Organotins	190247
720-64901-20 - DL	SS-10-1'	Total/NA	Solid	Organotins	190247
720-64901-21	FD-1	Total/NA	Solid	Organotins	190247
720-64901-22	FD-2	Total/NA	Solid	Organotins	190247
720-64901-22 - DL	FD-2	Total/NA	Solid	Organotins	190247
GC Semi VOA					
Prep Batch: 182263		7+:			

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-1	SS-1-0.5'	Total/NA	Solid	3546	
720-64901-2	SS-1-1'	Total/NA	Solid	3546	
720-64901-3	SS-2-0.5'	Total/NA	Solid	3546	
720-64901-4	SS-2-1'	Total/NA	Solid	3546	
720-64901-5	SS-3-0.5'	Total/NA	Solid	3546	
720-64901-6	SS-3-1'	Total/NA	Solid	3546	
720-64901-7	SS-4-0.5'	Total/NA	Solid	3546	
720-64901-8	SS-4-1'	Total/NA	Solid	3546	
720-64901-9	SS-5-0_5'	Total/NA	Solid	3546	
720-64901-11	SS-6-0.5'	Total/NA	Solid	3546	
LCS 720-182263/2-A	Lab Control Sample	Totai/NA	Solid	3546	
MB 720-182263/1-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 182305

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-2	SS-1-1'	Total/NA	Solid	8015B	182263
720-64901-3	SS-2-0.5'	Total/NA	Solid	8015B	182263
720-64901-4	SS-2-1'	Total/NA	Solid	8015B	182263
720-64901-5	SS-3-0.5'	Total/NA	Solid	8015B	182263

Analysis Batch: 182306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-11	SS-6-0.5'	Total/NA	Solid	8015B	182263
LCS 720-182263/2-A	Lab Control Sample	Total/NA	Solid	8015B	182263
MB 720-182263/1-A	Method Blank	Total/NA	Solid	8015B	182263

Analysis Batch: 182320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-10	SS-5-1'	Total/NA	Solid	8082	182348
720-64901-11	SS-6-0.5'	Total/NA	Solid	8082	182348
720-64901-12	SS-6-1'	Total/NA	Solid	8082	182348

Analysis Batch: 182321

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-1	SS-1-0.5'	Total/NA	Solid	8082	182348
720-64901-1 MS	SS-1-0.5'	Total/NA	Solid	8082	182348
720-64901-1 MSD	SS-1-0.5'	Total/NA	Solid	8082	182348
720-64901-2	SS-1-1'	Total/NA	Solid	8082	182348

TestAmerica Pleasanton

5/29/2015

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Analysis Batch: 182321 (Continued)

Client Sample ID

Lab Control Sample

Method Blank

SS-2-0.5'

SS-3-0,5'

SS-2-1'

GC Semi VOA (Continued)

Method

8082

8082

8082

8082

8082

Matrix

Solid

Solid

Solid

Solid

Solid

1 2 3 4 5 6 7 8 9 10 11 12 13

Prep Batch

182348

182348

182348

182348

182348

Analysis Batch: 182323

Lab Sample ID

720-64901-3

720-64901-4

720-64901-5

LCS 720-182348/2-A

MB 720-182348/1-A

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-6	SS-3-1'	Total/NA	Solid	8015B	182263
720-64901-7	SS-4-0.5'	Total/NA	Solid	8015B	182263
720-64901-9	SS-5-0.5'	Total/NA	Solid	8015B	182263

Ргер Туре

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Batch: 182348

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-1	SS-1-0_5'	Total/NA	Solid	3546	
720-64901-1 MS	SS-1-0_5'	Total/NA	Solid	3546	
720-64901-1 MSD	SS-1-0.5'	Total/NA	Solid	3546	
720-64901-2	SS-1-1'	Total/NA	Solid	3546	
720-64901-3	SS-2-0.5'	Total/NA	Solid	3546	
720-64901-4	SS-2-1'	Total/NA	Solid	3546	
720-64901-5	SS-3-0.5'	Total/NA	Solid	3546	
720-64901-6	SS-3-1'	Total/NA	Solid	3546	
720-64901-7	SS-4-0.5'	Total/NA	Solid	3546	
720-64901-8	SS-4-1'	Total/NA	Solid	3546	
720-64901-9	SS-5-0.5'	Total/NA	Solid	3546	
720-64901-10	SS-5-1'	Total/NA	Solid	3546	
720-64901-11	SS-6-0.5'	Total/NA	Solid	3546	
720-64901-12	SS-6-1'	Total/NA	Solid	3546	
720-64901-13	SS-7-0.5'	Total/NA	Solid	3546	
720-64901-14	SS-7-1'	Total/NA	Solid	3546	
720-64901-15	SS-8-0.5'	Total/NA	Solid	3546	
720-64901-16	SS-8-1'	Total/NA	Solid	3546	
720-64901-17	SS-9-0.5'	Total/NA	Solid	3546	
720-64901-18	SS-9-1'	Total/NA	Solid	3546	
720-64901-19	SS-10-0.5'	Total/NA	Solid	3546	
720-64901-20	SS-10-1'	Total/NA	Solid	3546	
LCS 720-182348/2-A	Lab Control Sample	Total/NA	Solid	3546	
MB 720-182348/1-A	Method Blank	Total/NA	Solid	3546	

Prep Batch: 182368

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-10	SS-5-1'	Total/NA	Solid	3546	
720-64901-12	SS-6-1'	Total/NA	Solid	3546	
720-64901-13	SS-7-0.5'	Total/NA	Solid	3546	
720-64901-14	SS-7-1'	Total/NA	Solid	3546	
720-64901-15	SS-8-0.5'	Total/NA	Solid	3546	
720-64901-16	SS-8-1'	Total/NA	Solid	3546	
720-64901-17	SS-9-0.5'	Total/NA	Solid	3546	
720-64901-18	SS-9-1'	Total/NA	Solid	3546	
720-64901-19	SS-10-0.5'	Total/NA	Solid	3546	
720-64901-20	SS-10-1'	Total/NA	Solid	3546	

TestAmerica Pleasanton

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Prep Batch: 182368 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-21	FD-1	Total/NA	Solid	3546	
720-64901-22	FD-2	Total/NA	Solid	3546	
LCS 720-182368/2-A	Lab Control Sample	Total/NA	Solid	3546	
MB 720-182368/1-A	Method Blank	Total/NA	Solid	3546	
rep Batch: 182388					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-21	FD-1	Total/NA	Solid	3546	
720-64901-22	FD-2	Total/NA	Solid	3546	
LCS 720-182388/2-A	Lab Control Sample	Total/NA	Solid	3546	
MB 720-182388/1-A	Method Blank	Total/NA	Solid	3546	
nalysis Batch: 182	412				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-13	SS-7-0.5'	Total/NA	Solid	8082	182348
720-64901-14	SS-7-1'	Total/NA	Solid	8082	182348
720-64901-15	SS-8-0.5'	Total/NA	Solid	8082	182348
720-64901-16	SS-8-1'	Total/NA	Solid	8082	182348

720-64901-16	SS-8-1'	Total/NA	Solid
720-64901-17	SS-9-0,5'	Total/NA	Solid
720-64901-18	SS-9-1'	Total/NA	Solid
720-64901-22	FD-2	Total/NA	Solid
LCS 720-182388/2-A	Lab Control Sample	Total/NA	Solid
MB 720-182388/1-A	Method Blank	Total/NA	Solid

Analysis Batch: 182413

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-6	SS-3-1'	Total/NA	Solid	8082	182348
720-64901-7	SS-4-0.5'	Total/NA	Solid	8082	182348
720-64901-8	SS-4-1'	Total/NA	Solid	8082	182348
720-64901-9	SS-5-0.5'	Total/NA	Solid	8082	182348
720-64901-19	SS-10-0.5'	Total/NA	Solid	8082	182348
720-64901-20	SS-10-1'	Total/NA	Solid	8082	182348
720-64901-21	FD-1	Total/NA	Solid	8082	182388

Analysis Batch: 182422

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-8	SS-4-1'	Total/NA	Solid	8015B	182263
720-64901-12	SS-6-1'	Total/NA	Solid	8015B	182368
720-64901-13	SS-7-0.5'	Total/NA	Solid	8015B	182368
720-64901-14	SS-7-1'	Total/NA	Solid	8015B	182368
720-64901-15	SS-8-0.5'	Total/NA	Solid	8015B	182368
720-64901-20	SS-10-1'	Total/NA	Solid	8015B	182368

Analysis Batch: 182423

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-1	SS-1-0.5'	Total/NA	Solid	8015B	182263
720-64901-10	SS-5-1'	Total/NA	Solid	8015B	182368
720-64901-21	FD-1	Total/NA	Solid	8015B	182368
720-64901-22	FD-2	Total/NA	Solid	8015B	182368
LCS 720-182368/2-A	Lab Control Sample	Total/NA	Solid	8015B	182368
MB 720-182368/1-A	Method Blank	Total/NA	Solid	8015B	182368

TestAmerica Pleasanton

8082

8082

8082

8082

8082

182348

182348

182388

182388

182388

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Analysis Batch: 182528

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
SS-8-1'	Total/NA	Solid	8015B	182368
SS-9-0.5'	Total/NA	Solid	8015B	182368
SS-9-1'	Total/NA	Solid	8015B	182368
SS-10-0.5'	Total/NA	Solid	8015B	182368
	SS-8-1' SS-9-0.5' SS-9-1'	SS-8-1'Total/NASS-9-0.5'Total/NASS-9-1'Total/NA	SS-8-1'Total/NASolidSS-9-0.5'Total/NASolidSS-9-1'Total/NASolid	SS-8-1'Total/NASolid8015BSS-9-0.5'Total/NASolid8015BSS-9-1'Total/NASolid8015B

Metals

Prep Batch: 182367

Client: URS Corporat Project/Site: Blue Gr		Client: URS Corporation TestAmerica Job ID: 720-64901-1 Project/Site: Blue Greenway 900 Innes					
Analysis Batch: 182	2528						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
720-64901-16	SS-8-1'	Total/NA	Solid	8015B	182368		
720-64901-17	SS-9-0.5'	Total/NA	Solid	8015B	182368		
720-64901-18	SS-9-1'	Total/NA	Solid	8015B	182368		
720-64901-19	SS-10-0_5'	Total/NA	Solid	8015B	182368		
letals							
Prep Batch: 182367							
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch		
720-64901-1	SS-1-0.5'	Total/NA	Solid	7471A			
720-64901-2	SS-1-1'	Total/NA	Solid	7471A			
720-64901-3	SS-2-0.5'	Total/NA	Solid	7471A			
720-64901-4	SS-2-1'	Total/NA	Solid	7471A			
720-64901-5	SS-3-0.5'	Total/NA	Solid	7471A			
720-64901-6	SS-3-1'	Total/NA	Solid	7471A			
720-64901-7	SS-4-0.5'	Total/NA	Solid	7471A			
720-64901-8	SS-4-1'	Total/NA	Solid	7471A			
720-64901-9	SS-5-0.5'	Total/NA	Solid	7471A			
720-64901-10	SS-5-1'	Total/NA	Solid	7471A			
LCS 720-182367/2-A	Lab Control Sample	Total/NA	Solid	7471A			
LCSD 720-182367/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A			
MB 720-182367/1-A	Method Blank	Total/NA	Solid	7471A			

Prep Batch: 182381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-1	SS-1-0.5'	Total/NA	Solid	3050B	
720-64901-2	SS-1-1'	Total/NA	Solid	3050B	
720-64901-3	SS-2-0.5'	Total/NA	Solid	3050B	
720-64901-4	SS-2-1'	Total/NA	Solid	3050B	
720-64901-5	SS-3-0.5'	Total/NA	Solid	3050B	
720-64901-6	SS-3-1'	Total/NA	Solid	3050B	
720-64901-7	SS-4-0,5'	Total/NA	Solid	3050B	
720-64901-8	SS-4-1'	Total/NA	Solid	3050B	
720-64901-9	SS-5-0.5'	Total/NA	Solid	3050B	
720-64901-10	SS-5-1'	Total/NA	Solid	3050B	
720-64901-11	SS-6-0.5'	Total/NA	Solid	3050B	
LCS 720-182381/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-182381/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 720-182381/25-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 720-182381/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 182392

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-12	SS-6-1'	Total/NA	Solid	3050B	
720-64901-13	SS-7-0.5'	Total/NA	Solid	3050B	
720-64901-14	SS-7-1'	Total/NA	Solid	3050B	
720-64901-15	SS-8-0.5'	Total/NA	Solid	3050B	
720-64901-16	SS-8-1'	Total/NA	Solid	3050B	
720-64901-17	SS-9-0.5'	Total/NA	Solid	3050B	
720-64901-18	SS-9-1'	Total/NA	Solid	3050B	
720-64901-19	SS-10-0.5'	Total/NA	Solid	3050B	
720-64901-20	SS-10-1'	Total/NA	Solid	3050B	
720-64901-21	FD-1	Total/NA	Solid	3050B	

TestAmerica Pleasanton

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Metals (Continued)

Lab Sample ID

720-64901-22

Prep Batch: 182392 (Continued)

Client Sample ID

FD-2

LCS 720-182392/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-182392/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 720-182392/25-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 720-182392/1-A	Method Blank	Total/NA	Solid	3050B	
Prep Batch: 182393					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-11	SS-6-0.5'	Total/NA	Solid	7471A	
720-64901-12	SS-6-1'	Total/NA	Solid	7471A	
720-64901-13	SS-7-0.5'	Total/NA	Solid	7471A	
720-64901-14	SS-7-1'	Total/NA	Solid	7471A	
720-64901-15	SS-8-0.5'	Total/NA	Solid	7471A	
720-64901-16	SS-8-1'	Total/NA	Solid	7471A	
720-64901-17	SS-9-0.5'	Total/NA	Solid	7471A	
720-64901-18	SS-9-1'	Total/NA	Solid	7471A	
720-64901-19	SS-10-0.5'	Total/NA	Solid	7471A	
720-64901-20	SS-10-1'	Total/NA	Solid	7471A	
720-64901-21	FD-1	Total/NA	Solid	7471A	
720-64901-22	FD-2	Total/NA	Solid	7471A	
LCS 720-182393/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 720-182393/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	0
MB 720-182393/1-A	Method Blank	Total/NA	Solid	7471A	
Analysis Batch: 18245	i1				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-1	SS-1-0.5'	Total/NA	Solid	6010B	182381
720-64901-2	SS-1-1'	Total/NA	Solid	6010B	182381
720-64901-3	SS-2-0.5'	Total/NA	Solid	6010B	182381
720-64901-4	SS-2-1'	Total/NA	Solid	6010B	182381
720-64901-5	SS-3-0.5'	Total/NA	Solid	6010B	182381

Ргер Туре

Total/NA

Matrix

Solid

720-64901-3	SS-2-0.5'	Total/NA	Solid	6010B
720-64901-3	33-2-0.5	Total/NA	Solid	00106
720-64901-4	SS-2-1'	Total/NA	Solid	6010B
720-64901-5	SS-3-0.5'	Total/NA	Solid	6010B
720-64901-6	SS-3-1'	Total/NA	Solid	6010B
720-64901-7	SS-4-0.5'	Total/NA	Solid	6010B
720-64901-8	SS-4-1'	Total/NA	Solid	6010B
720-64901-9	SS-5-0.5'	Total/NA	Solid	6010B
720-64901-10	SS-5-1'	Total/NA	Solid	6010B
720-64901-11	SS-6-0.5'	Total/NA	Solid	6010B
LCS 720-182381/2-A	Lab Control Sample	Total/NA	Solid	6010B
LCSD 720-182381/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B
LCSSRM 720-182381/25-A	Lab Control Sample	Total/NA	Solid	6010B
MB 720-182381/1-A	Method Blank	Total/NA	Solid	6010B
Analysis Batch: 182468	5			

Method Prep Batch Lab Sample ID **Client Sample ID** Ргер Туре Matrix Solid 6010B LCS 720-182392/2-A Lab Control Sample Total/NA 182392 Solid 182392 LCSD 720-182392/3-A Total/NA 6010B Lab Control Sample Dup LCSSRM 720-182392/25-A Solid 6010B 182392 Lab Control Sample Total/NA MB 720-182392/1-A Method Blank Total/NA Solid 6010B 182392

TestAmerica Pleasanton

5/29/2015

Method

3050B

Prep Batch

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Metals (Continued)

Analysis Batch: 182486

Metals (Continue	d)				
Analysis Batch: 1824	86				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-11	SS-6-0.5'	Total/NA	Solid	7471A	182393
720-64901-12	SS-6-1'	Total/NA	Solid	7471A	182393
720-64901-13	SS-7-0,5'	Total/NA	Solid	7471A	182393
720-64901-14	SS-7-1'	Total/NA	Solid	7471A	182393
720-64901-15	SS-8-0,5'	Total/NA	Solid	7471A	182393
720-64901-16	SS-8-1'	Total/NA	Solid	7471A	182393
720-64901-17	SS-9-0,5'	Total/NA	Solid	7471A	182393
720-64901-18	SS-9-1'	Total/NA	Solid	7471A	182393
720-64901-19	SS-10-0.5'	Total/NA	Solid	7471A	182393
720-64901-20	SS-10-1'	Total/NA	Solid	7471A	182393
720-64901-21	FD-1	Total/NA	Solid	7471A	182393
720-64901-22	FD-2	Total/NA	Solid	7471A	182393
LCS 720-182393/2-A	Lab Control Sample	Total/NA	Solid	7471A	182393
LCSD 720-182393/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	182393
MB 720-182393/1-A	Method Blank	Total/NA	Solid	7471A	182393
nalysis Batch: 1825	500				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-1	SS-1-0,5'	Total/NA	Solid	7471A	182367
720-64901-2	SS-1-1'	Total/NA	Solid	7471A	182367

Analysis Batch: 182500

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-1	SS-1-0.5'	Total/NA	Solid	7471A	182367
720-64901-2	SS-1-1'	Total/NA	Solid	7471A	182367
720-64901-3	SS-2-0,5'	Total/NA	Solid	7471A	182367
720-64901-4	SS-2-1'	Total/NA	Solid	7471A	182367
720-64901-5	SS-3-0.5'	Total/NA	Solid	7471A	182367
720-64901-6	SS-3-1'	Total/NA	Solid	7471A	182367
720-64901-7	SS-4-0.5'	Total/NA	Solid	7471A	182367
720-64901-8	SS-4-1'	Total/NA	Solid	7471A	182367
720-64901-9	SS-5-0.5'	Total/NA	Solid	7471A	182367
720-64901-10	SS-5-1'	Total/NA	Solid	7471A	182367
LCS 720-182367/2-A	Lab Control Sample	Total/NA	Solid	7471A	182367
LCSD 720-182367/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	182367
MB 720-182367/1-A	Method Blank	Total/NA	Solid	7471A	182367

Analysis Batch: 182523

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-5	SS-3-0.5'	Total/NA	Solid	6010B	182381
720-64901-9	SS-5-0.5'	Total/NA	Solid	6010B	182381
720-64901-10	SS-5-1'	Total/NA	Solid	6010B	182381
720-64901-11	SS-6-0.5'	Total/NA	Solid	6010B	182381

Analysis Batch: 182527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-12	SS-6-1'	Total/NA	Solid	6010B	182392
720-64901-13	SS-7-0.5'	Total/NA	Solid	6010B	182392
720-64901-14	SS-7-1'	Total/NA	Solid	6010B	182392
720-64901-15	SS-8-0.5'	Total/NA	Solid	6010B	182392
720-64901-16	SS-8-1'	Total/NA	Solid	6010B	182392
720-64901-17	SS-9-0.5'	Total/NA	Solid	6010B	182392
720-64901-18	SS-9-1'	Total/NA	Solid	6010B	182392
720-64901-19	SS-10-0.5'	Total/NA	Solid	6010B	182392
720-64901-20	SS-10-1'	Total/NA	Solid	6010B	182392
720-64901-21	FD-1	Total/NA	Solid	6010B	182392

TestAmerica Pleasanton

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Metals (Continued)

Analysis Batch: 182527 (Continued)

Analysis Batch: 18	2527 (Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-22	FD-2	Total/NA	Solid	6010B	182392
Analysis Batch: 18	2594				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-12	SS-6-1'	Total/NA	Solid	6010B	182392
720-64901-13	SS-7-0,5'	Total/NA	Solid	6010B	182392
720-64901-14	SS-7-1'	Total/NA	Solid	6010B	182392
720-64901-15	SS-8-0,5'	Total/NA	Solid	6010B	182392
720-64901-16	SS-8-1'	Total/NA	Solid	6010B	182392
720-64901-17	SS-9-0 5'	Total/NA	Solid	6010B	182392
720-64901-17	SS-9-0.5'	Total/NA	Solid	6010B	182392
720-64901-18	SS-9-1'	Total/NA	Solid	6010B	182392
720-64901-19	SS-10-0.5'	Total/NA	Solid	6010B	182392
720-64901-20	SS-10-1'	Total/NA	Solid	6010B	182392
720-64901-22	FD-2	Total/NA	Solid	6010B	182392
Analysis Batch: 18	32595				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-64901-5	SS-3-0.5'	Total/NA	Solid	6010B	182381
720-64901-9	SS-5-0_5'	Total/NA	Solid	6010B	182381
720-64901-11	SS-6-0_5'	Total/NA	Solid	6010B	182381
Analysis Batch: 18	32602				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-21	FD-1	Total/NA	Solid	6010B	182392
Analysis Batch: 18	32603				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Contraction of the second se					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-64901-10	SS-5-1'	Total/NA	Solid	6010B	182381

Lab Sample ID: 720-64901-1

Client Sample ID: SS-1-0.5' Date Collected: 05/19/15 07:31 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
гер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
otal/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
otal/NA	Analysis	8270C		5	182430	05/27/15 23:58	MQL	TAL PLS
otal/NA	Prep	Organotin Prep			190241	05/23/15 15:17	ERZ	TAL SEA
otal/NA	Analysis	Organotins		1	190417	05/27/15 20:49	ERB	TAL SEA
otal/NA	Prep	3546			182263	05/22/15 12:51	DFR	TAL PLS
otal/NA	Analysis	8015B		5	182423	05/27/15 15:07	JXL	TAL PLS
otal/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
otal/NA	Analysis	8082		1	182321	05/26/15 22:22	DCH	TAL PLS
otal/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
otal/NA	Analysis	6010B		4	182451	05/27/15 12:32	EFH	TAL PLS
otal/NA	Prep	7471A			182367	05/26/15 16:15	ECT	TAL PLS
otal/NA	Analysis	7471A		1	182500	05/27/15 19:09	SLK	TAL PLS

Client Sample ID: SS-1-1'

Date Collected: 05/19/15 07:35 Date Received: 05/19/15 15:00

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		10	182536	05/28/15 18:01	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190241	05/23/15 15:17	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/27/15 21:12	ERB	TAL SEA
Total/NA	Prep	Organotin Prep	DL		190241	05/23/15 15:17	ERZ	TAL SEA
Total/NA	Analysis	Organotins	DL	5	190417	05/27/15 21:35	ERB	TAL SEA
Total/NA	Prep	3546			182263	05/22/15 12:51	DFR	TAL PLS
Total/NA	Analysis	8015B		10	182305	05/23/15 23:01	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		1	182321	05/26/15 22:39	DCH	TAL PLS
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Total/NA	Analysis	6010B		4	182451	05/27/15 12:37	EFH	TAL PLS
Total/NA	Prep	7471A			182367	05/26/15 16:15	ECT	TAL PLS
Total/NA	Analysis	7471A		5	182500	05/27/15 20:07	SLK	TAL PLS

Client Sample ID: SS-2-0.5' Date Collected: 05/19/15 07:43 Date Received: 05/19/15 15:00

1		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
	Total/NA	Analysis	8270C		5	182550	05/28/15 16:38	MQL	TAL PLS
	Total/NA	Prep	Organotin Prep			190241	05/23/15 15:17	ERZ	TAL SEA
	Total/NA	Analysis	Organotins		5	190365	05/27/15 01:57	ERB	TAL SEA
	Total/NA	Prep	3546			182263	05/22/15 12:51	DFR	TAL PLS

TestAmerica Pleasanton

Matrix: Solid

Lab Sample ID: 720-64901-3

Client Sample ID: SS-2-0.5' Date Collected: 05/19/15 07:43 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8015B		10	182305	05/24/15 00:58	JXL	TAL PLS	
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS	
Total/NA	Analysis	8082		1	182321	05/26/15 22:55	DCH	TAL PLS	
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS	
Total/NA	Analysis	6010B		4	182451	05/27/15 12:42	EFH	TAL PLS	
Total/NA	Prep	7471A			182367	05/26/15 16:15	ECT	TAL PLS	
Total/NA	Analysis	7471A		1	182500	05/27/15 19:14	SLK	TAL PLS	

Client Sample ID: SS-2-1' Date Collected: 05/19/15 07:47 Date Received: 05/19/15 15:00

Ргер Туре

Total/NA

Total/NA

Total/NA

Batch Batch Dilution Batch Prepared Method Number or Analyzed Analyst Туре Run Factor Prep 182401 05/26/15 23:13 DFR 3546 182550 05/28/15 16:59 MQL Analysis 8270C 5 190241 05/23/15 15:17 ERZ Prep Organotin Prep

	1 Otdar i Wit		e ganetin rep					
	Total/NA	Analysis	Organotins	1	190365	05/27/15 02:20	ERB	TAL SEA
	Total/NA	Prep	3546		182263	05/22/15 12:51	DFR	TAL PLS
	Total/NA	Analysis	8015B	10	182305	05/24/15 01:27	JXL	TAL PLS
	Total/NA	Prep	3546		182348	05/26/15 13:18	JRD	TAL PLS
i.	Total/NA	Analysis	8082	1	182321	05/26/15 23:12	DCH	TAL PLS
	Total/NA	Prep	3050B		182381	05/26/15 17:30	ASB	TAL PLS
	Total/NA	Analysis	6010B	4	182451	05/27/15 12:47	EFH	TAL PLS
	Total/NA	Prep	7471A		182367	05/26/15 16:15	ECT	TAL PLS
	Total/NA	Analysis	7471A	5	182500	05/27/15 20:10	SLK	TAL PLS

Client Sample ID: SS-3-0.5' Date Collected: 05/19/15 07:55 Date Received: 05/19/15 15:00

Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		2	182550	05/28/15 17:21	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190241	05/23/15 15:17	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190365	05/27/15 02:43	ERB	TAL SEA
Total/NA	Prep	3546			182263	05/22/15 12:51	DFR	TAL PLS
Total/NA	Analysis	8015B		2	182305	05/24/15 01:56	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		1	182321	05/26/15 23:29	DCH	TAL PLS
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Total/NA	Analysis	6010B		1	182523	05/27/15 22:41	SLK	TAL PLS
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Total/NA	Analysis	6010B		1	182595	05/28/15 18:15	CAM	TAL PLS

TestAmerica Pleasanton

Lab Sample ID: 720-64901-3

Lab Sample ID: 720-64901-4

Lab

TAL PLS

TAL PLS

TAL SEA

Matrix: Solid

Matrix: Solid

Matrix: Solid

9 10

Lab Sample ID: 720-64901-5

Page 90 of 106

Client Sample ID: SS-3-0.5' Date Collected: 05/19/15 07:55 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS	
Total/NA	Analysis	6010B		4	182451	05/27/15 12:52	EFH	TAL PLS	
Total/NA	Prep	7471A			182367	05/26/15 16:15	ECT	TAL PLS	
Total/NA	Analysis	7471A		1	182500	05/27/15 19:19	SLK	TAL PLS	

Client Sample ID: SS-3-1' Date Collected: 05/19/15 07:59 Date Received: 05/19/15 15:00

	Batch	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ргер Туре	Туре		-		182401	05/26/15 23:13	DFR	TAL PLS
Total/NA Total/NA	Prep Analysis	3546 8270C		2	182550		MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190241	05/23/15 15:17	ERZ	TAL SEA
Total/NA	Analysis	Organotins		5	190417	05/27/15 21:58	ERB	TAL SEA
Total/NA	Prep	Organotin Prep	DL		190241	05/23/15 15:17	ERZ	TAL SEA
Total/NA	Analysis	Organotins	DL	25	190539	05/28/15 12:01	ERB	TAL SEA
Total/NA	Prep	3546			182263	05/22/15 12:51	DFR	TAL PLS
Total/NA	Analysis	8015B		5	182323	05/27/15 02:18	JXL	TAL PLS
Total/NA	Prep	3546			182348			TAL PLS
Total/NA	Analysis	8082		5	182413	05/27/15 10:49	DCH	TAL PLS
Total/NA	Prep	3050B			182381			TAL PLS
Total/NA	Analysis	6010B		4	182451			TAL PLS
Total/NA	Prep	7471A			182367			TAL PLS
Total/NA	Analysis	7471A		10	182500	05/27/15 20:12	SLK	TAL PLS

Client Sample ID: SS-4-0.5' Date Collected: 05/19/15 08:19 Date Received: 05/19/15 15:00

Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		2	182536	05/28/15 18:27	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/28/15 00:15	ERB	TAL SE/
Total/NA	Prep	3546			182263	05/22/15 12:51	DFR	TAL PLS
Total/NA	Analysis	8015B		5	182323	05/27/15 02:42	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		5	182413	05/27/15 09:59	DCH	TAL PL
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PL
Total/NA	Analysis	6010B		4	182451	05/27/15 13:12	EFH	TAL PL
Total/NA	Prep	7471A			182367	05/26/15 16:15	ECT	TAL PL
Total/NA	Analysis	7471A		100	182500	05/27/15 20:14	SLK	TAL PL

TestAmerica Pleasanton

10

Lab Sample ID: 720-64901-6 Matrix: Solid

Lab Sample ID: 720-64901-7

Lab Sample ID: 720-64901-8 Matrix: Solid

Date Collected: 05/19/15 08:28 Date Received: 05/19/15 15:00

Client Sample ID: SS-4-1'

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		10	182536	05/28/15 18:52	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/28/15 00:38	ERB	TAL SEA
Total/NA	Prep	3546			182263	05/22/15 12:51	DFR	TAL PLS
Total/NA	Analysis	8015B		50	182422	05/27/15 13:12	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		5	182413	05/27/15 10:16	DCH	TAL PLS
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Totai/NA	Analysis	6010B		4	182451	05/27/15 13:17	EFH	TAL PLS
Total/NA	Prep	7471A			182367	05/26/15 16:15	ECT	TAL PLS
Total/NA	Analysis	7471A		100	182500	05/27/15 20:22	SLK	TAL PLS

Client Sample ID: SS-5-0.5' Date Collected: 05/19/15 08:40 Date Received: 05/19/15 15:00

Lab Sample ID: 720-64901-9

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		5	182478	05/28/15 04:32	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/28/15 01:01	ERB	TAL SEA
Total/NA	Prep	3546			182263	05/22/15 12:51	DFR	TAL PLS
Total/NA	Analysis	8015B		1	182323	05/27/15 01:53	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		1	182413	05/27/15 10:32	DCH	TAL PLS
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Totai/NA	Analysis	6010B		1	182523	05/27/15 22:46	SLK	TAL PLS
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Total/NA	Analysis	6010B		1	182595	05/28/15 18:20	CAM	TAL PLS
Tota!/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Total/NA	Analysis	6010B		4	182451	05/27/15 13:22	EFH	TAL PLS
Total/NA	Prep	7471A			182367	05/26/15 16:15	ECT	TAL PLS
Total/NA	Analysis	7471A	,	1	182500	05/27/15 19:55	SLK	TAL PLS

Client Sample ID: SS-5-1' Date Collected: 05/19/15 08:47 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		5	182478	05/28/15 04:53	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA

TestAmerica Pleasanton

Lab Sample ID: 720-64901-10

Lab Sample ID: 720-64901-10 Matrix: Solid

Client Sample ID: SS-5-1' Date Collected: 05/19/15 08:47 Date Received: 05/19/15 15:00

Prep Type	Batch	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Organotins	- Kull	1 - 1	190417	05/28/15 01:23	-	TAL SEA
	•			i i				
Total/NA	Prep	3546			182368	05/26/15 18:29	JRD	TAL PLS
Total/NA	Analysis	8015B		2	182423	05/27/15 21:53	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		1	182320	05/26/15 22:22	DCH	TAL PLS
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Total/NA	Analysis	6010B		1	182523	05/27/15 22:51	SLK	TAL PLS
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Total/NA	Analysis	6010B		4	182451	05/27/15 13:27	EFH	TAL PLS
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS
Total/NA	Analysis	6010B		1	182603	05/28/15 20:10	CAM	TAL PLS
Total/NA	Prep	7471A			182367	05/26/15 16:15	ECT	TAL PLS
Total/NA	Analysis	7471 A		1	182500	05/27/15 19:57	SLK	TAL PLS

Client Sample ID: SS-6-0.5' Date Collected: 05/19/15 09:01 Date Received: 05/19/15 15:00

Lab Sample ID: 720-64901-11 Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS	1
Total/NA	Analysis	8270C		2	182478	05/28/15 05:15	MQL	TAL PLS	
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA	
Totai/NA	Analysis	Organotins		1	190417	05/28/15 01:46	ERB	TAL SEA	
Total/NA	Prep	3546			182263	05/22/15 12:51	DFR	TAL PLS	
Total/NA	Analysis	8015B		1	182306	05/24/15 02:55	JXL	TAL PLS	
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS	
Total/NA	Analysis	8082		1	182320	05/26/15 22:39	DCH	TAL PLS	
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS	
Total/NA	Analysis	6010B		1	182523	05/27/15 22:55	SLK	TAL PLS	
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS	
Total/NA	Analysis	6010B		1	182595	05/28/15 18:29	CAM	TAL PLS	
Total/NA	Prep	3050B			182381	05/26/15 17:30	ASB	TAL PLS	
Total/NA	Analysis	6010B		4	182451	05/27/15 13:32	EFH	TAL PLS	
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS	
Total/NA	Analysis	7471A		1	182486	05/27/15 16:44	SLK	TAL PLS	

Client Sample ID: SS-6-1' Date Collected: 05/19/15 09:10 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		2	182478	05/28/15 05:36	MQL	TAL PLS

TestAmerica Pleasanton

Lab Sample ID: 720-64901-12

5/29/2015

Lab Sample ID: 720-64901-12 Matrix: Solid

Client Sample ID: SS-6-1' Date Collected: 05/19/15 09:10 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/28/15 02:09	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		2	182422	05/27/15 18:28	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		1	182320	05/26/15 22:55	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182527	05/28/15 02:18	SLK	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182594	05/28/15 17:10	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		5	182486	05/27/15 17:36	SLK	TAL PLS

Client Sample ID: SS-7-0.5' Date Collected: 05/19/15 09:18 Date Received: 05/19/15 15:00

Lab Sample ID: 720-64901-13

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		10	182478	05/28/15 05:58	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/28/15 02:32	ERB	TAL SEA
Total/NA	Prep	Organotin Prep	DL		190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins	DL	10	190539	05/28/15 12:24	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		5	182422	05/27/15 18:57	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		2	182412	05/27/15 09:59	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182527	05/28/15 02:22	SLK	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182594	05/28/15 17:14	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		5	182486	05/27/15 17:38	SLK	TAL PLS

Client Sample ID: SS-7-1' Date Collected: 05/19/15 09:31 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		5	182478	05/28/15 06:19	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA

TestAmerica Pleasanton

Lab Sample ID: 720-64901-14

Matrix: Solid

Matrix: Solid

Lab Sample ID: 720-64901-14

Lab Sample ID: 720-64901-15

Client Sample ID: SS-7-1' Date Collected: 05/19/15 09:31 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Organotins		1	190417	05/28/15 03:41	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		5	182422	05/27/15 19:26	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		10	182412	05/27/15 10:16	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B	2	4	182527	05/28/15 02:27	SLK	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182594	05/28/15 17:19	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		5	182486	05/27/15 17:40	SLK	TAL PLS

Client Sample ID: SS-8-0.5' Date Collected: 05/19/15 09:36 Date Received: 05/19/15 15:00

Prep Type	Batch	Batch Method	Run	Dilution Factor	Batch Number	Prepared	Analyse	Lab
Total/NA	Type Prep	3546	Kull		182401	or Analyzed	Analyst DFR	TAL PLS
Total/NA	Analysis	8270C		5	182478	05/28/15 06:41		TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/28/15 04:03	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		3	182422	05/27/15 19:56	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		5	182412	05/27/15 10:32	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182527	05/28/15 02:32	SLK	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182594	05/28/15 17:24	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		10	182486	05/27/15 17:42	SLK	TAL PLS

Client Sample ID: SS-8-1' Date Collected: 05/19/15 09:51 Date Received: 05/19/15 15:00

Lab Sample ID	: 720-64901-16
	Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		5	182478	05/28/15 07:02	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Totai/NA	Analysis	Organotins		1	190417	05/28/15 04:26	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		5	182528	05/28/15 11:23	JXL	TAL PLS

TestAmerica Pleasanton

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

Matrix: Solid

Matrix: Solid

Lab Sample ID: 720-64901-16

Lab Sample ID: 720-64901-17

Client Sample ID: SS-8-1' Date Collected: 05/19/15 09:51 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		10	182412	05/27/15 10:49	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182527	05/28/15 02:36	SLK	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182594	05/28/15 17:28	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		100	182486	05/27/15 17:45	SLK	TAL PLS

Client Sample ID: SS-9-0.5' Date Collected: 05/19/15 10:26 Date Received: 05/19/15 15:00

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182401	05/26/15 23:13	DFR	TAL PLS
Total/NA	Analysis	8270C		5	182478	05/28/15 07:24	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/28/15 04:49	ERB	TAL SEA
Total/NA	Prep	Organotin Prep	DL		190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins	DL	5	190539	05/28/15 12:47	ERB	TAL SEA
Total/NA	Prep	Organotin Prep	DL2		190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins	DL2	50	190539	05/28/15 13:10	ERB	TAL SEA
Total/NA	Prep	Organotin Prep	DL3		190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins	DL3	250	190539	05/28/15 15:05	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		10	182528	05/28/15 11:47	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		10	182412	05/27/15 11:06	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182527	05/28/15 02:41	SLK	TAL PLS
Totai/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		10	182594	05/28/15 17:47	CAM	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		50	182594	05/28/15 17:52	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		100	182486	05/27/15 17:48	SLK	TAL PLS

Client Sample ID: SS-9-1' Date Collected: 05/19/15 10:20 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182427	05/27/15 09:39	NVP	TAL PLS

TestAmerica Pleasanton

Lab Sample ID: 720-64901-18

Lab Sample ID: 720-64901-18 Matrix: Solid

Client Sample ID: SS-9-1' Date Collected: 05/19/15 10:20 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8270C		10	182550	05/28/15 14:50	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/28/15 05:11	ERB	TAL SEA
Total/NA	Prep	Organotin Prep	DL		190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins	DL	10	190539	05/28/15 13:33	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		20	182528	05/28/15 12:11	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		50	182412	05/27/15 11:22	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182527	05/28/15 02:46	SLK	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182594	05/28/15 17:33	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		100	182486	05/27/15 17:50	SLK	TAL PLS

Client Sample ID: SS-10-0.5' Date Collected: 05/19/15 10:10 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182427	05/27/15 09:39	NVP	TAL PLS
Total/NA	Analysis	8270C		1	182550	05/28/15 15:11	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190417	05/28/15 05:34	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		1	182528	05/28/15 10:59	JXL	TAL PLS
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS
Total/NA	Analysis	8082		2	182413	05/27/15 11:06	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182527	05/28/15 02:50	SLK	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		1	182594	05/28/15 17:57	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		10	182486	05/27/15 17:52	SLK	TAL PLS

Client Sample ID: SS-10-1' Date Collected: 05/19/15 10:14 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182427	05/27/15 09:39	NVP	TAL PLS
Total/NA	Analysis	8270C		2	182550	05/28/15 15:33	MQL	TAL PLS

TestAmerica Pleasanton

Lab Sample ID: 720-64901-20

Lab Sample ID: 720-64901-19 Matrix: Solid

5/29/2015

Lab Sample ID: 720-64901-20 Matrix: Solid

Lab Sample ID: 720-64901-21

Matrix: Solid

Client Sample ID: SS-10-1' Date Collected: 05/19/15 10:14 Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA	
Total/NA	Analysis	Organotins		1	190417	05/28/15 05:57	ERB	TAL SEA	
Total/NA	Ргер	Organotin Prep	DL		190247	05/24/15 18:29	ERZ	TAL SEA	
Total/NA	Analysis	Organotins	DL	10	190539	05/28/15 13:56	ERB	TAL SEA	
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS	0
Total/NA	Analysis	8015B		3	182422	05/27/15 22:22	JXL	TAL PLS	
Total/NA	Prep	3546			182348	05/26/15 13:18	JRD	TAL PLS	
Total/NA	Analysis	8082		10	182413	05/27/15 11:22	DCH	TAL PLS	
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS	
Total/NA	Analysis	6010B		4	182527	05/28/15 02:55	SLK	TAL PLS	
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS	
Total/NA	Analysis	6010B		4	182594	05/28/15 18:02	CAM	TAL PLS	
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS	
Total/NA	Analysis	7471A		10	182486	05/27/15 17:55	SLK	TAL PLS	

Client Sample ID: FD-1 Date Collected: 05/19/15 00:00 Date Received: 05/19/15 15:00

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182427	05/27/15 09:39	NVP	TAL PLS
Total/NA	Analysis	8270C		5	182550	05/28/15 15:54	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins		1	190539	05/28/15 10:53	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		3	182423	05/27/15 19:26	JXL	TAL PLS
Total/NA	Prep	3546			182388	05/26/15 19:49	JRD	TAL PLS
Total/NA	Analysis	8082		50	182413	05/27/15 15:46	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182527	05/28/15 03:00	SLK	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182602	05/28/15 20:05	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		10	182486	05/27/15 17:57	SLK	TAL PLS

Client Sample ID: FD-2 Date Collected: 05/19/15 00:00

Date Received: 05/19/15 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			182427	05/27/15 09:39	NVP	TAL PLS
Total/NA	Analysis	8270C		2	182550	05/28/15 16:16	MQL	TAL PLS
Total/NA	Prep	Organotin Prep			190247	05/24/15 18:29	ERZ	TAL SEA

TestAmerica Pleasanton

Matrix: Solid

Lab Sample ID: 720-64901-22

5/29/2015

,

Client Sample ID: FD-2 Date Collected: 05/19/15 00:00 Date Received: 05/19/15 15:00

ate Receive				Dil dia	D. t. l	B		
Prep Type	Batch	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analvzed	Analvst	Lab
Total/NA	Type Analysis	Organotins		1	190539	05/28/15 11:15	ERB	TAL SEA
Total/NA	Prep	Organotin Prep	DL		190247	05/24/15 18:29	ERZ	TAL SEA
Total/NA	Analysis	Organotins	DL	5	190539	05/28/15 11:38	ERB	TAL SEA
Total/NA	Prep	3546			182368	05/26/15 16:23	JRD	TAL PLS
Total/NA	Analysis	8015B		2	182423	05/27/15 19:56	JXL	TAL PLS
Total/NA	Prep	3546			182388	05/26/15 19:49	JRD	TAL PLS
Total/NA	Analysis	8082		5	182412	05/27/15 16:20	DCH	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		4	182527	05/28/15 03:14	SLK	TAL PLS
Total/NA	Prep	3050B			182392	05/26/15 20:54	ECT	TAL PLS
Total/NA	Analysis	6010B		1	182594	05/28/15 18:11	CAM	TAL PLS
Total/NA	Prep	7471A			182393	05/26/15 20:56	ECT	TAL PLS
Total/NA	Analysis	7471A		10	182486	05/27/15 18:04	SLK	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919 TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310 Lab Sample ID: 720-64901-22 Matrix: Solid

5/29/2015

Method Summary

Client: URS Corporation Project/Site: Blue Greenway 900 Innes

/lethod	Method Description	Protocol	Laboratory
3270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL PLS
Organotins	Organotins, PSEP (GC/MS)	NONE	TAL SEA
3015B	Diesel Range Organics (DRO) (GC)	SW846	TAL PLS
082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL PLS
010B	Metals (ICP)	SW846	TAL PLS
7471A	Mercury (CVAA)	SW846	TAL PLS

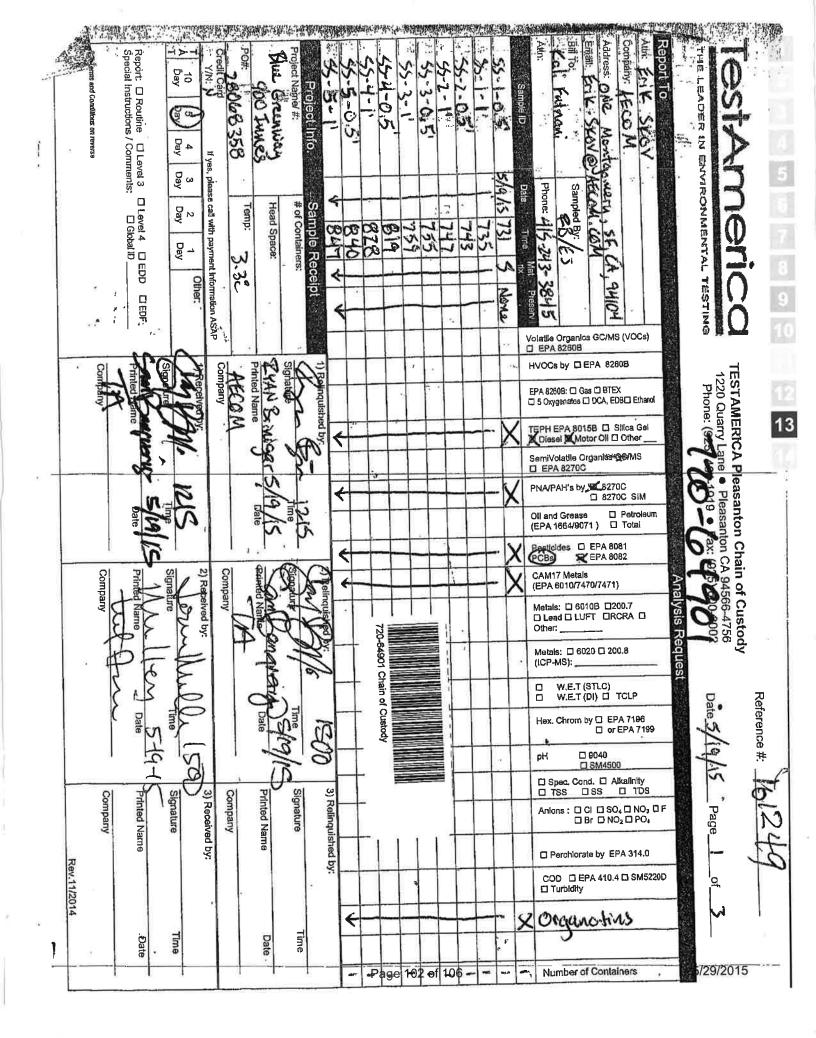
Protocol References:

NONE = NONE

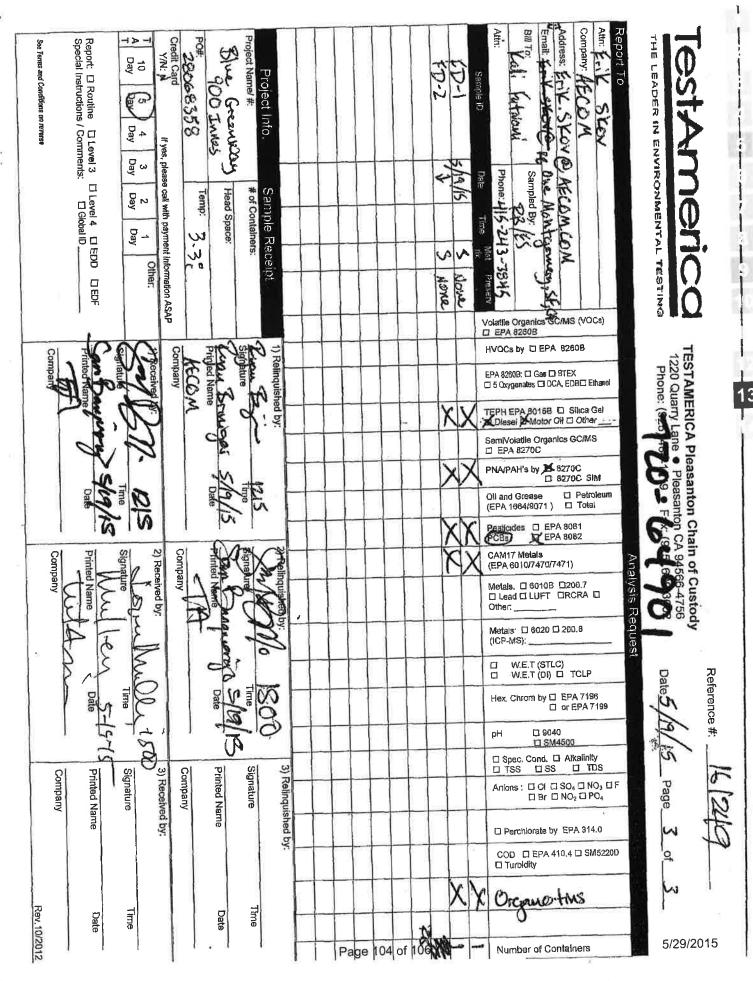
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919 TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310


Sample Summary

Client: URS Corporation Project/Site: Blue Greenway 900 Innes


*

Lab Sample ID	Client Sample ID	Matrix	Collected Received
720-64901-1	SS-1-0.5'	Solid	05/19/15 07:31 05/19/15 15:
720-64901-2	SS-1-1'	Solid	05/19/15 07:35 05/19/15 15:
720-64901-3	SS-2-0.5'	Solid	05/19/15 07:43 05/19/15 15:
720-64901-4	SS-2-1'	Solid	05/19/15 07:47 05/19/15 15:
720-64901-5	SS-3-0.5'	Solid	05/19/15 07:55 05/19/15 15:
720-64901-6	SS-3-1'	Solid	05/19/15 07:59 05/19/15 15:
720-64901-7	SS-4-0,5'	Solid	05/19/15 08:19 05/19/15 15:
720-64901-8	SS-4-1'	Solid	05/19/15 08:28 05/19/15 15:
720-64901-9	SS-5-0,5'	Solid	05/19/15 08:40 05/19/15 15:
720-64901-10	SS-5-1'	Solid	05/19/15 08:47 05/19/15 15:
720-64901-11	SS-6-0.5'	Solid	05/19/15 09:01 05/19/15 15:
720-64901-12	SS-6-1'	Solid	05/19/15 09:10 05/19/15 15:
720-64901-13	SS-7-0.5'	Solid	05/19/15 09:18 05/19/15 15:
720-64901-14	SS-7-1'	Solid	05/19/15 09:31 05/19/15 15:
720-64901-15	SS-8-0.5'	Solid	05/19/15 09:36 05/19/15 15:
720-64901-16	SS-8-1'	Solid	05/19/15 09:51 05/19/15 15:
720-64901-17	SS-9-0.5'	Solid	05/19/15 10:26 05/19/15 15:
720-64901-18	SS-9-1'	Solid	05/19/15 10:20 05/19/15 15:
720-64901-19	SS-10-0_5'	Solid	05/19/15 10:10 05/19/15 15:
720-64901-20	SS-10-1'	Solid	05/19/15 10:14 05/19/15 15:
720-64901-21	FD-1	Solid	05/19/15 00:00 05/19/15 15:
720-64901-22	FD-2	Solid	05/19/15 00:00 05/19/15 15:

TestAmerica Pleasanton

Report: Report: Re	CO Inves	Info. San #of C	$\frac{55 - 9 - 0.5}{55 - 9 - 1} 014 + 1014 + 1010 014 + 1000 0100 0100$	55-8-0.5 936 55-8-0.5 936 55-8-1 936	1.5 5/9/15 90i	Ath: E.K. SKOV Address: On: Montageness, SF, CA, 94104 Bill To: Kal, Kahaan Ath: Bill To: Kal, Kahaan Phone: 415-213-2845 Phone: 415-213-2845 Phone: 415-213-2845 Phone: 415-213-2845 Phone: 415-213-2845	THE LEADER IN ENVIRONMENTAL TESTING
Standarte Printed Name	Pringled Name	1) Relinquished by: Signature			- X	HVOCs by [] EPA 8260B EPA 8260B: [] Gas [] 87EX] 5 Oxygenates [] DCA, EDB[] Ethanol TEPH EPA 8015B [] Stlice Gel Dissel Motor OII [] Other SemiVolatile Organics GC/MS	TESTAMERICA 1220 Quarry Lar Phone: (925)
Stalls	510. CI20.	IZIS Thme			X	DI EPA 8270C PNA/PAH's by \$270C D 8270C SIM Oll and Grease (EPA 1864/9071) D Total Pesticidas D EPA 8081 EPA 8082	Pleasanton Ch Pleasanton Ch 184-1919 - Fa
Signature Printed Name TATA Company	Annited Name Company 2) Received by:	Standard Standard	<u>←</u> 		- X	CAM17 Metals (EPA 6010/7470/7471) Metals: [] 6010B []200.7 [] Lead [] LUFT []RCRA [] Other:	TESTAMERICA Pleasanton Chain of Custody 1220 Quarry Lane • Pleasanton CA 94566-4756 Phone: (927) 484-1919 • Fax (927) 90-3002 Phone: (927) 484-1919 • Fax (927) 90-3002 Analysis Request
Time S-12-13	Joates (7)	IS00				(ICP-MS): □ W.E.7 (STLC) □ W.E.T (DI) □ TCLP Hex. Chrom by □ EPA 7196 □ or EPA 7199 PH □ 9040 □ SM4500	Reference #: Date <u>\$/1</u> 9/
Printed Name Company Rev.11/2014	Printed Name Company 3) Received by:	3) Relinquished by: Signature				□ Spec. Cond. □ Alkalinity □ TSS □ SS □ TDS Anions : □ Cl □ SO ₄ □ NO ₃ □ F □ Br □ NO ₂ □ PO ₄ □ Perchlorate by EPA 314.0 COD □ EPA 410.4 □ SM5220D □ Turbidity	161249 15 Page 2 of
Time Date		Time	Page 10			Number of Containers	5/29/2015

Login Sample Receipt Checklist

Client: URS Corporation

Login Number: 64901 List Number: 1 Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	*
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	<i>1</i> ,
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-64901-1

List Source: TestAmerica Pleasanton

Login Sample Receipt Checklist

Client: URS Corporation

Login Number: 64901 List Number: 2 Creator Divers ------

Job Number: 720-64901-1

Creator: Rivers, Zachary V		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	11
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	¥7.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	8
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Residual Chlorine Checked.

8

ANALYSIS OF BROWNFIELD CLEANUP ALTERNATIVES

Shipwrights Cottage 900 Innes Avenue Site Hunters Point, San Francisco, California

Prepared for:

Contract No. 4061-12/13 San Francisco Department of the Environment 1455 Market Street, Suite 1200 San Francisco, California 94103

Prepared by:

Post Montgomery Center One Montgomery Street, Suite 900

San Francisco, California 94104

December 2015

IDENTIFICATION FORM

- Document Title: Analysis of Brownfield Cleanup Alternatives Shipwrights Cottage 900 Innes Avenue Site City and County of San Francisco, California
- Organization Title:URS CorporationAddress:Post Montgomery CenterOne Montgomery Street, Suite 900San Francisco, California 94104
- Project Manager:Kali FutnaniTelephone:(415) 243-3878
- Project Geologist:Erik Skov, PG, CHGTelephone:(415) 243-3845
- Plan Coverage: This Assessment of Brownfield Cleanup Alternatives constitutes the deliverable for technical support to the San Francisco Department of the Environment to develop cleanup alternatives for the Shipwrights Cottage located at 900 Innes Avenue in San Francisco, CA under Contract No. 4061-12/13.

Approval Form Date: 12/2/2015 Page ii

APPROVAL FORM

Prepared for: San Francisco Department of the Environment 1455 Market Street, Suite 1200 San Francisco, California 94103

Prepared by: URS Corporation Post Montgomery Center One Montgomery Street, Suite 900 San Francisco, California 94104

Date: 12/2/2015

Signature: Name: Title:

For

Kali Futnani Project Manager URS Corporation

Date: 12/2/2015

Signature: Name: Title:

Erik Skov, PG, CHG Senior Geologist Professional Geologist No. 7470 URS Corporation

This document has been prepared for the San Francisco Department of the Environment under Contract No. 4061-12/13.

TABLE OF CONTENTS

IDENT	IFICAT	ION FORMi
APPRO	OVAL F	FORMii
TABLE	E OF C	ONTENTSiii
1.	INTRO 1.1. 1.2. 1.3. 1.4.	DUCTION AND BACKGROUND 1 Site Location 1 Ownership and Previous Use 1 Site Assessment Findings 2 Project Goal 2
2.	APPLI 2.1. 2.2. 2.3.	CABLE REGULATIONS AND CLEANUP STANDARDS 3 Cleanup Oversight Responsibility 3 Cleanup Standards for Major Contaminants 3 Laws and Regulations Applicable to the Cleanup 3
3.	EVALU 3.1. 3.2. 3.3. 3.4.	JATION OF BROWNFIELD CLEANUP ALTERNATIVES 6 Cleanup Action Objectives 6 Identification and Evaluation of Cleanup Alternatives 6 3.2.1. Alternative 1 Analysis – No Action 7 3.2.2. Alternative 2 Analysis – Abatement of High Risk Asbestos/Lead-Based 7 Paint/Universal Waste/Mold/Operation and Maintenance of Remaining 8 Materials/Excavation and Disposal of Lead-Impacted Soil from the Drip 8 3.2.3. Alternative 3 – Abatement of All Asbestos/Lead-Based Paint/Universal 8 3.2.3. Alternative 3 – Abatement of All Asbestos/Lead-Based Paint/Universal 9 Comparison of Alternatives 9 Consideration of Climate Impacts 11
4.		ATIONS AND ADDITIONAL ASSESSMENT NEEDS
5.		RENCES

LIST OF FIGURES

Figure 1	Site Location Map
----------	-------------------

Figure 2 Site Plan

1. INTRODUCTION AND BACKGROUND

URS Corporation (URS), under Contract No. 4061-12/13 with the San Francisco Department of the Environment (SFDOE), has prepared this Assessment of Brownfield Cleanup Alternatives (ABCA) for the Shipwright's Cottage located at the 900 Innes Avenue property in Hunters Point, City and County of San Francisco, California (Site) (Figure 1).

In 2014 the City and County of San Francisco, Recreation and Parks Department (RPD) completed their acquisition of the Site from the Tenderloin Housing Clinic. This ABCA was prepared to support the RPD in their application to the United States Environmental Protection Agency (USEPA) for a Brownfields Cleanup Grant.

1.1. Site Location

The Site is located on a portion of the property known as 900 Innes Avenue located in Hunters Point, San Francisco, California (Figure 1). The Shipwright's Cottage is located at the north corner of the intersection of Innes Avenue and Griffith Street. The 900 Innes Avenue property is comprised of seven different City and County of San Francisco Assessor Parcel Numbers (APN). The Site is assigned APN 4646003.

1.2. Ownership and Previous Use

The house was constructed as an early component of an isolated working-class settlement of shipbuilders. The first property owner was John Johnson Dircks, a shipwright who was among the first immigrants to arrive at India Basin. Dircks resided in the house, from 1875 until 1893, after which point the residence was deeded to Carl J. Jorgenson, a ship carpenter. Members of the Jorgenson family, as well as the Siemers family, resided in the cottage at various times during the following few decades (Page & Turnbull, 2015).

In 1923, the Shipwright's Cottage was incorporated into the adjacent Anderson & Cristofani Boatyard. No residents were recorded at this address in the 1930 and 1940 United States census rolls; however, Carl Jorgenson was listed at 900 Innes until around 1960. In 1961, the property was sold to Walter and Alice Anderson; Walter was partner in the adjacent Anderson & Cristofani Boatyard. The building served as an office for the yard (Page & Turnbull, 2015).

The property changed hands several times during the 1960s, 1970s, and 1980s. The house was ultimately donated to the Tenderloin Housing Clinic in 2007. The Shipwright's Cottage was designated a San Francisco Article 10 landmark in 2008, and the Tenderloin Housing Clinic sold the building (along with the remainder of the 900 Innes Avenue property) to the City and County of San Francisco in 2014. The property was previously owned by the Tenderloin Housing Clinic prior to its acquisition by the City and County of San Francisco RPD (Page & Turnbull, 2015).

1.3. Site Assessment Findings

In 2013 Weston Solutions conducted a Phase I Environmental Site Assessment (ESA) as part of a Targeted Brownfields Assessment (TBA) being conducted at the property (Weston, 2013). Based on the information presented in this report and the historical information presented in the Page & Turnbull Feasibility Study for the Shipwright's Cottage conducted in 2015 (Page & Turnbull, 2015), the building likely contains asbestos containing building materials and leadbased paint given the age of construction of the building and subsequent modifications/additions made to the structure. Additionally, the Page & Turnbull report indicated the presence of mold on building materials inside the structure. A hazardous materials building survey or building drip line investigation has not yet been conducted but is proposed to be undertaken prior to any building redevelopment/renovation activities.

1.4. Project Goal

The goal of the project is to abate hazardous building materials and lead-based paint from the structure as well as lead-impacted soil from the dripline of the building in order to prepare the building for its eventual restoration and reuse. This project is part of a larger vision for the Blue Greenway, an open space system covering 13 miles of trails, and the segment of the regional San Francisco Bay Trail in the city. The expected reuse of the 900 Innes property as a park would allow for this strategy. Reuse in this case would prioritize maintaining the overall character of the Shipwright's Cottage, sensitively refitting for modern use within their historic layouts, and repairing failed details and features.

2. APPLICABLE REGULATIONS AND CLEANUP STANDARDS

The section identifies the cleanup oversight responsibility and cleanup standards for contaminants at the Site.

2.1. Cleanup Oversight Responsibility

Asbestos cleanup oversight will be overseen by the Bay Area Air Quality Management District (BAAQMD) who will issue a permit (Job Number or J#) for the abatement of asbestos associated with building renovation.

The California Environmental Protection Agency (Cal EPA) Department of Toxic Substances Control (DTSC) will be the regulatory oversight agency for the excavation and disposal of leadcontaminated soil from the drip line of the structure. It is assumed that the removal of leadimpacted soil from the drip line of the Shipwright's Cottage will be conducted in conjunction with other soil remedial activities at the 900 Innes Avenue property for which the DTSC will be the lead oversight agency.

2.2. Cleanup Standards for Major Contaminants

In addition to visual clearance by a qualified California Certified Asbestos Consultant (CAC), clearance air monitoring will be conducted to ensure levels are safe for building reentry to conduct other hazardous material abatement activities including lead-based paint removal and mold removal and eventually, building renovation. In accordance with the Asbestos Hazard Emergency Response Act (AHERA) (40 Code of Federal Regulations [CFR] §763.90[i]), removal of asbestos containing building materials are considered complete when representative air samples from the affected space, analyzed by transmission electron microscopy (TEM) method, are not statistically significantly different than outside concentrations or do not exceed the filter background level of 70 asbestos fiber structures per square millimeter.

The cleanup standard for lead-impacted soil in the drip line of the building will be established as part of the Feasibility Study/Remedial Action Plan preparation process for contaminated soil remediation on other portions of the 900 Innes Avenue property.

2.3. Laws and Regulations Applicable to the Cleanup

Asbestos abatement activities will be conducted in accordance with the following appropriate and applicable regulations:

• The asbestos National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations specify work practices for asbestos to be followed during demolitions and renovations of all structures, installations, and buildings (40 CFR Part 61, Subpart M).

- Asbestos Hazard Emergency Response Act (40 CFR Part 763) as it relates to final air monitoring clearance standards.
- OSHA oversees the working conditions for workers by implementing and managing occupational safety and health standards. The following regulations pertain to handling asbestos in the workplace:
 - Asbestos General Standard—Specification of permissible exposure limits, engineering controls, worker training, labeling, respiratory protection, and disposal of asbestos waste (29 CFR §1910.1001) as well as the California Code of Regulations (CCR) Title 8.
 - Asbestos Construction Standard—Covers construction work involving asbestos, including work practices during demolition and renovation, worker training, disposal of asbestos waste, and specification of permissible exposure limits (29 CFR §1926.1101)

Additionally, California Occupational Health and Safety Administration's (Cal-OSHA's) lead in construction standard (8 CCR I532.1) requires a contractor whose work involves disturbing lead-containing materials to develop and implement a lead compliance plan, conduct employee exposure assessment to determine appropriate protective measures, including medical surveillance and personal hygiene facilities, and to provide employee training on the hazards of lead-related work.

The DTSC has adopted regulations (SB 20 Electronic Waste Recycling Act) for the handling of universal waste or E-Waste. This category is a subset under all hazardous wastes (CCR Title 26). Universal wastes encompass a variety of electronic devices (including fluorescent lamps, light ballasts, mercury thermostats, cathode ray tubes, batteries, etc.) that usually contain mercury, lead, cadmium, chromium and copper. These materials are considered toxic and are banned from landfill disposal. These materials must be collected and recycled prior to building renovation.

Bay Area Air Quality Management District (BAAQMD) Regulation 11 (Hazardous Pollutants), Rule 2 (Asbestos Demolition, Renovation and Manufacturing) was promulgated to control emissions of asbestos to the atmosphere during demolition and/or renovation. The rule requires that for every demolition or renovation involving the removal of 100 square feet/lineal feet or greater of Regulated Asbestos Containing Material (RACM), a notification must be made to the BAAQMD at least 10 working days prior to commencement of demolition/renovation. The District provides a form to use for notification of the two types of jobs. Information obtained from the notification form is stored and a job number (J#) is assigned to each demolition or renovation job that is notified. The J# is proof that the notification requirements of District Regulation 11-2 have been met. This information then allows BAAQMD staff to conduct an inspection to determine compliance with all other requirements of Regulation 11-2. Lead-impacted soil from the drip line of the Shipwright's Cottage will be conducted by contractors operating in accordance to the U.S. Department of Labor OSHA Hazardous Waste Operations and Emergency Response Standard (HAZWOPER), 29 CFR §1910.120. The requirements of 29 CFR §1910.120 apply to clean-up operations at sites recognized by federal, state, local, or other governmental body as uncontrolled hazardous waste sites.

The National Historic Preservation Act, Code of Federal Regulations 36 (36 CFR) pertains to cultural resources and historic sites. A cultural resources study and archeological report have not been prepared for the Site. The proposed abatement and cleanup activities will comply with the National Historic Preservation Act and will be undertaken in a manner such that any cultural resources or historic structures will not be degraded.

Other laws and regulations applicable to this cleanup may include the Federal Small Business Liability Relief and Brownfields Revitalization Act, the Federal Davis-Bacon Act, and local city and county laws regarding procurement of contractors to conduct the abatement and cleanup activities. In addition, excavation and grading permits, if required, and underground service alert notifications will be obtained prior to the work commencing.

3. EVALUATION OF BROWNFIELD CLEANUP ALTERNATIVES

The following section discusses the proposed cleanup alternatives and provides an evaluation to determine the preferred alternative.

3.1. Cleanup Action Objectives

The objective of the Shipwright's Cottage Brownfields Cleanup Project is to eliminate the potential exposure to asbestos, lead, mold, and other miscellaneous hazardous substances (universal wastes) for individuals entering and working around the building, and to facilitate the renovation of the building, as it is planned to be an integral part of the larger site redevelopment of the 900 Innes Avenue property. The following sections describe the three alternatives considered in terms of their effectiveness, feasibility of implementation, and costs with regard to achieving the project objectives.

3.2. Identification and Evaluation of Cleanup Alternatives

Three potentially feasible cleanup alternatives were identified based on URS' previous experience with similar sites. These alternatives include:

- 1. No Action.
- Removal of High Risk Asbestos/Lead-Based Paint/Mold/Universal Waste/Operation and Maintenance of Remaining Materials/Excavation and Disposal of Lead-Impacted Soil From the Drip Line of the Shipwright's Cottage.
- 3. Removal of all Asbestos/Lead-Based Paint/Universal Waste and Excavation and Disposal of Lead-Impacted Soil from the Drip Line of the Shipwright's Cottage.

Alternative 1: No-Action

A no-action alternative would leave the Shipwright's Cottage building in its present condition, making it unusable for use. The only advantages to no action are those related to immediate avoidance of expenses that would be incurred by taking action. However, in the long term, expenses associated with no action may exceed those related to taking action at the present time due to the continued deterioration of the condition of the building, maintaining security (fencing, boarding of windows and doors, and signage) of the building to avoid trespassing, and potential exposures to and liability associated with unauthorized entrants.

Alternative 2: Removal of High Risk Asbestos/Lead-Based Paint/Universal Waste/Mold/ Operation and Maintenance of Remaining Materials/Excavation and Disposal of Lead-Impacted Soil From the Drip Line of the Shipwright's Cottage

This alternative would address deteriorated and friable asbestos-containing materials and deteriorated lead-based paint in the interior and exterior of the building including asbestos ceiling tiles, asbestos floor tiles and mastic, lead-based paint chips, and pealing lead-based paint. This alternative will also remove readily visible mold from interior building surfaces and miscellaneous universal waste contained in the building as well as excavation and disposal of lead-impacted soil from the drip line of the Shipwright's Cottage.

<u>Alternative 3: Removal of all Asbestos/Lead-Based Paint/Universal Waste and Excavation</u> and Disposal of Lead-Impacted Soil From the Drip Line of the Shipwright's Cottage.

This alternative would address all asbestos-containing materials and lead-based paint in the interior and exterior of the building including asbestos ceiling tiles, asbestos floor tiles and mastic, lead-based paint chips, pealing lead-based paint, and other identified lead-based paint on interior and exterior surfaces of the building. This alternative will also remove mold from all interior surfaces of the structure and miscellaneous universal waste contained in the building as well as excavation and disposal of lead-impacted soil from the drip line of the Shipwright's Cottage.

3.2.1. Alternative 1 Analysis – No Action

Effectiveness: The effectiveness of the No-Action alternative in achieving project goals would be negligible. The continued presence of asbestos containing building materials, lead-based paint, and universal waste(s) in the structure, as would be the case under the no-action alternative, would pose a potential long-term health risk to anyone entering the building. Additionally, lead-impacted soil that may be present in the drip line of the structure would also remain, posing potential health risks. The no-action alternative would be highly non-effective in achieving the goals of reduction of health risks for facilitating the renovation of the structure as part of the overall 900 Innes site redevelopment.

Implementation: Implementation of the No-Action alternative would be fairly straightforward. The building would be left in the current unused state in which it currently exists. The identified ACM, lead-based paint, and universal waste(s) would still pose a hazard to anyone entering the building. The building would not be demolished and the excavation and disposal of lead-impacted material from the drip line of the building would not occur. Controls would be necessary to manage exposure to those entering the building.

Under the No-action Alternative, the building will remain unused for an extended period of time and will likely continue to deteriorate increasing the risk to those entering the building. The building, if it were to remain in this state, would detract from the redevelopment of the remainder of the 900 Innes Avenue site.

<u>Cost</u>: Direct costs associated with the No-Action Alternative would consist of providing building security and upkeep of measures to mitigate trespassers. Indirect costs could include potential liability associated with unauthorized entrants into the buildings. No Action alternative costs are estimated at \$5,000 annually.

3.2.2. Alternative 2 Analysis – Abatement of High Risk Asbestos/Lead-Based Paint/ Universal Waste/Mold/Operation and Maintenance of Remaining Materials/ Excavation and Disposal of Lead-Impacted Soil from the Drip Line of the Shipwright's Cottage

Effectiveness: Alternative 2 would be effective at removing high risk asbestos containing building materials, lead-based paint, universal waste(s), and mold thus reducing potential hazards to individuals entering or working inside the building. However, Alternative 2 would be limited in that all asbestos containing building materials, lead-based paint, universal waste(s), and mold would not be removed from the building, and some degree of operations and maintenance would be required in order to ensure remaining materials do not become high risk from further degradation of the building or from any work being conducted inside the building that may disturb these materials. Lead-impacted soil would be removed from the drip line of the building to mitigate potential risks associated with exposure to lead in soil around the outside of the building.

Implementation: Implementation of Alternative 2 would be performed by certified asbestos, lead, and mold abatement contractors. All friable asbestos, asbestos tile debris, floor tile and mastic, and ceiling tile would be removed. In addition, interior and exterior lead-based paint chips and loose lead-based paint would be removed. An Operations and Maintenance (O&M) Plan would be prepared for the remaining asbestos containing material and lead-based paint left in place on/in the structure. Miscellaneous universal waste(s), mainly materials that are considered universal waste that would not be reused in the building renovation, would also be removed by the abatement contractor performing asbestos and lead-based paint removal. Removal of readily visible and accessible mold on the outside of walls and other interior surfaces would also be conducted by certified abatement contractors. In addition to the abatement of hazardous building materials and mold, lead-impacted soil from the drip line of the building would also be excavated and disposed of offsite. Implementation of these activities is considered routine for properly trained and licensed contractors.

<u>Cost:</u> Costs associated with Alternative 2 would consist of costs to abate high-risk asbestos containing building materials, lead-based paint and mold, and removal and disposal of miscellaneous universal waste(s). Alternative 2 would also involve the development of an O&M Plan for asbestos, lead-based paint, and any universal waste(s) left inplace in the structure. Additionally, the cost for Alternative 2 would include the excavation and disposal of lead-

impacted soil from the drip line of the Shipwright's Cottage. The estimated cost for Alternative 2 is \$85,000 plus \$1,500 annually for O&M inspections and reporting.

3.2.3. Alternative 3 Analysis – Abatement of All Asbestos/Lead-Based Paint/Universal Waste/Mold and Excavation and Disposal of Lead-Impacted Soil from the Drip Line of the Shipwright's Cottage

Effectiveness: Alternative 3 would be highly effective in achieving the cleanup action objective of eliminating the potential for exposure to asbestos, lead, mold, and other miscellaneous hazardous substances for individuals entering the building, and to facilitate the renovation of the building.

Implementation: Implementation of Alternative 3 would be performed by certified asbestos, lead, and mold abatement contractors. In addition to the asbestos-containing materials and lead-based paint to be removed in Alternative 2, removal of all identified asbestos containing material, including any non-friable material (e.g., transite pipes or sheeting, roofing penetration tar, caulking, etc.), and removal of all lead-based paint including paint in good condition would be conducted. Under Alternative 3 all identified mold, including mold that may not be readily accessible behind walls or other enclosed areas, will be abated. Additionally, all identified universal wastes will be removed and disposed, and lead-impacted soil in the drip line of the structure will be excavated and disposed of offsite. Implementation of these activities is considered routine for properly trained and licensed contractors.

<u>Cost:</u> Costs associated with Alternative 3 would consist of abatement costs for asbestos containing building materials, lead-based paint and mold, and removal and disposal of universal waste(s). Additionally, the cost for Alternative 3 would include the excavation and disposal of lead-impacted soil from the drip line of the Shipwright's Cottage. The estimated cost for Alternative 3 is **\$114,320**.

3.3. Comparison of Alternatives

Alternative 1 – No Action: This alternative would leave the hazardous building materials in place and manage access to the sight by potential trespassers. This alternative does not meet the project goal of the planned renovation and reuse of the Shipwright's Cottage as part of the overall redevelopment of the 900 Innes Avenue site as a part of the Blue Greenway project. This alternative is not given any additional consideration under this analysis as it will not allow the overall project to be completed.

Alternative 2 – Abatement of High Risk Asbestos/Lead-Based Paint/Universal Waste/Mold/ Operation and Maintenance of Remaining Materials/Excavation and Disposal of Lead-Impacted Soil from the Drip Line of the Shipwright's Cottage: This alternative would meet the project objectives. However, it would only remove the high-risk hazardous building materials and would leave some asbestos and lead-based paint in place to be managed under an asbestos and lead-based paint O&M plan. Additionally, this alternative would remove the visible mold from the structure and the lead-impacted soil from the drip line of the Shipwright's Cottage. This alternative was not selected because it leaves some asbestos and lead-based paint within the structure, which would inhibit the proposed renovation and would require annual inspections of the components containing asbestos and lead-based paint until such time as these are removed or abated from the structure.

Alternative 3 – Abatement of All Asbestos/Lead-Based-Paint/Universal Waste/Mold and Excavation and Disposal of Lead-Impacted Soil from the Drip Line of the Shipwright's Cottage: This alternative would meet the project objective and would not have any ongoing O&M requirements associated with management of asbestos and lead-based paint left in the structure as it would remove all of the asbestos and lead-based paint from the Shipwright's Cottage. Additionally, this alternative would remove the mold from the structure and the lead-impacted soil from the drip line of the building. This alternative would allow for the uninhibited renovation of the structure as all of the hazardous building materials would be abated. No annual inspections of components containing asbestos and lead-based paint would be required as these will have been abated from the structure.

	Cleanup Alternative 1	Cleanup Alternative 2	Cleanup Alternative 3
Description	No Action	Abatement of High Risk Asbestos/Lead-Based Paint/Universal Waste/ Mold/Operation and Maintenance of Remaining Materials/ Excavation and Disposal of Lead-Impacted Soil from the Drip Line of the Shipwright's Cottage	Abatement of All Asbestos/Lead-Based Paint/Universal Waste/ Mold/Operation and Maintenance of Remaining Materials/ Excavation and Disposal of Lead-Impacted Soil from the Drip Line of the Shipwright's Cottage
Cost	\$5,000 Annually	\$85,000 plus \$1,500 annually for O&M Inspection and Reporting.	\$114,320

Table 1 – Cost Comparison for Cleanup Alternatives

Selected Alternative

Alternative 3 – Abatement of All Asbestos/Lead-Based Paint/Universal Waste/Mold/Operation and Maintenance of Remaining Materials/Excavation and Disposal of Lead-Impacted Soil from the Drip Line of the Shipwright's Cottage: This alternative was selected because it allows the planned renovation and redevelopment of the Shipwright's Cottage to take place uninhibited by the presence of remaining asbestos and lead-based paint and without continuing O&M obligations.

3.4. Consideration of Climate Impacts

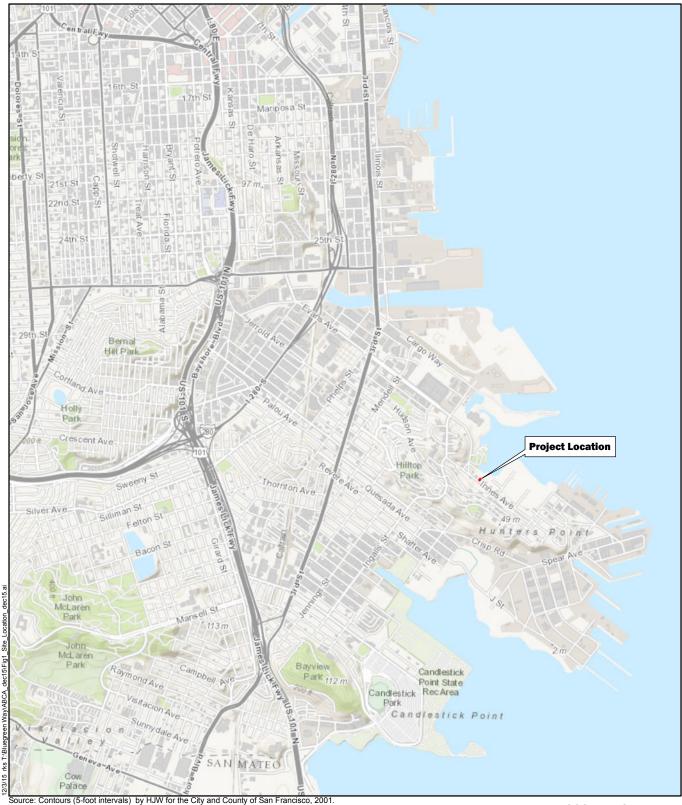
Data demonstrates that the climate is changing at an increasingly rapid rate. The U.S. EPA must adapt to climate change if it is to continue fulfilling its statutory, regulatory, and programmatic requirements. The U.S. EPA is therefore planning for future changes in the climate to ensure it continues to fulfill its mission of protecting the human health and the environment. As part of the EPA's Climate Change Adaptation Plan in Region 9's Implementation Plan (EPA, 2013), the ABCA must take into consideration the effects of potential climate impacts upon the effectiveness of the proposed cleanup alternatives.

Potential climate impacts for the San Francisco Bay Area will likely include lack of rainfall, future droughts, and temperature increase. Along with temperature increases comes the likelihood of sea level rise which is anticipated to have the most impact along the bay margin of the San Francisco Bay. The effects of these changes are not likely to have any impact on the evaluated alternatives as the elevation of the Shipwright's Cottage is not likely to be directly affected by sea-level rise effects in the San Francisco Bay.

4. LIMITATIONS AND ADDITIONAL ASSESSMENT NEEDS

URS' services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of the same profession currently practicing in the same locality under similar conditions. No expressed or implied representation or warranty is included or intended in our reports, except that our services were performed, within the limits prescribed by our client, with the customary thoroughness and competence of our profession.

Recommendations provided are not necessarily inclusive of all possible conditions. No other warranty, expressed or implied, is made regarding the professional opinions presented in this report. This document is intended to be used in its entirety. No portion of this document, by itself, is designed to completely represent any aspect of the project described herein. URS should be contacted if the reader requires any additional information or has questions regarding the content, interpretations presented, or completeness of this document.


This document shall not be relied upon by or transferred to any additional parties, or used for any other purpose, without the express written authorization of URS. The conditions of the site can change with time as a result of natural processes or the activities of man at or within the vicinity of the site. Additionally, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this document may, therefore, be invalidated over time, in part or in whole, by changes over which URS has any control.

A hazardous building materials survey and lead in building drip line soil investigation will be required in order to prepare a Hazardous Building Materials Abatement and Clearance Monitoring Plan and a contaminated soil Removal Action Work Plan.

5. **REFERENCES**

- Environmental Protection Agency (EPA). (2013, November 19). Climate Change. http://www.epa.gov/climatechange/impacts-adaptation/fed-programs/EPA-implplans.html.
- Page & Turnbull, 2015, Feasibility Study, Shipwright's Cottage, 900 Innes Avenue, San Francisco, California (September, 2015).
- Weston Solutions, Inc., 2013. Phase I/II Investigation, Targeted Brownfields Assessment, Final Report, 900 Innes Avenue Site, San Francisco, San Francisco County, California (November 2013).

FIGURES

900 INNES AVENUE SITE LOCATION

December 2015 60407957

Assessment of Brownfield Cleanup Alternatives Shipwrights Cottage 900 Innes Avenue San Francisco, California

FIGURE 1

Source: Google Earth Pro., 2015.

Assessment of Brownfield Cleanup Alternatives Shipwrights Cottage December 2015 900 Innes Avenue 60407957 San Francisco, California

FIGURE 2

SITE PLAN